Kwon M, Lee S, Berselli M, Chu C, Park PJ. BamSnap: a lightweight viewer for sequencing reads in BAM files. Bioinformatics 2021;Abstract
SUMMARY: Despite the improvement in variant detection algorithms, visual inspection of the read-level data remains an essential step for accurate identification of variants in genome analysis. We developed BamSnap, an efficient BAM file viewer utilizing a graphics library and BAM indexing. In contrast to existing viewers, BamSnap can generate high-quality snapshots rapidly, with customized tracks and layout. As an example, we produced read-level images at 1000 genomic loci for >2500 whole-genomes. AVAILABILITY: BamSnap is freely available at SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Cortés-Ciriano I, Lee JJK, Xi R, Jain D, Jung YL, Yang L, Gordenin D, Klimczak LJ, Zhang CZ, Pellman DS, Group PCAWGSVW, Park PJ, Consortium PCAWG. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing [Internet]. Nature Genetics 2020;52(3):331-341. Publisher's VersionAbstract
Chromothripsis is a mutational phenomenon characterized by massive, clustered genomic rearrangements that occurs in cancer and other diseases. Recent studies in selected cancer types have suggested that chromothripsis may be more common than initially inferred from low-resolution copy-number data. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we analyze patterns of chromothripsis across 2,658 tumors from 38 cancer types using whole-genome sequencing data. We find that chromothripsis events are pervasive across cancers, with a frequency of more than 50% in several cancer types. Whereas canonical chromothripsis profiles display oscillations between two copy-number states, a considerable fraction of events involve multiple chromosomes and additional structural alterations. In addition to non-homologous end joining, we detect signatures of replication-associated processes and templated insertions. Chromothripsis contributes to oncogene amplification and to inactivation of genes such as mismatch-repair-related genes. These findings show that chromothripsis is a major process that drives genome evolution in human cancer.
Dou Y, Kwon M, Rodin RE, Cortés-Ciriano I, Doan R, J. Luquette L, Galor A, Bohrson C, Walsh CA, Park PJ. Accurate detection of mosaic variants in sequencing data without matched controls [Internet]. Nature Biotechnology 2020;38(3):314-319. Publisher's VersionAbstract

Detection of mosaic mutations that arise in normal development is challenging, as such mutations are typically present in only a minute fraction of cells and there is no clear matched control for removing germline variants and systematic artifacts. We present MosaicForecast, a machine-learning method that leverages read-based phasing and read-level features to accurately detect mosaic single-nucleotide variants and indels, achieving a multifold increase in specificity compared with existing algorithms. Using single-cell sequencing and targeted sequencing, we validated 80–90{\%} of the mosaic single-nucleotide variants and 60–80{\%} of indels detected in human brain whole-genome sequencing data. Our method should help elucidate the contribution of mosaic somatic mutations to the origin and development of disease.

