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SUMMARY

Microsatellites—simple tandem repeats present at
millions of sites in the human genome—can shorten
or lengthen due to a defect in DNA mismatch repair.
We present here a comprehensive genome-wide
analysis of the prevalence, mutational spectrum,
and functional consequences of microsatellite insta-
bility (MSI) in cancer genomes. We analyzed MSI in
277 colorectal and endometrial cancer genomes
(including 57 microsatellite-unstable ones) using
exome and whole-genome sequencing data. Recur-
rent MSI events in coding sequences showed tu-
mor type specificity, elevated frameshift-to-inframe
ratios, and lower transcript levels than wild-type
alleles. Moreover, genome-wide analysis revealed
differences in the distribution of MSI versus point
mutations, including overrepresentation of MSI in
euchromatic and intronic regions compared to het-
erochromatic and intergenic regions, respectively,
and depletion of MSI at nucleosome-occupied
sequences. Our results provide a panoramic view
of MSI in cancer genomes, highlighting their tumor
type specificity, impact on gene expression, and
the role of chromatin organization.

INTRODUCTION

About 15% of sporadic colorectal cancers (CRC) harbor

widespread alterations in the length of microsatellite (MS) se-

quences, known as microsatellite instability (MSI) (Boland and

Goel, 2010). Sporadic MSI CRC tumors display unique clinico-

pathological features, including near-diploid karyotype, higher

frequency in older populations and in females, and a better prog-

nosis (de la Chapelle and Hampel, 2010; Popat et al., 2005). MSI

is known to occur due to a defective DNA mismatch repair

(MMR) system with key MMR genes inactivated by various

mechanisms such as germline mutation in MSH2 or MLH1 in
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most Lynch syndrome cases (Bronner et al., 1994; Leach et al.,

1993) and epigenetic silencing of MLH1 in most sporadic cases

(Herman et al., 1998; Veigl et al., 1998). The DNA slippage within

coding sequences can induce frameshiftingmutations that result

in the production of truncated, functionally inactive proteins. For

CRC genomes, cancer-related genes frequently targeted byMSI

(e.g., TGFBR2, ACVR2A, and BAX) have been studied (Jung

et al., 2004; Markowitz et al., 1995; Rampino et al., 1997). MSI

is also present in other tumors, such as in endometrial cancer

(EC) of the uterus, the most common gynecological malignancy

(Duggan et al., 1994). The same reference Bethesda panel orig-

inally developed to screen an inherited genetic disorder (Lynch

syndrome) (Umar et al., 2004) is currently applied to test MSI

for CRCs and ECs. However, the genes frequently targeted by

MSI in CRC genomes rarely harbor DNA slippage events in EC

genomes (Gurin et al., 1999), and it is largely unknown whether

MS-unstable EC genomes have similar molecular origins or func-

tional consequences as CRC genomes.

In this study, we utilize the exome and whole-genome

sequencing data for CRC and EC genomes from The Cancer

Genome Atlas (TCGA) (Cancer Genome Atlas Network, 2012;

Cancer Genome Atlas Research Network, 2013) to profile the

genomic landscape of MSI in these two tumor types, including

the patterns of single-nucleotide variations (SNV) in MMR path-

ways, a comprehensive catalog of genomic loci with frequent

MSI, the genomic distribution and sequence properties of the

affected microsatellites, and correlations with other genomic

and epigenetic features.

RESULTS

The Mutational Spectrum of Exome-wide MSI in Cancer
Genomes
To examine the impact of MSI on protein-coding sequences, we

analyzed the exome sequencing data for 147 CRC and 130 EC

patients (Table S1 available online). The initial cohorts included

27 CRC/30 EC MSI-H (MSI-high), 23/11 MSI-L (MSI-low), and

97/89 MSS (MS-stable) genomes, as evaluated by the revised

Bethesda guidelines (Umar et al., 2004). We used computational

methods to identify MS contained within sequencing reads and
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to detect significant differences in their lengths between tumor

and matched normal genomes (see the Experimental Proce-

dures). Whereas the current Bethesda panel categorization sim-

ply classifies cancer genomes into MSI-H, MSI-L, and MSS

based on the number of markers altered, our analysis shows

that MSI-H genomes show a dramatically higher number of

MSI events (median of 290 and 126 MSI events per MSI-H

CRC and EC genome, respectively) compared to MSI-L (median

of 5 and 2) and MSS (median of 4 and 1) in both cancer types

(Figures 1A, 1B, and S1). The difference in the number of MSI

events is not significant between MSI-L and MSS (p = 0.22 and

p = 0.42 for CRC and EC; Figure S1). Details on the identified

MSI events are in Tables S2 and S3. When corrected for the

background distribution of different repeat types in the exome

reference set of MS, we observe a depletion of MSI events in

coding sequences, likely reflecting purifying selection of muta-

tions involving coding sequences (Figure 1C).

