Key papers

2023
Lee JJ-K, Jung YL, Cheong T-C, Valle-Inclan JE, Chong C, Gulhan DC, Ljungström V, Jin H, Viswanadham VV, Watson EV, Cortés-Ciriano I, Elledge SJ, Chiarle R, Pellman D, Park PJ. ERα-associated translocations underlie oncogene amplifications in breast cancer [Internet]. Nature 2023; Harvard Medical School NewsAbstract

Focal copy-number amplification is an oncogenic event. Although recent studies have revealed the complex structure1,2,3 and the evolutionary trajectories4 of oncogene amplicons, their origin remains poorly understood. Here we show that focal amplifications in breast cancer frequently derive from a mechanism—which we term translocation–bridge amplification—involving inter-chromosomal translocations that lead to dicentric chromosome bridge formation and breakage. In 780 breast cancer genomes, we observe that focal amplifications are frequently connected to each other by inter-chromosomal translocations at their boundaries. Subsequent analysis indicates the following model: the oncogene neighbourhood is translocated in G1 creating a dicentric chromosome, the dicentric chromosome is replicated, and as dicentric sister chromosomes segregate during mitosis, a chromosome bridge is formed and then broken, with fragments often being circularized in extrachromosomal DNAs. This model explains the amplifications of key oncogenes, including ERBB2 and CCND1. Recurrent amplification boundaries and rearrangement hotspots correlate with oestrogen receptor binding in breast cancer cells. Experimentally, oestrogen treatment induces DNA double-strand breaks in the oestrogen receptor target regions that are repaired by translocations, suggesting a role of oestrogen in generating the initial translocations. A pan-cancer analysis reveals tissue-specific biases in mechanisms initiating focal amplifications, with the breakage–fusion–bridge cycle prevalent in some and the translocation–bridge amplification in others, probably owing to the different timing of DNA break repair. Our results identify a common mode of oncogene amplification and propose oestrogen as its mechanistic origin in breast cancer.

News coverage on this paper:

pdf
2022
Reiff SB, Schroeder AJ, Kırlı K, Cosolo A, Bakker C, Mercado L, Lee S, Veit AD, Balashov AK, Vitzthum C, Ronchetti W, Pitman KM, Johnson J, Ehmsen SR, Kerpedjiev P, Abdennur N, Imakaev M, Öztürk SU, Çamoğlu U, Mirny LA, Gehlenborg N*, Alver BH*, Park PJ*. The 4D Nucleome Data Portal as a resource for searching and visualizing curated nucleomics data. Nature Communications 2022;13(1):2365.Abstract
The 4D Nucleome (4DN) Network aims to elucidate the complex structure and organization of chromosomes in the nucleus and the impact of their disruption in disease biology. We present the 4DN Data Portal ( https://data.4dnucleome.org/ ), a repository for datasets generated in the 4DN network and relevant external datasets. Datasets were generated with a wide range of experiments, including chromosome conformation capture assays such as Hi-C and other innovative sequencing and microscopy-based assays probing chromosome architecture. All together, the 4DN data portal hosts more than 1800 experiment sets and 36000 files. Results of sequencing-based assays from different laboratories are uniformly processed and quality-controlled. The portal interface allows easy browsing, filtering, and bulk downloads, and the integrated HiGlass genome browser allows interactive visualization and comparison of multiple datasets. The 4DN data portal represents a primary resource for chromosome contact and other nuclear architecture data for the scientific community.
pdf
Cortés-Ciriano I, Gulhan DC, Lee JJ-K, Melloni GEM, Park PJ*. Computational analysis of cancer genome sequencing data. Nature Reviews Genetics 2022;23(5):298-314.Abstract
Distilling biologically meaningful information from cancer genome sequencing data requires comprehensive identification of somatic alterations using rigorous computational methods. As the amount and complexity of sequencing data have increased, so has the number of tools for analysing them. Here, we describe the main steps involved in the bioinformatic analysis of cancer genomes, review key algorithmic developments and highlight popular tools and emerging technologies. These tools include those that identify point mutations, copy number alterations, structural variations and mutational signatures in cancer genomes. We also discuss issues in experimental design, the strengths and limitations of sequencing modalities and methodological challenges for the future.
2021
Rodin RE*, Dou Y*, Kwon M, Sherman MA, D'Gama AM, Doan RN, Rento LM, Girskis KM, Bohrson CL, Kim SN, Nadig A, Luquette LJ, Gulhan DC, Brain Somatic Mosaicism Network BSM, Park PJ**, Walsh CA**. The landscape of somatic mutation in cerebral cortex of autistic and neurotypical individuals revealed by ultra-deep whole-genome sequencing. Nat Neurosci 2021;24(2):176-185.Abstract
We characterize the landscape of somatic mutations-mutations occurring after fertilization-in the human brain using ultra-deep (~250×) whole-genome sequencing of prefrontal cortex from 59 donors with autism spectrum disorder (ASD) and 15 control donors. We observe a mean of 26 somatic single-nucleotide variants per brain present in ≥4% of cells, with enrichment of mutations in coding and putative regulatory regions. Our analysis reveals that the first cell division after fertilization produces ~3.4 mutations, followed by 2-3 mutations in subsequent generations. This suggests that a typical individual possesses ~80 somatic single-nucleotide variants present in ≥2% of cells-comparable to the number of de novo germline mutations per generation-with about half of individuals having at least one potentially function-altering somatic mutation somewhere in the cortex. ASD brains show an excess of somatic mutations in neural enhancer sequences compared with controls, suggesting that mosaic enhancer mutations may contribute to ASD risk.
pdf
2020
Cortés-Ciriano I, Lee JJK, Xi R, Jain D, Jung YL, Yang L, Gordenin D, Klimczak LJ, Zhang CZ, Pellman DS, Group PCAWGSVW, Park PJ, Consortium PCAWG. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nature Genetics 2020;52(3):331-341.Abstract
Chromothripsis is a mutational phenomenon characterized by massive, clustered genomic rearrangements that occurs in cancer and other diseases. Recent studies in selected cancer types have suggested that chromothripsis may be more common than initially inferred from low-resolution copy-number data. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we analyze patterns of chromothripsis across 2,658 tumors from 38 cancer types using whole-genome sequencing data. We find that chromothripsis events are pervasive across cancers, with a frequency of more than 50% in several cancer types. Whereas canonical chromothripsis profiles display oscillations between two copy-number states, a considerable fraction of events involve multiple chromosomes and additional structural alterations. In addition to non-homologous end joining, we detect signatures of replication-associated processes and templated insertions. Chromothripsis contributes to oncogene amplification and to inactivation of genes such as mismatch-repair-related genes. These findings show that chromothripsis is a major process that drives genome evolution in human cancer.
pdf
Dou Y, Kwon M, Rodin RE, Cortés-Ciriano I, Doan R, J. Luquette L, Galor A, Bohrson C, Walsh CA, Park PJ. Accurate detection of mosaic variants in sequencing data without matched controls. Nature Biotechnology 2020;38(3):314-319.Abstract

Detection of mosaic mutations that arise in normal development is challenging, as such mutations are typically present in only a minute fraction of cells and there is no clear matched control for removing germline variants and systematic artifacts. We present MosaicForecast, a machine-learning method that leverages read-based phasing and read-level features to accurately detect mosaic single-nucleotide variants and indels, achieving a multifold increase in specificity compared with existing algorithms. Using single-cell sequencing and targeted sequencing, we validated 80–90{\%} of the mosaic single-nucleotide variants and 60–80{\%} of indels detected in human brain whole-genome sequencing data. Our method should help elucidate the contribution of mosaic somatic mutations to the origin and development of disease.