Yun JW, Yang L, Park H-Y, Lee C-W, Cha H, Shin H-T, Noh K-W, Choi Y-L, Park W-Y**, Park PJ**. Dysregulation of cancer genes by recurrent intergenic fusions. Genome Biol 2020;21(1):166.Abstract
BACKGROUND: Gene fusions have been studied extensively, as frequent drivers of tumorigenesis as well as potential therapeutic targets. In many well-known cases, breakpoints occur at two intragenic positions, leading to in-frame gene-gene fusions that generate chimeric mRNAs. However, fusions often occur with intergenic breakpoints, and the role of such fusions has not been carefully examined. RESULTS: We analyze whole-genome sequencing data from 268 patients to catalog gene-intergenic and intergenic-intergenic fusions and characterize their impact. First, we discover that, in contrast to the common assumption, chimeric oncogenic transcripts-such as those involving ETV4, ERG, RSPO3, and PIK3CA-can be generated by gene-intergenic fusions through splicing of the intervening region. Second, we find that over-expression of an upstream or downstream gene by a fusion-mediated repositioning of a regulatory sequence is much more common than previously suspected, with enhancers sometimes located megabases away. We detect a number of recurrent fusions, such as those involving ANO3, RGS9, FUT5, CHI3L1, OR1D4, and LIPG in breast; IGF2 in colon; ETV1 in prostate; and IGF2BP3 and SIX2 in thyroid cancers. CONCLUSION: Our findings elucidate the potential oncogenic function of intergenic fusions and highlight the wide-ranging consequences of structural rearrangements in cancer genomes.
Chu C, Zhao B, Park PJ, Lee EA. Identification and Genotyping of Transposable Element Insertions From Genome Sequencing Data. Curr Protoc Hum Genet 2020;107(1):e102.Abstract
Transposable element (TE) mobilization is a significant source of genomic variation and has been associated with various human diseases. The exponential growth of population-scale whole-genome sequencing and rapid innovations in long-read sequencing technologies provide unprecedented opportunities to study TE insertions and their functional impact in human health and disease. Identifying TE insertions, however, is challenging due to the repetitive nature of the TE sequences. Here, we review computational approaches to detecting and genotyping TE insertions using short- and long-read sequencing and discuss the strengths and weaknesses of different approaches. © 2020 Wiley Periodicals LLC.
Goldman MJ*, Zhang J*, Fonseca NA*, Cortés-Ciriano I*, Xiang Q, Craft B, Piñeiro-Yáñez E, O'Connor BD, Bazant W, Barrera E, Muñoz-Pomer A, Petryszak R, Füllgrabe A, Al-Shahrour F, Keays M, Haussler D, Weinstein JN, Huber W, Valencia A, Park PJ, Papatheodorou I, Zhu J, Ferretti V, Vazquez M. A user guide for the online exploration and visualization of PCAWG data. Nat Commun 2020;11(1):3400.Abstract
The Pan-Cancer Analysis of Whole Genomes (PCAWG) project generated a vast amount of whole-genome cancer sequencing resource data. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumor types, we provide a user's guide to the five publicly available online data exploration and visualization tools introduced in the PCAWG marker paper. These tools are ICGC Data Portal, UCSC Xena, Chromothripsis Explorer, Expression Atlas, and PCAWG-Scout. We detail use cases and analyses for each tool, show how they incorporate outside resources from the larger genomics ecosystem, and demonstrate how the tools can be used together to understand the biology of cancers more deeply. Together, the tools enable researchers to query the complex genomic PCAWG data dynamically and integrate external information, enabling and enhancing interpretation.
Wang S, Lee S, Chu C, Jain D, Kerpedjiev P, Nelson GM, Walsh JM, Alver BH, Park PJ. HiNT: a computational method for detecting copy number variations and translocations from Hi-C data [Internet]. Genome Biology 2020;21(1):73. Publisher's VersionAbstract
The three-dimensional conformation of a genome can be profiled using Hi-C, a technique that combines chromatin conformation capture with high-throughput sequencing. However, structural variations often yield features that can be mistaken for chromosomal interactions. Here, we describe a computational method HiNT (Hi-C for copy Number variation and Translocation detection), which detects copy number variations and interchromosomal translocations within Hi-C data with breakpoints at single base-pair resolution. We demonstrate that HiNT outperforms existing methods on both simulated and real data. We also show that Hi-C can supplement whole-genome sequencing in structure variant detection by locating breakpoints in repetitive regions.
Horton CA, Alver B, Park PJ. GiniQC: a measure for quantifying noise in single-cell Hi-C data [Internet]. Bioinformatics 2020; Publisher's VersionAbstract
Single-cell Hi-C (scHi-C) allows the study of cell-to-cell variability in chromatin structure and dynamics. However, the high level of noise inherent in current scHi-C protocols necessitates careful assessment of data quality before biological conclusions can be drawn. Here we present GiniQC, which quantifies unevenness in the distribution of inter-chromosomal reads in the scHi-C contact matrix to measure the level of noise. Our examples show the utility of GiniQC in assessing the quality of scHi-C data as a complement to existing quality control measures. We also demonstrate how GiniQC can help inform the impact of various data processing steps on data quality.
Gulhan DC, Lee JJ-K, Melloni GEM, Cortés-Ciriano I, Park PJ. Detecting the mutational signature of homologous recombination deficiency in clinical samples. Nature Genetics 2019;51(5):912-919.Abstract
Mutations in BRCA1 and/or BRCA2 (BRCA1/2) are the most common indication of deficiency in the homologous recombination (HR) DNA repair pathway. However, recent genome-wide analyses have shown that the same pattern of mutations found in BRCA1/2-mutant tumors is also present in several other tumors. Here, we present a new computational tool called Signature Multivariate Analysis (SigMA), which can be used to accurately detect the mutational signature associated with HR deficiency from targeted gene panels. Whereas previous methods require whole-genome or whole-exome data, our method detects the HR-deficiency signature even from low mutation counts, by using a likelihood-based measure combined with machine-learning techniques. Cell lines that we identify as HR deficient show a significant response to poly (ADP-ribose) polymerase (PARP) inhibitors; patients with ovarian cancer whom we found to be HR deficient show a significantly longer overall survival with platinum regimens. By enabling panel-based identification of mutational signatures, our method substantially increases the number of patients that may be considered for treatments targeting HR deficiency.
Bohrson CL, Barton AR, Lodato MA, Rodin RE, Luquette LJ, Viswanadham VV, Gulhan DC, Cortés-Ciriano I, Sherman MA, Kwon M, Coulter ME, Galor A, Walsh CA, Park PJ. Linked-read analysis identifies mutations in single-cell DNA-sequencing data. Nature Genetics 2019;51:749-754.Abstract
Whole-genome sequencing of DNA from single cells has the potential to reshape our understanding of mutational heterogeneity in normal and diseased tissues. However, a major difficulty is distinguishing amplification artifacts from biologically derived somatic mutations. Here, we describe linked-read analysis (LiRA), a method that accurately identifies somatic singlenucleotide variants (sSNVs) by using read-level phasing with nearby germline heterozygous polymorphisms, thereby enabling the characterization of mutational signatures and estimation of somatic mutation rates in single cells.
Yang L, Wang S, Lee JJ-K, Lee S, Lee E, Shinbrot E, Wheeler DA, Kucherlapati R, Park PJ. An enhanced genetic model of colorectal cancer progression history. Genome Biology 2019;20(1):168.
Lee S*, Lee S*, Ouellette S, Park W-Y, Lee EA**, Park PJ**. NGSCheckMate: software for validating sample identity in next-generation sequencing studies within and across data types. Nucleic Acids Res 2017;Abstract