We next examined the relationship between MSI events and

SNV mutation rates as well as the mutation status of key

MMR genes (Figures 1A and 1B). Our combined mutational pro-

files highlight three main features. First, we observe the vulner-

ability of specific MMR genes to different types of somatic

mutations as their inactivating mechanism. Although most of

the MSI-H CRC and EC genomes harbor transcriptional

silencing of MLH1 by promoter hypermethylation, frameshifting

DNA slippage events are the primary inactivating mechanism for

MSH3 and, to a lesser extent, for MSH6 in MS-unstable CRC

and EC genomes. Other MMR genes such as MSH2, PMS1,

and PMS2 only harbor nonsilent (missense or nonsense)

SNVs, mostly in the hypermutated samples. Second, comple-

mentary mechanisms of inactivation are observed for some

genes. For example, nonsilent SNVs and DNA slippage events

are mutually exclusive for both MSH3 and MSH6 in MS-unsta-

ble genomes, suggesting that these two may be alternative

mechanisms for inactivation of those genes (Ciriello et al.,

2012). Third, a number of samples show highly elevated SNV

mutation rates, most of them harboring missense mutations of

POLE (Cancer Genome Atlas Network, 2012; Cancer Genome

Atlas Research Network, 2013), but there is no relationship be-

tween SNV mutation rates and MSI. In addition, POLE-mutated

genomes can be largely classified into two classes depending

on the MLH1 status: MS-unstable genomes (inactivation of

MLH1) and MS-stable ones (functional MLH1). The highly

elevated mutation rates are observed for the latter. It is possible

that POLE mutations in MS-unstable genomes are late events.

Alternatively, MSI is sufficient to achieve the phenotypes

required by cancer cells in MS-unstable genomes and/or these

genomes do not tolerate the additional mutation burden from

SNVs. Our observations also highlight the primary role of

MLH1 inactivation in the establishment of an MSI phenotype

because POLE-mutated genomes with functional MLH1 main-

tain the MS stability in the presence of frequent nonsilent

SNVs in MMR genes. We observe two POLE-mutated MSI-H

genomes (1 CRC and 1 EC; arrows in Figure 1) with nonsilent

MLH1 mutations, but not transcriptional silencing of MLH1, in

which the genomic instability associated with POLE mutation

might have triggered inactivation of MLH1, leading to the MSI

phenotype.
Loci Frequently Targeted by MSI Show a Higher Rate of
Frameshift Events
For each MSI event, we examined the distribution of changes in

the length of the mutant MS allele compared to its germline

counterpart. After clustering theMSI events, the heatmap, which

mimics the electrophoretic autoradiogram in a conventional MSI

study, illustrates the extent of allelic shift for eachMSI event (Fig-

ures 2A and 2D). Most allelic shifts are deletions, and a higher

allelic shift in the length of the mutant allele is more frequent in

30 UTR than in coding regions. Figure 2A is for MSI events at

mononucleotide repeats; a similar pattern is also observed for

dinucleotide repeats (Figure S2). We further classified MSI

events into low- and high-allelic shift (LAS and HAS, respec-

tively), depending on whether the mode (most frequent value)

of the MS allele lengths is equal to its germline length or not.

The ratio of LAS/HAS events is higher in coding regions than in

50/30 UTRs or noncoding regions (Figures 2B and 2E). An evolu-

tionary model previously proposed (Tsao et al., 2000) suggests

that HAS events are more likely to have functional impact than

LAS events. Thus, a substantially higher LAS/HAS ratio provides

additional evidence for negative selection of MSI events in

coding regions.

MSI events on trinucleotide repeats were primarily observed in

coding sequences and showed comparable numbers of LAS and

HAS events for coding MSI (Figure S2), probably due to their

relatively neutral nature (i.e., in-frame) in coding sequences

(Metzgar et al., 2000). Thus, we further categorized coding MSI

into nontriplet (frameshift) and triplet (in-frame) events, similar

to the distinction between nonsynonymous and synonymous

SNV mutations (Greenman et al., 2007). The percentage of

frameshift and in-frame MSI events is shown with respect to

the level of recurrence for CRC and EC genomes (Figures 2C

and 2F). MSI events of mononucleotide repeats are largely

responsible for this relationship given the predominance of

mononucleotide-MSI events (92.4% and 93.0% of total MSI

events in CRC and EC genomes). For both tumor types, nonre-

current coding MSI events show a lower frequency of frameshift

MSI events compared to those occurring in noncoding or UTR

regions (non-CDS) at a similar recurrence level, concordant

with the negative selection of frameshiftingMSI events on coding

sequences. Importantly, highly recurrent coding MSI events

show a higher frameshift-to-inframe ratio compared to nonrecur-

rent coding MSI (Figures 2C and 2F). This suggests that these

nonneutral genomic events may provide selective advantages

to the affected clones to overcome the purifying selection on

mutations involving coding sequences. Thus, we hypothesize

that the genes inactivated by the recurrent frameshift MSI may

have tumor-suppressive roles in CRC and EC genomes.

We evaluated the performance of our sequencing-based

method by comparing its MSI calls on one of the Bethesda

markers (TGFBR2, A10 homopolymer) with those from the frag-

ment length assay by Sanger sequencing. Sequencing-based

MSI screening identified 20 out of 22 TGFBR2 MSI calls made

fromSanger sequencing in 126 CRC genomeswithout false pos-

itives (sensitivity and specificity of 91% and 100%, respectively).

