Nat Neuroscience

Rodin RE*, Dou Y*, Kwon M, Sherman MA, D'Gama AM, Doan RN, Rento LM, Girskis KM, Bohrson CL, Kim SN, Nadig A, Luquette LJ, Gulhan DC, Brain Somatic Mosaicism Network BSM, Park PJ**, Walsh CA**. The landscape of somatic mutation in cerebral cortex of autistic and neurotypical individuals revealed by ultra-deep whole-genome sequencing. Nat Neurosci 2021;24(2):176-185.Abstract
We characterize the landscape of somatic mutations-mutations occurring after fertilization-in the human brain using ultra-deep (~250×) whole-genome sequencing of prefrontal cortex from 59 donors with autism spectrum disorder (ASD) and 15 control donors. We observe a mean of 26 somatic single-nucleotide variants per brain present in ≥4% of cells, with enrichment of mutations in coding and putative regulatory regions. Our analysis reveals that the first cell division after fertilization produces ~3.4 mutations, followed by 2-3 mutations in subsequent generations. This suggests that a typical individual possesses ~80 somatic single-nucleotide variants present in ≥2% of cells-comparable to the number of de novo germline mutations per generation-with about half of individuals having at least one potentially function-altering somatic mutation somewhere in the cortex. ASD brains show an excess of somatic mutations in neural enhancer sequences compared with controls, suggesting that mosaic enhancer mutations may contribute to ASD risk.
Sherman MA, Rodin RE, Genovese G, Dias C, Barton AR, Mukamel RE, Berger B, Park PJ**, Walsh CA**, Loh P-R**. Large mosaic copy number variations confer autism risk. Nat Neurosci 2021;24(2):197-203.Abstract
Although germline de novo copy number variants (CNVs) are known causes of autism spectrum disorder (ASD), the contribution of mosaic (early-developmental) copy number variants (mCNVs) has not been explored. In this study, we assessed the contribution of mCNVs to ASD by ascertaining mCNVs in genotype array intensity data from 12,077 probands with ASD and 5,500 unaffected siblings. We detected 46 mCNVs in probands and 19 mCNVs in siblings, affecting 2.8-73.8% of cells. Probands carried a significant burden of large (>4-Mb) mCNVs, which were detected in 25 probands but only one sibling (odds ratio = 11.4, 95% confidence interval = 1.5-84.2, P = 7.4 × 10). Event size positively correlated with severity of ASD symptoms (P = 0.016). Surprisingly, we did not observe mosaic analogues of the short de novo CNVs recurrently observed in ASD (eg, 16p11.2). We further experimentally validated two mCNVs in postmortem brain tissue from 59 additional probands. These results indicate that mCNVs contribute a previously unexplained component of ASD risk.