In many next-generation sequencing (NGS) studies, multiple samples or data types are profiled for each individual. An important quality control (QC) step in these studies is to ensure that datasets from the same subject are properly paired. Given the heterogeneity of data types, file types and sequencing depths in a multi-dimensional study, a robust program that provides a standardized metric for genotype comparisons would be useful. Here, we describe NGSCheckMate, a user-friendly software package for verifying sample identities from FASTQ, BAM or VCF files. This tool uses a model-based method to compare allele read fractions at known single-nucleotide polymorphisms, considering depth-dependent behavior of similarity metrics for identical and unrelated samples. Our evaluation shows that NGSCheckMate is effective for a variety of data types, including exome sequencing, whole-genome sequencing, RNA-seq, ChIP-seq, targeted sequencing and single-cell whole-genome sequencing, with a minimal requirement for sequencing depth (>0.5X). An alignment-free module can be run directly on FASTQ files for a quick initial check. We recommend using this software as a QC step in NGS studies. AVAILABILITY:

Day DS*, Zhang B*, Stevens SM, Ferrari F, Larschan EN, Park PJ**, Pu WT**. Comprehensive analysis of promoter-proximal RNA polymerase II pausing across mammalian cell types. Genome Biol 2016;17(1):120.Abstract

BACKGROUND: For many genes, RNA polymerase II stably pauses before transitioning to productive elongation. Although polymerase II pausing has been shown to be a mechanism for regulating transcriptional activation, the extent to which it is involved in control of mammalian gene expression and its relationship to chromatin structure remain poorly understood. RESULTS: Here, we analyze 85 RNA polymerase II chromatin immunoprecipitation (ChIP)-sequencing experiments from 35 different murine and human samples, as well as related genome-wide datasets, to gain new insights into the relationship between polymerase II pausing and gene regulation. Across cell and tissue types, paused genes (pausing index > 2) comprise approximately 60 % of expressed genes and are repeatedly associated with specific biological functions. Paused genes also have lower cell-to-cell expression variability. Increased pausing has a non-linear effect on gene expression levels, with moderately paused genes being expressed more highly than other paused genes. The highest gene expression levels are often achieved through a novel pause-release mechanism driven by high polymerase II initiation. In three datasets examining the impact of extracellular signals, genes responsive to stimulus have slightly lower pausing index on average than non-responsive genes, and rapid gene activation is linked to conditional pause-release. Both chromatin structure and local sequence composition near the transcription start site influence pausing, with divergent features between mammals and Drosophila. Most notably, in mammals pausing is positively correlated with histone H2A.Z occupancy at promoters. CONCLUSIONS: Our results provide new insights into the contribution of RNA polymerase II pausing in mammalian gene regulation and chromatin structure.