For EC genomes, exome and Sanger calls for TGFBR2 were

made only on 3 of 130 genomes, and they were concordant in

every case. Examples of one positive and one negative TGFBR2
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Figure 1. The Mutational Spectrum of MSI Events and MMR Genes in CRC and EC Genomes

(A) The number of MS loci with significant tumor genome-specific DNA slippage events is shown for each of CRC genomes (141 cases with data on MLH1

promoter hypermethylation are displayed out of 147; see also Figure S1), along with the SNV mutation rate. The samples are sorted in decreasing order of MSI

events. TheMSI status based on the Bethesda criteria (25MSI-H, 23MSI-L, and 93MSS cases) is noted. The functional status of selectedMMR genes and POLE

are classified into MSI events (frameshift and in-frame), nonsilent point mutations (missense or nonsense), and transcriptional silencing of MLH1 by hyper-

methylation. The arrow points to a POLE-mutated MSI-H genome with an MLH1 mutation discussed in the Results.

(B) Similar to (A) for EC genomes (115 cases with MLH1 promoter hypermethylation data are displayed out of 130).

(C) (Left) For the 27 MSI-H CRC genomes, the numbers of MSI events in the four different categories of genomic regions (coding, noncoding and 50/30 UTR) are
shown in the upper panel. In the lower panel, the number of MSI events was normalized by the total number of MS in the exome reference set for each category.

(Right) Same analysis for MSI-H EC genomes (three samples with <10 MSI were removed).

See also Figure S1 and Tables S1, S2, and S3.
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Figure 2. The Distribution of Allelic Shift in MSI Events and the Properties of Recurrent Coding MSI

(A) For MSI events occurring at the mononucleotide MS (y axis; each row) in the CRC genomes, the deviations in the allele lengths (�10 bp to +5 bp) compared to

the germline counterparts are shown as normalized allelic fractions in a heatmap (the values in each row add up to 1), clustered by their similarity. The locations of

the corresponding MS (coding, noncoding and 50/30 UTR) are shown on the right.

(B) MSI events are classified into low- and high-allelic shift (MSI-LAS andMSI-HAS) cases. The graph shows the different frequencies of the twoMSI types for the

four categories in CRC genomes.

(C) MSI events in the coding sequences (CDS) and non-CDS regions are further classified into frameshift and in-framemutations for CDS (nontriplet and triplet for

non-CDS). The frameshift-to-inframe ratio increases with respect to the level of recurrence (%of MS-unstable genomes harboring themutation; the width of each

bar is proportional to the number of MSI) for CDS MSI events.

(D–F) Similar to the above for EC genomes.

(legend continued on next page)
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Figure 3. The Genes Harboring Frameshift MSI in CRC and EC

Genomes and Tumor Type Specificity

A scatterplot shows the distribution of genes with respect to their frequency of

frameshift MSI in CRC and EC genomes. The 27 genes with frameshift MSI in

>30% of CRC or in >15% of EC MSI-H genomes are noted. The color gradient

indicates the extent of tumor type specificity (red and blue for CRC and EC

specificity, respectively). The size of the circles indicates the number of genes

with the corresponding MSI frequencies. See also Figure S3 and Table S4.
MSI call are shown in Figures 2G and 2H (see also Figure S2).

These results strongly support the robustness of our

sequencing-based MSI calls. In the two false-negative cases,

the differences observed in the distributions of MS lengths

were not statistically significant due to low read coverage.

Refinement on the significance threshold may improve sensi-

tivity for the exome-based approach.

Next, we calculated the frequency of frameshift MSI for each

gene in the MSI-H tumors (Figure 3). The frequencies in the

two tumor types were moderately correlated (R = 0.470), with

some loci such as ASTE1 and CASP5 showing comparable

MSI frequency in both. But we also discovered a substantial

number of genes targeted by recurrent frameshift MSI with tumor

type specificity. These genes include a few well-known ones

such as ACVR2A and TGFBR2 (Markowitz et al., 1995; Parsons

et al., 1995; Wang et al., 1995), as well asMSH3. Various molec-

ular functions are perturbed by CRC-specific recurrent MSI

events, e.g., SLC22A9 and TMEM22 encode transport-related

molecules, and SREK1IP1, LTN1, and SEC63 are related to pro-

tein metabolism. Among the novel loci with frequent frameshift

MSI such as SMAP1 and AIM2, the potential apoptotic role of

AIM2 has been reported (Fernandes-Alnemri et al., 2009).
(G) The distribution of A10 homopolymer length on TGFBR2 locus is shown for o

exome sequencing data (below).

(H) Similar to AA-2676 as an MSI-negative example.

(I and J) TheMSI events per sample are compared to thosemade after local realign

30 EC genomes (J). Overlap and specific calls are distinguished to those overlap

See also Figure S2.
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Among the novel genes with EC-specific frameshift MSI, MSI

events on JAK1 coding sequences were observed in 30% of

MSI-H EC genomes, but none were observed in CRC genomes.

