Richard Maas

Lachke SA, Ho JWK, Kryukov GV, O'Connell DJ, Aboukhalil A, Bulyk ML, Park PJ, Maas RL. iSyTE: integrated Systems Tool for Eye gene discovery. Invest Ophthalmol Vis Sci 2012;53(3):1617-27.Abstract

PURPOSE: To facilitate the identification of genes associated with cataract and other ocular defects, the authors developed and validated a computational tool termed iSyTE (integrated Systems Tool for Eye gene discovery; iSyTE uses a mouse embryonic lens gene expression data set as a bioinformatics filter to select candidate genes from human or mouse genomic regions implicated in disease and to prioritize them for further mutational and functional analyses. METHODS: Microarray gene expression profiles were obtained for microdissected embryonic mouse lens at three key developmental time points in the transition from the embryonic day (E)10.5 stage of lens placode invagination to E12.5 lens primary fiber cell differentiation. Differentially regulated genes were identified by in silico comparison of lens gene expression profiles with those of whole embryo body (WB) lacking ocular tissue. RESULTS: Gene set analysis demonstrated that this strategy effectively removes highly expressed but nonspecific housekeeping genes from lens tissue expression profiles, allowing identification of less highly expressed lens disease-associated genes. Among 24 previously mapped human genomic intervals containing genes associated with isolated congenital cataract, the mutant gene is ranked within the top two iSyTE-selected candidates in approximately 88% of cases. Finally, in situ hybridization confirmed lens expression of several novel iSyTE-identified genes. CONCLUSIONS: iSyTE is a publicly available Web resource that can be used to prioritize candidate genes within mapped genomic intervals associated with congenital cataract for further investigation. Extension of this approach to other ocular tissue components will facilitate eye disease gene discovery.

O'Connell DJ*, Ho JWK*, Mammoto T, Turbe-Doan A, O'Connell JT, Haseley PS, Koo S, Kamiya N, Ingber DE, Park PJ, Maas RL. A Wnt-bmp feedback circuit controls intertissue signaling dynamics in tooth organogenesis. Science Signaling 2012;5(206):ra4.Abstract

Many vertebrate organs form through the sequential and reciprocal exchange of signaling molecules between juxtaposed epithelial and mesenchymal tissues. We undertook a systems biology approach that combined the generation and analysis of large-scale spatiotemporal gene expression data with mouse genetic experiments to gain insight into the mechanisms that control epithelial-mesenchymal signaling interactions in the developing mouse molar tooth. We showed that the shift in instructive signaling potential from dental epithelium to dental mesenchyme was accompanied by temporally coordinated genome-wide changes in gene expression in both compartments. To identify the mechanism responsible, we developed a probabilistic technique that integrates regulatory evidence from gene expression data and from the literature to reconstruct a gene regulatory network for the epithelial and mesenchymal compartments in early tooth development. By integrating these epithelial and mesenchymal gene regulatory networks through the action of diffusible extracellular signaling molecules, we identified a key epithelial-mesenchymal intertissue Wnt-Bmp (bone morphogenetic protein) feedback circuit. We then validated this circuit in vivo with compound genetic mutations in mice that disrupted this circuit. Moreover, mathematical modeling demonstrated that the structure of the circuit accounted for the observed reciprocal signaling dynamics. Thus, we have identified a critical signaling circuit that controls the coordinated genome-wide expression changes and reciprocal signaling molecule dynamics that occur in interacting epithelial and mesenchymal compartments during organogenesis.

Anchan RM, Quaas P, Gerami-Naini B, Bartake H, Griffin A, Zhou Y, Day DS, Eaton JL, George LL, Naber C, Turbe-Doan A, Park PJ, Hornstein MD, Maas RL. Amniocytes can serve a dual function as a source of iPS cells and feeder layers. Hum Mol Genet 2011;20(5):962-74.Abstract

Clinical barriers to stem-cell therapy include the need for efficient derivation of histocompatible stem cells and the zoonotic risk inherent to human stem-cell xenoculture on mouse feeder cells. We describe a system for efficiently deriving induced pluripotent stem (iPS) cells from human and mouse amniocytes, and for maintaining the pluripotency of these iPS cells on mitotically inactivated feeder layers prepared from the same amniocytes. Both cellular components of this system are thus autologous to a single donor. Moreover, the use of human feeder cells reduces the risk of zoonosis. Generation of iPS cells using retroviral vectors from short- or long-term cultured human and mouse amniocytes using four factors, or two factors in mouse, occurs in 5-7 days with 0.5% efficiency. This efficiency is greater than that reported for mouse and human fibroblasts using similar viral infection approaches, and does not appear to result from selective reprogramming of Oct4(+) or c-Kit(+) amniocyte subpopulations. Derivation of amniocyte-derived iPS (AdiPS) cell colonies, which express pluripotency markers and exhibit appropriate microarray expression and DNA methylation properties, was facilitated by live immunostaining. AdiPS cells also generate embryoid bodies in vitro and teratomas in vivo. Furthermore, mouse and human amniocytes can serve as feeder layers for iPS cells and for mouse and human embryonic stem (ES) cells. Thus, human amniocytes provide an efficient source of autologous iPS cells and, as feeder cells, can also maintain iPS and ES cell pluripotency without the safety concerns associated with xenoculture.

Wang X-P, O'Connell DJ, Lund JJ, Saadi I, Kuraguchi M, Turbe-Doan A, Cavallesco R, Kim H, Park PJ, Harada H, Kucherlapati R, Maas RL. Apc inhibition of Wnt signaling regulates supernumerary tooth formation during embryogenesis and throughout adulthood. Development 2009;136(11):1939-49.Abstract

The ablation of Apc function or the constitutive activation of beta-catenin in embryonic mouse oral epithelium results in supernumerary tooth formation, but the underlying mechanisms and whether adult tissues retain this potential are unknown. Here we show that supernumerary teeth can form from multiple regions of the jaw and that they are properly mineralized, vascularized, innervated and can start to form roots. Even adult dental tissues can form new teeth in response to either epithelial Apc loss-of-function or beta-catenin activation, and the effect of Apc deficiency is mediated by beta-catenin. The formation of supernumerary teeth via Apc loss-of-function is non-cell-autonomous. A small number of Apc-deficient cells is sufficient to induce surrounding wild-type epithelial and mesenchymal cells to participate in the formation of new teeth. Strikingly, Msx1, which is necessary for endogenous tooth development, is dispensable for supernumerary tooth formation. In addition, we identify Fgf8, a known tooth initiation marker, as a direct target of Wnt/beta-catenin signaling. These studies identify key mechanistic features responsible for supernumerary tooth formation.