pdf
2019
Gulhan DC, Lee JJ-K, Melloni GEM, Cortés-Ciriano I, Park PJ. Detecting the mutational signature of homologous recombination deficiency in clinical samples. Nature Genetics 2019;51(5):912-919.Abstract
Mutations in BRCA1 and/or BRCA2 (BRCA1/2) are the most common indication of deficiency in the homologous recombination (HR) DNA repair pathway. However, recent genome-wide analyses have shown that the same pattern of mutations found in BRCA1/2-mutant tumors is also present in several other tumors. Here, we present a new computational tool called Signature Multivariate Analysis (SigMA), which can be used to accurately detect the mutational signature associated with HR deficiency from targeted gene panels. Whereas previous methods require whole-genome or whole-exome data, our method detects the HR-deficiency signature even from low mutation counts, by using a likelihood-based measure combined with machine-learning techniques. Cell lines that we identify as HR deficient show a significant response to poly (ADP-ribose) polymerase (PARP) inhibitors; patients with ovarian cancer whom we found to be HR deficient show a significantly longer overall survival with platinum regimens. By enabling panel-based identification of mutational signatures, our method substantially increases the number of patients that may be considered for treatments targeting HR deficiency.
Bohrson CL, Barton AR, Lodato MA, Rodin RE, Luquette LJ, Viswanadham VV, Gulhan DC, Cortés-Ciriano I, Sherman MA, Kwon M, Coulter ME, Galor A, Walsh CA, Park PJ. Linked-read analysis identifies mutations in single-cell DNA-sequencing data. Nature Genetics 2019;51:749-754.Abstract
Whole-genome sequencing of DNA from single cells has the potential to reshape our understanding of mutational heterogeneity in normal and diseased tissues. However, a major difficulty is distinguishing amplification artifacts from biologically derived somatic mutations. Here, we describe linked-read analysis (LiRA), a method that accurately identifies somatic singlenucleotide variants (sSNVs) by using read-level phasing with nearby germline heterozygous polymorphisms, thereby enabling the characterization of mutational signatures and estimation of somatic mutation rates in single cells.
pdf
2015
Somatic mutation in single human neurons tracks developmental and transcriptional history.
Lodato MA*, Woodworth MB*, Lee S*, Evrony GD, Mehta BK, Karger A, Lee S, Chittenden TW, D'Gama AM, Cai X, Luquette LJ, Lee E, Park PJ**, Walsh CA**. Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 2015;350(6256):94-8.Abstract

Neurons live for decades in a postmitotic state, their genomes susceptible to DNA damage. Here we survey the landscape of somatic single-nucleotide variants (SNVs) in the human brain. We identified thousands of somatic SNVs by single-cell sequencing of 36 neurons from the cerebral cortex of three normal individuals. Unlike germline and cancer SNVs, which are often caused by errors in DNA replication, neuronal mutations appear to reflect damage during active transcription. Somatic mutations create nested lineage trees, allowing them to be dated relative to developmental landmarks and revealing a polyclonal architecture of the human cerebral cortex. Thus, somatic mutations in the brain represent a durable and ongoing record of neuronal life history, from development through postmitotic function.

pdf
De Los Angeles A*, Ferrari F*, Fujiwara Y, Mathieu R, Lee S, Lee S, Tu H-C, Ross S, Chou S, Nguyen M, Wu Z, Theunissen TW, Powell BE, Imsoonthornruksa S, Chen J, Borkent M, Krupalnik V, Lujan E, Wernig M, Hanna JH, Hochedlinger K, Pei D, Jaenisch R, Deng H, Orkin SH, Park PJ**, Daley GQ**. Failure to replicate the STAP cell phenomenon. Nature 2015;525(7570):E6-9.
2014
Ho JWK*, Jung YL*, Liu T*, Alver BH, Lee S, Ikegami K, Sohn K-A, Minoda A, Tolstorukov MY, Appert A, Parker SCJ, Gu T, Kundaje A, Riddle NC, Bishop EP, Egelhofer TA, Hu S'en S, Alekseyenko AA, Rechtsteiner A, Asker D, Belsky JA, Bowman SK, Chen BQ, Chen RA-J, Day DS, Dong Y, Dose AC, Duan X, Epstein CB, Ercan S, Feingold EA, Ferrari F, Garrigues JM, Gehlenborg N, Good PJ, Haseley P, He D, Herrmann M, Hoffman MM, Jeffers TE, Kharchenko PV, Kolasinska-Zwierz P, Kotwaliwale CV, Kumar N, Langley SA, Larschan EN, Latorre I, Libbrecht MW, Lin X, Park R, Pazin MJ, Pham HN, Plachetka A, Qin B, Schwartz YB, Shoresh N, Stempor P, Vielle A, Wang C, Whittle CM, Xue H, Kingston RE, Kim JH, Bernstein BE, Dernburg AF, Pirrotta V, Kuroda MI, Noble WS, Tullius TD, Kellis M, MacAlpine DM**, Strome S**, Elgin SCR**, Liu XS**, Lieb JD**, Ahringer J**, Karpen GH**, Park PJ**. Comparative analysis of metazoan chromatin organization. Nature 2014;512(7515):449-52.Abstract

Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms. Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal 'arms', and centromeres distributed along their lengths. To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function.

pdf
2013
Yang L, Luquette LJ, Gehlenborg N, Xi R, Haseley PS, Hsieh C-H, Zhang C, Ren X, Protopopov A, Chin L, Kucherlapati R, Lee C, Park PJ. Diverse mechanisms of somatic structural variations in human cancer genomes. Cell 2013;153(4):919-29.Abstract

Identification of somatic rearrangements in cancer genomes has accelerated through analysis of high-throughput sequencing data. However, characterization of complex structural alterations and their underlying mechanisms remains inadequate. Here, applying an algorithm to predict structural variations from short reads, we report a comprehensive catalog of somatic structural variations and the mechanisms generating them, using high-coverage whole-genome sequencing data from 140 patients across ten tumor types. We characterize the relative contributions of different types of rearrangements and their mutational mechanisms, find that ~20% of the somatic deletions are complex deletions formed by replication errors, and describe the differences between the mutational mechanisms in somatic and germline alterations. Importantly, we provide detailed reconstructions of the events responsible for loss of CDKN2A/B and gain of EGFR in glioblastoma, revealing that these alterations can result from multiple mechanisms even in a single genome and that both DNA double-strand breaks and replication errors drive somatic rearrangements.

pdf
Kim T-M, Laird PW, Park PJ. The landscape of microsatellite instability in colorectal and endometrial cancer genomes. Cell 2013;155(4):858-68.Abstract

Microsatellites-simple tandem repeats present at millions of sites in the human genome-can shorten or lengthen due to a defect in DNA mismatch repair. We present here a comprehensive genome-wide analysis of the prevalence, mutational spectrum, and functional consequences of microsatellite instability (MSI) in cancer genomes. We analyzed MSI in 277 colorectal and endometrial cancer genomes (including 57 microsatellite-unstable ones) using exome and whole-genome sequencing data. Recurrent MSI events in coding sequences showed tumor type specificity, elevated frameshift-to-inframe ratios, and lower transcript levels than wild-type alleles. Moreover, genome-wide analysis revealed differences in the distribution of MSI versus point mutations, including overrepresentation of MSI in euchromatic and intronic regions compared to heterochromatic and intergenic regions, respectively, and depletion of MSI at nucleosome-occupied sequences. Our results provide a panoramic view of MSI in cancer genomes, highlighting their tumor type specificity, impact on gene expression, and the role of chromatin organization.

pdf
2012
Lee E, Iskow R, Yang L, Gokcumen O, Haseley P, Luquette LJ, Lohr JG, Harris CC, Ding L, Wilson RK, Wheeler DA, Gibbs RA, Kucherlapati R, Lee C, Kharchenko PV**, Park PJ**, Cancer Genome Atlas Research Network TCGA. Landscape of somatic retrotransposition in human cancers. Science 2012;337(6097):967-71.Abstract

Transposable elements (TEs) are abundant in the human genome, and some are capable of generating new insertions through RNA intermediates. In cancer, the disruption of cellular mechanisms that normally suppress TE activity may facilitate mutagenic retrotranspositions. We performed single-nucleotide resolution analysis of TE insertions in 43 high-coverage whole-genome sequencing data sets from five cancer types. We identified 194 high-confidence somatic TE insertions, as well as thousands of polymorphic TE insertions in matched normal genomes. Somatic insertions were present in epithelial tumors but not in blood or brain cancers. Somatic L1 insertions tend to occur in genes that are commonly mutated in cancer, disrupt the expression of the target genes, and are biased toward regions of cancer-specific DNA hypomethylation, highlighting their potential impact in tumorigenesis.

pdf
2011
Larschan E*, Bishop EP*, Kharchenko PV, Core LJ, Lis JT, Park PJ**, Kuroda MI**. X chromosome dosage compensation via enhanced transcriptional elongation in Drosophila. Nature 2011;471(7336):115-8.Abstract