Although the protein tyrosine kinase encoded by JAK1 has been

reported as an upstream component of the oncogenic JAK-

STAT signaling pathway, whether the locus is frequently subject

to MSI or what its functional implication might be was largely

unknown. Gene set enrichment analysis (GSEA) revealed that

MS-unstable EC genomes harboring the JAK1 frameshift MSI

may have suppression of JAK-STAT signaling, as evidenced

by the repressed transcript levels of genes belonging to the

pathway and the transcriptional activation of cell-cycle-related

genes (Figure S3). TFAM also showed EC-exclusive frameshift

MSI. Mitochondrial transcription factor A (mtTFA) encoded by

TFAM has a role in apoptosis and DNA repair (Larsson et al.,

1998), and expression of mtTFA was associated with cancer

prognosis (Nakayama et al., 2012). EC-specific frameshift MSI

events were also observed in PDS5B, whose interaction with

BRCA2 is required for BRCA2-RAD51-mediated DNA damage

repair process (Brough et al., 2012), and in ESRP1, whose under-

expression is involved in the aberrant splicing pattern during

TGFb-induced epithelial-mesenchymal transformation (Horigu-

chi et al., 2012). In addition, immune and apoptosis-related

gene functions are enriched in genes frequently targeted by

frameshift MSI in both tumor types (Table S4).

Bias in Allelic Expression due to MSI Events
To investigate the potential influence ofMSI events on the expres-

sion level of the affected genes, we compared the differential

allelic read counts (wild-type versus mutant alleles) from RNA

sequencing (RNA-seq) with those from exomedata. A statistically

significant bias (false discovery rate [FDR] < 0.05, Fisher’s exact

test) was observed for 223 and 131 MSI calls in the MS-unstable

CRC and EC genomes, corresponding to 16% and 11% of

the total MSI calls with a minimum of 10 RNA-seq reads (Table

S5). When we categorized these biases into overexpressed MSI

(RNA-seqmutant/RNA-seqwild-type > Exomemutant/Exomewild-type)

and underexpressed MSI, most of the frameshift MSI were in the

underexpressed group in both tumor types (Figures 4A and 4B).

For genes with significant allelic expression biases in multiple

samples, the expression changes for transcripts with the mutant

alleles were generally in the same direction (33 of 37 genes for

CRCand 8 of 14 for EC showed perfect concordance; Figure 4C).

For example, the MS alleles with DNA slippage events in the 30

UTR of ANTXR1 showed significantly lower transcript levels

than the wild-type alleles in all eight CRC genomes. We also

compared the transcript levels between the genomes with and

without the corresponding MSI (Figure 4D). The expression

changes were concordant with the within-sample ratios of

over- or underexpression of the mutant allele, with 13 genes

showing significant differences.
ne CRC genome with positive MSI calls as measured by Sanger (upper) and

ment by GATK or by global realignment by Novoalign for 27MSI-H CRC (I) and

ped with BWA-based calls or not, respectively.
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B Figure 4. Association between MSI and

Changes in Expression Level

(A) TheMSI events in CRC genomes accompanied

by a significant deviation in expression levels be-

tween the wild-type versus mutant alleles are

classified into ‘‘MSI overexpressed’’ and ‘‘MSI

underexpressed’’’ in each of four regions. The

asterisk indicates significant differential counts

(binomial test; p < 0.05) for frameshift coding (p =

0.0009), in-frame coding (p = 0.0462), and 30 UTR
MSI (p = 0.0002).

(B) Similarly for EC genomes with significant dif-

ferential counts for 50 UTR (p = 0.0110) and

frameshift coding MSI (p = 0.0027).

(C) The 37 MS loci showing MSI overexpression or

MSI underexpression in two or more CRC ge-

nomes are shown (x axis; left), along with 14 such

MS loci from EC genomes (right). The associated

gene symbols and the location of the MS (C, N, 50,
and 30 for coding, noncoding, 50 UTR, and 30 UTR
MSI) are shown. For each MS locus, the number of

samples showing differential expression (over- or

underexpressed) is plotted (y axis).

(D) The log2 ratio of the expression levels is shown

(y axis). A higher ratio indicates that the gene

showed higher expression in the genomes with the

corresponding MSI than those without. An asterisk

indicates significant (t test, p < 0.05) difference in

the expression level.

See also Table S5.
Genome-wide Landscape of MSI
We extended our analysis to genome wide using whole-genome

sequencing data from seven CRC and ten EC genomes (four

andfiveMSI-Hgenomes, respectively). ThenumberofMSIevents

for MSI-H genomes ranged from 11,380 to 332,565 (excluding

one EC outlier with 162, which is likely to be a misclassification

by the Bethesda panel), in contrast to 5 to 7,446 observed in

MSS cases (Figure 5A). For subsequent analyses, we selected

the six MSI-H genomes (four CRC and two EC genomes) with

the largest number of MSI events. The genome-wide distribution

of MS loci targeted by MSI reveals a strong depletion at coding

sequences and 50 UTRs, similar to the exome-wide mutational

spectrum (Figure 5B). After normalizing for the MS counts in

each category, the frequency of MSI in 30 UTR is comparable to

those in intronic or intergenic regions (Figure 5C). Analysis of

MSI calls with respect to nucleotide composition and repeat

length reveals high variability of mutation frequency, depending

on the MS length. For instance, up to 50% and 40% of A/T and

C/G mononucleotide MS with germline length 12–14 bp can

haveMSI in some samples, but theMSI frequencyof di- and trinu-

cleotide repeats tends to increasewith longer repeats (Figure S4).