Xi R, Lee S, Xia Y, Kim T-M, Park PJ. Copy number analysis of whole-genome data using BIC-seq2 and its application to detection of cancer susceptibility variants. Nucleic Acids Res 2016;Abstract

Whole-genome sequencing data allow detection of copy number variation (CNV) at high resolution. However, estimation based on read coverage along the genome suffers from bias due to GC content and other factors. Here, we develop an algorithm called BIC-seq2 that combines normalization of the data at the nucleotide level and Bayesian information criterion-based segmentation to detect both somatic and germline CNVs accurately. Analysis of simulation data showed that this method outperforms existing methods. We apply this algorithm to low coverage whole-genome sequencing data from peripheral blood of nearly a thousand patients across eleven cancer types in The Cancer Genome Atlas (TCGA) to identify cancer-predisposing CNV regions. We confirm known regions and discover new ones including those covering KMT2C, GOLPH3, ERBB2 and PLAG1 Analysis of colorectal cancer genomes in particular reveals novel recurrent CNVs including deletions at two chromatin-remodeling genes RERE and NPM2 This method will be useful to many researchers interested in profiling CNVs from whole-genome sequencing data.

Evrony GD*, Lee E*, Park PJ**, Walsh CA**. Resolving rates of mutation in the brain using single-neuron genomics. Elife 2016;5Abstract

Whether somatic mutations contribute functional diversity to brain cells is a long-standing question. Single-neuron genomics enables direct measurement of somatic mutation rates in human brain and promises to answer this question. A recent study (Upton et al., 2015) reported high rates of somatic LINE-1 element (L1) retrotransposition in the hippocampus and cerebral cortex that would have major implications for normal brain function, and further claimed these mutation events preferentially impact genes important for neuronal function. We identify errors in single-cell sequencing approach, bioinformatic analysis, and validation methods that led to thousands of false-positive artifacts being mistakenly interpreted as somatic mutation events. Our reanalysis of the data supports a corrected mutation frequency (0.2 per cell) more than fifty-fold lower than reported, inconsistent with the authors' conclusion of 'ubiquitous' L1 mosaicism, but consistent with L1 elements mobilizing occasionally. Through consideration of the challenges and pitfalls identified, we provide a foundation and framework for designing single-cell genomics studies.

Lee S*, Seo CH*, Alver BH, Hyuk Lee S, Park PJ. EMSAR: estimation of transcript abundance from RNA-seq data by mappability-based segmentation and reclustering. BMC Bioinformatics 2015;16(1):278.Abstract

BACKGROUND: RNA-seq has been widely used for genome-wide expression profiling. RNA-seq data typically consists of tens of millions of short sequenced reads from different transcripts. However, due to sequence similarity among genes and among isoforms, the source of a given read is often ambiguous. Existing approaches for estimating expression levels from RNA-seq reads tend to compromise between accuracy and computational cost. RESULTS: We introduce a new approach for quantifying transcript abundance from RNA-seq data. EMSAR (Estimation by Mappability-based Segmentation And Reclustering) groups reads according to the set of transcripts to which they are mapped and finds maximum likelihood estimates using a joint Poisson model for each optimal set of segments of transcripts. The method uses nearly all mapped reads, including those mapped to multiple genes. With an efficient transcriptome indexing based on modified suffix arrays, EMSAR minimizes the use of CPU time and memory while achieving accuracy comparable to the best existing methods. CONCLUSIONS: EMSAR is a method for quantifying transcripts from RNA-seq data with high accuracy and low computational cost. EMSAR is available at

Sohn K-A*, Ho JWK*, Djordjevic D, Jeong H-H, Park PJ**, Kim JH**. hiHMM: Bayesian non-parametric joint inference of chromatin state maps. Bioinformatics 2015;31(13):2066-74.Abstract