The evolution of sex chromosomes has resulted in numerous species in which females inherit two X chromosomes but males have a single X, thus requiring dosage compensation. MSL (Male-specific lethal) complex increases transcription on the single X chromosome of Drosophila males to equalize expression of X-linked genes between the sexes. The biochemical mechanisms used for dosage compensation must function over a wide dynamic range of transcription levels and differential expression patterns. It has been proposed that the MSL complex regulates transcriptional elongation to control dosage compensation, a model subsequently supported by mapping of the MSL complex and MSL-dependent histone 4 lysine 16 acetylation to the bodies of X-linked genes in males, with a bias towards 3' ends. However, experimental analysis of MSL function at the mechanistic level has been challenging owing to the small magnitude of the chromosome-wide effect and the lack of an in vitro system for biochemical analysis. Here we use global run-on sequencing (GRO-seq) to examine the specific effect of the MSL complex on RNA Polymerase II (RNAP II) on a genome-wide level. Results indicate that the MSL complex enhances transcription by facilitating the progression of RNAP II across the bodies of active X-linked genes. Improving transcriptional output downstream of typical gene-specific controls may explain how dosage compensation can be imposed on the diverse set of genes along an entire chromosome.

pdf
Kharchenko PV, Alekseyenko AA, Schwartz YB, Minoda A, Riddle NC, Ernst J, Sabo PJ, Larschan E, Gorchakov AA, Gu T, Linder-Basso D, Plachetka A, Shanower G, Tolstorukov MY, Luquette LJ, Xi R, Jung YL, Park RW, Bishop EP, Canfield TK, Sandstrom R, Thurman RE, MacAlpine DM, Stamatoyannopoulos JA, Kellis M, Elgin SCR, Kuroda MI, Pirrotta V, Karpen GH**, Park PJ**. Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 2011;471(7339):480-5.Abstract

Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, which have an impact on cell differentiation, gene regulation and other key cellular processes. Here we present a genome-wide chromatin landscape for Drosophila melanogaster based on eighteen histone modifications, summarized by nine prevalent combinatorial patterns. Integrative analysis with other data (non-histone chromatin proteins, DNase I hypersensitivity, GRO-Seq reads produced by engaged polymerase, short/long RNA products) reveals discrete characteristics of chromosomes, genes, regulatory elements and other functional domains. We find that active genes display distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, regulatory functions and genomic contexts. We also demonstrate a diversity of signatures among Polycomb targets that include a subset with paused polymerase. This systematic profiling and integrative analysis of chromatin signatures provides insights into how genomic elements are regulated, and will serve as a resource for future experimental investigations of genome structure and function.

pdf
2009
Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 2009;10(10):669-80.Abstract

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is a technique for genome-wide profiling of DNA-binding proteins, histone modifications or nucleosomes. Owing to the tremendous progress in next-generation sequencing technology, ChIP-seq offers higher resolution, less noise and greater coverage than its array-based predecessor ChIP-chip. With the decreasing cost of sequencing, ChIP-seq has become an indispensable tool for studying gene regulation and epigenetic mechanisms. In this Review, I describe the benefits and challenges in harnessing this technique with an emphasis on issues related to experimental design and data analysis. ChIP-seq experiments generate large quantities of data, and effective computational analysis will be crucial for uncovering biological mechanisms.

pdf
2005
Tian L, Greenberg SA, Kong SW, Altschuler J, Kohane IS, Park PJ. Discovering statistically significant pathways in expression profiling studies. Proc Natl Acad Sci U S A 2005;102(38):13544-9.Abstract

Accurate and rapid identification of perturbed pathways through the analysis of genome-wide expression profiles facilitates the generation of biological hypotheses. We propose a statistical framework for determining whether a specified group of genes for a pathway has a coordinated association with a phenotype of interest. Several issues on proper hypothesis-testing procedures are clarified. In particular, it is shown that the differences in the correlation structure of each set of genes can lead to a biased comparison among gene sets unless a normalization procedure is applied. We propose statistical tests for two important but different aspects of association for each group of genes. This approach has more statistical power than currently available methods and can result in the discovery of statistically significant pathways that are not detected by other methods. This method is applied to data sets involving diabetes, inflammatory myopathies, and Alzheimer's disease, using gene sets we compiled from various public databases. In the case of inflammatory myopathies, we have correctly identified the known cytotoxic T lymphocyte-mediated autoimmunity in inclusion body myositis. Furthermore, we predicted the presence of dendritic cells in inclusion body myositis and of an IFN-alpha/beta response in dermatomyositis, neither of which was previously described. These predictions have been subsequently corroborated by immunohistochemistry.

pdf