Although variable genomic abundances of different MS repeat

types have been reported (Subramanian et al., 2003), our results

further suggest that thepreferenceofDNAslippageevents largely

depends on the sequence composition and length of the repeats.
Cell 155, 858–868,
Next, we employed correlative analysis

to identify genomic features associated

with the occurrences of MSI. First, we

find that the local MSI frequency
(measured in 1 Mb bins) is inversely correlated with SNV density

in four human cancer types (Figure 6A). Second,MSI frequencies

are positively correlated with H3K4me3, H3K9ac, H3K36me3

and others that mark open chromatin and transcriptionally active

regions but are negatively correlated with repressive histone

modifications such as H3K9me2, H3K9me3, and H3K27me2

(Figure 6B). Figure S5 also shows the correlation of MSI fre-

quency with other genomic features. The preference of DNA slip-

page events toward open chromatin-like domains is consistent

regardless of the bin sizes used (100 kb to 10 Mb; Figure S5);

when the MSI frequency across the genome was compared

with the chromatin state map defined in nine human cell lines

(Ernst et al., 2011), the same pattern was observed (Figure S5).

Similarly, genomic segments with early, intermediate, and late

DNA-replicating timing have high-to-low MSI frequencies (Fig-

ure 6C). Multiple linear regression models (Schuster-Böckler

and Lehner, 2012) were adopted to examine the extent of

variations in MSI frequencies that can be predicted by a combi-

nation of multiple genomic features in CRC and EC genomes

(Figure S5).

The overrepresentation of cancer-specific somatic SNVs in

heterochromatin-like (Schuster-Böckler and Lehner, 2012) and

late-replicating domains (Koren et al., 2012) may be explained

by the limited accessibility of DNA repair complexes on closed,

heterochromatin-like domains (Peterson and Côté, 2004).
November 7, 2013 ª2013 Elsevier Inc. 863
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Figure 5. Genome-wide Landscape of MSI

(A) The number of MSI events genome-wide is

shown for the 17 samples with whole-genome

sequencing data. Six genomes (four CRC

and two EC genomes) with >60,000 MSI events

are shaded gray and used for subsequent

analyses.

(B) The MSI events are classified into five cate-

gories based on their genomic location.

(C) The number of MSI calls is normalized by the

background MS abundance in their respective

regions of the genome to obtain MSI frequency.

See also Figure S4.
However, this assumption is not applicable to MSI in MS-unsta-

ble genomes with a deficient MMR system. Further investigation

is required to determine whether the increased MSI frequency in

open chromatin-like domains arises during DNA replication or is

a postreplication event. We also observed that MSI frequency is

higher in introns than in intergenic regions (Figure 5C; p = 0.002),

which is the opposite of SNV (Bass et al., 2011). The depletion of

SNVs in introns is probably due to transcription-coupled repair

(Pleasance et al., 2010a); elevated MSI frequency in introns sug-

gest that MSI in MMR-deficient cancer genomes may undergo

different evolutionary or fixation processes.

Finally, high-resolution analysis of the MSI frequency with

respect to nucleosome occupancy demonstrated the depletion

of MSI events around the positions of bulk nucleosomes as

well as epigenetically modified nucleosomes H2A.Z and

H3K4me3 (Figures 7A and S6). Analysis of the distances

between adjacent MSI events (a pair of MSI calls separated

by < 500 bp) showed two pronounced peaks at �150 bp and

�285 bp (Figure 7B). This periodicity agrees well with the known

core nucleosome size of 147 bp. Neither a depletion around

nucleosomes nor a local periodicity was observed for somatic

SNVs from four cancer types (Figure S6).

DISCUSSION

Our comprehensive survey of genomic loci with MSI has allowed

us to gain insights on functional consequences of DNA slippage

events on coding sequences and their associations with various

genomic and epigenomic features. The classification of samples

into the traditional MSI-H, MSI-L, and MSS categories based on

the number of MSI events agreed well with the benchmark re-

sults based on the Bethesda guidelines, but the number of MSI

calls was highly variable across the genomes. Besides catego-

rizing the cancer genomes into MS-unstable and -stable ones,

the number of MSI events and the related features can be useful

in the evolutionary study of cancer genomes (Tsao et al., 2000).

We observed that the MSI-L and MSS categories do not show

significant differences in the number of MSI events (Figure S1).

Although downregulation of transcript levels or allelic loss of

MSH3 has been reported for MSI-L CRC genomes (Plaschke

et al., 2012), our analysis of MSI-L and MSS genomes does

not show significant differences in MSH3 expression levels

(Figure S1). Most studies of clinical correlates for CRC have
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observed little or no differences betweenMSI-L andMSS tumors

and usually collapse these two groups into one (Jass, 2007). In

light of our finding of similar numbers of MSI events in MSS

and MSI-L tumors, we recommend discontinuation of the use

of MSI-L as a distinct classification of CRC and EC tumors.