MOTIVATION: Genome-wide mapping of chromatin states is essential for defining regulatory elements and inferring their activities in eukaryotic genomes. A number of hidden Markov model (HMM)-based methods have been developed to infer chromatin state maps from genome-wide histone modification data for an individual genome. To perform a principled comparison of evolutionarily distant epigenomes, we must consider species-specific biases such as differences in genome size, strength of signal enrichment and co-occurrence patterns of histone modifications. RESULTS: Here, we present a new Bayesian non-parametric method called hierarchically linked infinite HMM (hiHMM) to jointly infer chromatin state maps in multiple genomes (different species, cell types and developmental stages) using genome-wide histone modification data. This flexible framework provides a new way to learn a consistent definition of chromatin states across multiple genomes, thus facilitating a direct comparison among them. We demonstrate the utility of this method using synthetic data as well as multiple modENCODE ChIP-seq datasets. CONCLUSION: The hierarchical and Bayesian non-parametric formulation in our approach is an important extension to the current set of methodologies for comparative chromatin landscape analysis. AVAILABILITY AND IMPLEMENTATION: Source codes are available at Chromatin data are available at

Jung YL, Luquette LJ, Ho JWK, Ferrari F, Tolstorukov M, Minoda A, Issner R, Epstein CB, Karpen GH, Kuroda MI, Park PJ. Impact of sequencing depth in ChIP-seq experiments. Nucleic Acids Res 2014;42(9):e74.Abstract

In a chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) experiment, an important consideration in experimental design is the minimum number of sequenced reads required to obtain statistically significant results. We present an extensive evaluation of the impact of sequencing depth on identification of enriched regions for key histone modifications (H3K4me3, H3K36me3, H3K27me3 and H3K9me2/me3) using deep-sequenced datasets in human and fly. We propose to define sufficient sequencing depth as the number of reads at which detected enrichment regions increase <1% for an additional million reads. Although the required depth depends on the nature of the mark and the state of the cell in each experiment, we observe that sufficient depth is often reached at <20 million reads for fly. For human, there are no clear saturation points for the examined datasets, but our analysis suggests 40-50 million reads as a practical minimum for most marks. We also devise a mathematical model to estimate the sufficient depth and total genomic coverage of a mark. Lastly, we find that the five algorithms tested do not agree well for broad enrichment profiles, especially at lower depths. Our findings suggest that sufficient sequencing depth and an appropriate peak-calling algorithm are essential for ensuring robustness of conclusions derived from ChIP-seq data.

Kharchenko PV, Tolstorukov MY, Park PJ. Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat Biotechnol 2008;26(12):1351-9.Abstract

Recent progress in massively parallel sequencing platforms has enabled genome-wide characterization of DNA-associated proteins using the combination of chromatin immunoprecipitation and sequencing (ChIP-seq). Although a variety of methods exist for analysis of the established alternative ChIP microarray (ChIP-chip), few approaches have been described for processing ChIP-seq data. To fill this gap, we propose an analysis pipeline specifically designed to detect protein-binding positions with high accuracy. Using previously reported data sets for three transcription factors, we illustrate methods for improving tag alignment and correcting for background signals. We compare the sensitivity and spatial precision of three peak detection algorithms with published methods, demonstrating gains in spatial precision when an asymmetric distribution of tags on positive and negative strands is considered. We also analyze the relationship between the depth of sequencing and characteristics of the detected binding positions, and provide a method for estimating the sequencing depth necessary for a desired coverage of protein binding sites.

Tolstorukov MY**, Choudhary V, Olson WK, Zhurkin VB, Park PJ**. nuScore: a web-interface for nucleosome positioning predictions. Bioinformatics 2008;24(12):1456-8.Abstract

SUMMARY: Sequence-directed mapping of nucleosome positions is of major biological interest. Here, we present a web-interface for estimation of the affinity of the histone core to DNA and prediction of nucleosome arrangement on a given sequence. Our approach is based on assessment of the energy cost of imposing the deformations required to wrap DNA around the histone surface. The interface allows the user to specify a number of options such as selecting from several structural templates for threading calculations and adding random sequences to the analysis. AVAILABILITY: The nuScore interface is freely available for use at CONTACT:; SUPPLEMENTARY INFORMATION: The site contains user manual, description of the methodology and examples.