A gene-level analysis of recurrent events revealed that the

ratio of frameshift-to-inframe mutations can be informative in

distinguishing driver mutations from passenger ones, and both

CRC and EC genomes showed a substantial level of tumor

type specificity in the genes targeted by MSI. The MSI events

on the TGFb pathway genes such as ACVR2A and TGFBR2 in

MS-unstable CRCgenomesmay represent pathway-level equiv-

alent of recurrent SNVs at other TGFb pathway genes (e.g.,

SMAD2 and SMAD4) in MS-stable CRC genomes (Cancer

Genome Atlas Network, 2012). It was previously shown that

some MS loci with recurrent MSI events in CRC genomes are

not frequently altered in EC genomes (Kuismanen et al., 2002).

Consistent with this, our exome-wide MSI screening clearly

demonstrates tumor type specificity in recurrent MSI targets,

with some novel candidates in EC genomes such as JAK1 and

TFAM. JAK1 MSI may be functional given its level of recurrence

(30% in MSI-H EC genomes) and its association with transcrip-

tional downregulation of multiple gene members in the JAK-

STAT pathway. The genetic perturbation of the JAK-STAT

pathway was shown to decrease cellular survival of colon cancer

cells in vitro (Xiong et al., 2008), which may explain the absence

of the JAK1 MSI in MS-unstable CRC genomes. Tumor-type-

specific MSI targets often involve a similar molecular function,

such as MSH3 (CRC) and PDS5B (EC) in DNA repair processes

and AIM2 (CRC) and TFAM (EC) in apoptotic pathways. Elucida-

tion of the mechanisms for tumor type-specific targeting of MSI,

as well as potential molecular functions of the common and

tumor type-specific mutations, will require further investigation.

Alteration of transcription levels due to an MSI event in the 30

UTR has been attributed to the disruption of the nearby binding

sites for microRNA or RNA-binding proteins (Paun et al., 2009;

Yuan et al., 2009), but the impact of theMSImutations in the cod-

ing regions and the subsequent changes on expression has not

been reported previously. Our result on allele-specific expres-

sion combining transcriptome and exome sequencing data

suggests that frameshift MSI events are often accompanied by

lower transcript levels of the corresponding alleles. Increased

frequency of SNVs in low-expressed genes has been reported
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for some cancer types (Nik-Zainal et al., 2012; Pleasance et al.,

2010a, 2010b). The preference of underexpression for frameshift

MSI may be associated with a known RNA surveillance pathway

that eliminates mRNA containing a premature stop codon (e.g.,

nonsense-mediated decay) (Chang et al., 2007), which is consis-

tent with the negative selection of the nonneutral mutations in the

coding region.

In spite of the similarities between MSI and SNV, such as their

preference on 30 UTR (Pleasance et al., 2010a) and depletion on

coding sequences (Bass et al., 2011), our correlative analysis

revealed that their frequencies are largely anticorrelated with

major differences in their regional frequencies. First, MSIs and

SNVs are overrepresented in euchromatin- and heterochromat-

in-like domains, respectively. Second,MSIs aremore enriched in

introns than intergenic regions as opposed to SNVs. Third, the

depletion of MSI associated with nucleosome occupancy was

not observed for SNVs. For SNVs, it has been proposed that

the inaccessibility of DNA repair machineries and the transcrip-

tion-coupled repair are responsible for the overrepresentation

of SNVs in heterochromatin-like domains and intergenic regions,

respectively. However, in the context ofMMRdysfunction inMS-

unstable genomes, the regional preference of MSIs might have

arisen during DNA replication, not as postmutational events

like SNVs. One hypothesis to explain the increased MSI fre-

quency in open chromatin is that the proofreading capabilities

of DNA polymerases may be dependent on the accessibility of

the chromatin. For example, the replication fork can move
Cell 155, 858–868,
more rapidly in open chromatin with

increased DNA slippage errors, but in

closed chromatin, the slower movement

of the replication fork may enhance the

proofreading capabilities of DNA poly-

merase subunits of POLE and POLD1

(Preston et al., 2010). This chromatin-

state-dependent fidelity of DNA poly-

merases hypothesis may also explain

the decreased MSI frequencies in the

nucleosome-occupied DNA segments.

The performance of our MSI-calling

algorithm depends on the ability to

accurately measure the length of a

givenMS allele. One problemwith current

sequencing technology is the frequent
error in measuring the length of homopolymers (i.e., mononucle-

otide MS repeat). In this study, we used data from the Illumina

platform, which uses reversible terminators that allows incorpo-

ration of just a single nucleotide at a time and is currently the

most reliable platform with respect to the homopolymer issue

(Dohm et al., 2008). High concordance between exome- and

Sanger sequencing data for an A10 homopolymer (the Bethesda

marker TGFBR2) suggests that our method performs well (Fig-

ures 2G, 2H, and S2). Illumina sequencing is still prone to a higher

error rate for longer homopolymers (Minoche et al., 2011), but its

impact on our analysis is minimal because ours is based on

tumor versus normal comparison.

We used read alignment by Burrows-Wheeler Aligner (BWA)

(Li and Durbin, 2009) to associate the intraread MS repeats to

the corresponding genomic loci. We have also tested additional

local realignment by Genome Analysis Toolkit (GATK) (DePristo

et al., 2011) or indel-sensitive Novoalign (Krawitz et al., 2010),

but the number of MSI calls was very similar (Figures 2I

and 2J), and the sensitivity in detecting MSI events on TGFRB2

remained exactly the same. Local or global realignment may

improve MSI calling, but a systematic evaluation will be required

to delineate its platform or software dependencies.

In this study, we demonstrated that conventional exome

sequencing of tumor and matched normal genomes is able to

capture the exon-centric MSI events; however, there may also

be some intronic and intergenic MSI events with functional sig-

nificance. It was reported that MSI events near splicing sites
November 7, 2013 ª2013 Elsevier Inc. 865



Distance (bp)

M
SI

 fr
eq

ue
nc

y 
(%

)

0
20
40
60
80

100
120
140
160
180
200

0 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

AA-3516 AA-3518 AA-A00R
AA-A01R AP-A051 AP-A054

A B

Distance (bp)

M
SI

 c
ou

nt
s

0

1

2

3

4

5 BULK H2AZ
H3K4ME3 All

Figure 7. Depletion of MSI around Stable

Nucleosome Positions
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see also Figure S6).
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MSI pairs indicates periodicity associated with the

nucleosome size.

See also Figure S6.
may alter the transcript level or splicing pattern of the target

genes as shown for MRE11 (Giannini et al., 2004) and HSP110

(Dorard et al., 2011), respectively. In addition, the quasimono-

morphic allelic nature of a Bethesda marker (BAT-26 located at

the 30 splice site of MSH2 exon 5) in the normal population

(Zhou et al., 1997) has suggested potential functional signifi-

cance of MS repeats around splice sites. The availability of

a larger cohort with whole-genome sequencing data will be

needed to facilitate the identification of functionally important,

recurrent noncoding MSI events in intronic or intergenic regions.

EXPERIMENTAL PROCEDURES

Data Sets

TCGA data were downloaded from dbGaP (http://www.ncbi.nlm.nih.gov/gap,

accession: phs000178.v8.p7). We obtained exome data for 147 CRC and 130

EC patients, as well as whole-genome data for seven CRC and ten EC

patients (tumor and matched normal genomes). All reads were 100 bp

paired-end reads. We confined our analysis to those generated on the Illu-

mina platforms.

MSI Annotation of TCGA Genomes

The MSI status (MSI-H, MSI-L, and MSS) and the clinicopathological parame-

ters were obtained from the TCGAwebsite (https://tcga-data.nci.nih.gov). MSI

status was evaluated by TCGA using a panel of four mononucleotide repeats

(BAT25, BAT26, BAT40, and TGFBRII) and three dinucleotide repeats

(D2S123, D5S346, and D17S250), except for a subset of CRC genomes

evaluated by five mononucleotide markers (BAT25, BAT26, NR21, NR24,

and MONO27). Tumors were classified as MSI-H (>40% of markers altered),

MSI-L (<40% of markers altered), and MSS (no marker altered). The methyl-

ation data of MLH1 promoter were available for 141 CRC and 115 EC

genomes.

Identification of a Reference Set of MS Repeats

To generate an exome-wide reference set of MS repeats, we downloaded the

mRNA sequences of 39,496 RefSeq genes (USCS Genome Browser; hg18).

We used Sputnik (http://espressosoftware.com/sputnik/) to identify MS

repeats with different unit length (mono-, di-, tri-, and tetranucleotide). We

limited our analysis to MS with the size 7–60 bp, as those MS could be

detected accurately with the 100 bp reads, and the statistical power to detect

longer repeats is lower. The frequency of MS repeats decreases logarithmi-

cally with the length of the repeats (e.g., >99% of repeats in the final set of

exome and genome reference MS are smaller than 40 bp), suggesting that

the vast majority of MS repeats are examined in our analysis. We found

265,862 MS in total RefSeq sequences. The repeats that encompass splice

sites, have undetermined genomic coordinates, or are redundant due to mul-

tiple isoforms were removed. The filtered 146,447 MS repeats were catego-

rized into four groups: 50,910 coding, 14,648 50 UTR, 65,502 30 UTR, and
15,387 noncoding (without reported coding sequences) MS, as annotated
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in the UCSC Genome Browser. For a genome-

wide reference set of MS repeats, a total of

7,894,295 MS repeats were obtained (chromo-
some 1 to Y) and categorized into five groups (coding, 68,856; 50 UTR,

15,093; 30 UTR, 64,849; intronic, 3,193,265; intergenic, 4,552,232).

Detection of a DNA Slippage Event

The reads were aligned to NCBI build 36 (hg18) using BWA. After filtering reads

with low mapping quality, intraread MS repeats were identified with the same

method used to identify reference MS repeats and then intersected with the

reference MS repeats by their coordinates. We required the 2 bp flanking

sequences (both 50 and 30) of the intraread MS repeats to be identical to

those of matching reference repeats, ignoring truncated MS repeats. In each

genome, the distribution of the repeat allelic length at an MS locus was

obtained by collecting the lengths of all intraread MS repeats mapped to

that locus. We compared the distributions of MS lengths from tumor and

matched normal genomes at each locus using the Kolmogorov-Smirnov sta-

tistic. An FDR of < 0.05 was used as a threshold for statistical significance,

with a minimum of five tumors and five matched normal reads. We note that

the number of MSI ‘‘events’’ refers to the absolute MSI counts per sample,

whereas MSI ‘‘frequency’’ refers to the number of events normalized by the

background MS numbers in the reference sets.

Categorization of MS Based on Allelic Length Shift

The length of MS repeat measured from each readwas compared to the length

of the corresponding germline MS repeat (+ and � for insertion and deletion,

respectively) in the reference set. The differential read counts among different

lengths were normalized to obtain relative fractions for each MSI event. Hier-

archical clustering was used to group the MSI events with similar profiles. We

distinguished MSI events at coding sequences into frameshift and in-frame

events depending on whether the allelic length corresponding to the mode

of the distribution is nontriplet or not. MSigDB v3 c5 GO categories were

used for GSEA (Subramanian et al., 2005). For genes with recurrent frameshift

MSI, we used the preranked version of GSEA using the level of recurrence as

the weighting parameter for genes.

Allele-Specific Expression Using RNA-Seq

RNA-seq reads from MS-unstable CRC and EC tumor genomes were aligned

on the RefSeq sequences using BWA. For the 1,143 and 1,224 MSI calls sup-

ported by >10 RNA-seq reads with intraread MS repeats, the differential RNA-

seq read counts from wild-type and mutant alleles (depending on whether the

allelic MS length is equal to that of germline or not) were compared with those

from exome sequencing using Fisher’s exact test. For the 37 and 14 MS loci

with significant expression bias in more than one genome, the extent of differ-

ential expression was compared between the cancer genomes with or without

the MSI at each locus. For gene-level expression, we used log2(RPKM + 1)

from RNA-seq data (RPKM, reads per kb per million mapped reads).

Correlative Analysis with Epigenomic Features

Genome-wide features were obtained as previously described (Schuster-

Böckler and Lehner, 2012). We limited the analysis to autosomal features.

SNV of four human cancer types (leukemia, lung,melanoma, and prostate can-

cers) were downloaded from the Supplemental Data sections of the respective

studies (Berger et al., 2011; Pleasance et al., 2010a, 2010b; Puente et al.,

http://www.ncbi.nlm.nih.gov/gap
https://tcga-data.nci.nih.gov
http://espressosoftware.com/sputnik/


2011). Germline polymorphisms (dbSNP build 130), GC contents, genomic

coordinates of CpG islands, recombination rates, and conservation scores

(all in hg18) were downloaded from the UCSC Genome Browser. Hi-C data

(Lieberman-Aiden et al., 2009) were obtained from the Gene Expression

Omnibus database (accession number GSE18199). For comparison with the

18 histone acetylation and 17 methylation markers, as well as the occupancy

of RNApolII, CTCF, and H2AZ, the readswere downloaded as instructed in the

original studies (Barski et al., 2007; Wang et al., 2008). The coordinates of the

chromatin state map defined in nine human cell lines were downloaded from

the UCSC genome browser. To annotate the chromatin states with respect

to DNA replication timing, Repli-Seq data were obtained (Hansen et al.,

2010). For GM12878, for which both chromHMM and RepliSeq data sets

were available, we calculated the ratio of the early versus late replication timing

(G1B and S1 versus S4 and G2) for each of the 15 chromatin states. Three

chromHMM states with the highest and lowest early versus late ratio were

annotated as ‘‘early’’ and ‘‘late’’ replication, with the remaining segments

annotated as ‘‘Intermediate.’’ To examine the extent of variations in MSI fre-

quencies that can be predicted by a combination of multiple genomic features,

we adopted a multiple linear regression model (Schuster-Böckler and Lehner,

2012). Fifty genomic features, including the gene expression level, were tested

in an iterative manner, and the models with minimal Bayesian information cri-

terion (BIC) were selected. The genomic occupancy profiles of nucleosomes

were obtained from our previous study (Tolstorukov et al., 2011).
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Schuster-Böckler, B., and Lehner, B. (2012). Chromatin organization is a major

influenceon regionalmutation rates inhumancancercells.Nature488, 504–507.

Subramanian, S., Mishra, R.K., and Singh, L. (2003). Genome-wide analysis of

microsatellite repeats in humans: their abundance and density in specific

genomic regions. Genome Biol. 4, R13.

Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gil-

lette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., and

Mesirov, J.P. (2005). Gene set enrichment analysis: a knowledge-based

approach for interpreting genome-wide expression profiles. Proc. Natl.

Acad. Sci. USA 102, 15545–15550.

Tolstorukov, M.Y., Volfovsky, N., Stephens, R.M., and Park, P.J. (2011).

Impact of chromatin structure on sequence variability in the human genome.

Nat. Struct. Mol. Biol. 18, 510–515.

Tsao, J.L., Yatabe, Y., Salovaara, R., Järvinen, H.J., Mecklin, J.P., Aaltonen,
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