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Abstract

Detection of mosaic mutations that arise in normal development is challenging, as such mutations 

are typically present in only a minute fraction of cells and there is no clear matched control for 

removing germline variants and systematic artifacts. We present MosaicForecast, a machine-

learning method that leverages read-based phasing and read-level features to accurately detect 

mosaic single-nucleotide variants (SNVs) and indels, achieving a multifold increase in specificity 

compared to existing algorithms. Using single-cell sequencing and targeted sequencing, we 

validated 80–90% of the mosaic SNVs and 60–80% indels detected in human brain whole-genome 

sequencing data. Our method should help elucidate the contribution of mosaic somatic mutations 

to the origin and development of disease.
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A single individual harbors multiple populations of cells with distinct genotypes due to 

somatic mutations arising post-zygotically1. Such diversity of genotypes in an individual is 

referred to as somatic mosaicism. Analysis of mosaic mutations in non-disease samples 

enables exploration of lineage patterns during development and characterization of 

mutational mechanisms operative in normal cells2–6. Recent studies have also demonstrated 

that somatic mutations contribute to many diseases besides cancer1, 7–11.

Identification of mosaic mutations in genome sequencing data remains challenging in two 

key aspects. First, whereas functionally-relevant cancer mutations typically confer 

proliferative advantage and thus have relatively high variant allele fractions (VAFs), most 

mosaic mutations are present in a small number of cells and have very low VAFs. In the 

extreme case, those occurring in post-mitotic cells are present only in a single cell and are 

detectable only by single cell sequencing, as we have done recently10. As standard cancer 

mutation callers typically have a lower VAF limit of 2–5%12, 13, detection of mutations with 

lower VAFs requires a more sensitive bioinformatic method and/or higher sequencing depth. 

Second, mosaic mutations that arise early in development generally exist in multiple tissues.
2, 14 Thus, the conventional approach of using a paired control tissue for filtering germline 

variants and systematic errors would exclude such early-occurring mutations. Several 

methods have been employed to detect mosaic SNVs from non-tumor tissues, such as the 

use of a germline variant caller15 with higher ploidy assumptions8 or a combination of 

somatic mutation callers3, 7, 9, 14. Additional filtering leveraging trio data to exclude 

germline variants7–9, 15 is also common. However, validation rates in these studies have been 

modest.

Incorporation of read-level features in a flexible framework is critical for distinguishing real 

mutations from artifacts16, 17. In place of filters with hard thresholds, recent methods such as 

DeepVariant16 and Strelka217 use machine-learning to combine relevant read-level features 

to improve detection of germline and cancer somatic variants, respectively. Another 

component in accurate detection of mosaic SNVs in silico is read-based phasing3, 7, 8, 18, in 

which a candidate mosaic mutation and a nearby germline variant are checked for haplotype 

consistency—i.e., a true mosaic mutation should generate one and only one additional 

haplotype. A major disadvantage of phasing, however, is that only a small fraction (~10–

30%) of variants are phasable using short-read sequencing18, and phasing may be 

ambiguous in non-diploid or low-mappability regions6.

We developed MosaicForecast, which leverages multiple read-level features over phasable 

sites to build a genome-wide prediction model for finding mosaic mutations in the absence 

of a matched control sample. It consists of three major steps (Fig. 1a): (i) generation of a 

training set by read-based phasing; (ii) construction of a Random Forest (RF) model based 

on read-level features related to the quality and category of variants, such as variant allele 

fraction, read depth, mismatches per read and strand bias (Fig. 1b, Supplementary Table 1); 

and (iii) genome-wide prediction of mosaic SNVs. The underlying idea is similar to that of 

DeepVariant16 and Strelka217 in that a nonlinear model that combines informative read-level 

features is trained using a machine-learning framework and then applied to a test set. The 

main difference is that, to overcome the problem that high-quality training data are not 

available, MosaicForecast utilizes phasable sites in building a training set. We introduce 
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another modeling step using multinomial logistic regression to improve the training set when 

some experimental validation data are available (Fig. 1c). As an illustrative example, we 

applied the tool to analyze whole-genome sequencing (WGS) data from brain tissues of 60 

autism spectrum disorder (ASD) and 15 neurotypical individuals, sequenced at ~250X (150-

bp paired-end reads).

To assemble a training set of high-confidence mosaic mutations, we first identify a lenient 

set of candidate mosaic variants. We used MuTect2 in its tumor-only mode for its high 

sensitivity, but other algorithms can be used (see Methods and Supplementary Fig. 1). To 

remove germline variants and recurrent artifacts, we filtered variants present in the Genome 

Aggregation Database (gnomAD)19. In addition, since the likelihood that somatic mutations 

occur at the same position in different individuals is vanishingly small, we also removed 

variants found in any other samples in the dataset (75 minus the one being analyzed). We 

observed that removing recurrent variants did not result in loss of sensitivity (Supplementary 

Fig. 2). For some experimental designs, e.g., comparing multiple tissues from the same 

individual, recurrent variants may be true mosaics; thus, a filtering scheme with an 

appropriate panel of “normals” should be chosen to remove germline variants as well as 

minimizing the risk of including artifacts that arise due to misalignment or index hopping20.

We then classified the phasable variants (those for which a germline SNP is contained in the 

same read or its mate pair) into three categories depending on the number of observed 

haplotypes (hap): (i) hap=2, consistent with heterozygous germline variants; (ii) hap=3, 

consistent with mosaics; and (iii) hap>3, suggestive of low mappability regions, presence of 

copy number variations (CNVs), or sequencing-associated/other artifacts (Supplementary 

Fig. 3). For our brain data, ~25% of candidate mosaics were phasable with at least one 

germline SNP (Supplementary Table 2).

To determine whether the true genotypes can be inferred from the haplotype categories, we 

evaluated 483 phasable sites in selected samples for which three additional data types are 

available: single cell WGS, amplicon-based targeted sequencing, and trio WGS (see 

Methods and Supplementary Tables 2–3). The single cell WGS dataset of three individuals 

we have published previously5, 10 provide an excellent resource for orthogonal validation, as 

the lineage information as well as allele fraction across cells allow us to distinguish mosaics 

from heterozygous SNPs, germline repeat/CNV variants and technical artifacts (see 

Methods; Supplementary Fig. 4); trio data (for two individuals) are useful for distinguishing 

mosaic and germline variants (Supplementary Table 3). This analysis (Fig. 1c) revealed that 

although the ‘hap=3’ category was enriched for true mosaic mutations (50%), the rest of the 

‘hap=3’ sites turned out to be false positives, classified as repeat/CNV regions (37%), 

germline heterozygous (6%) and reference-homozygous (6%). Variants labeled as ‘hap=2’ 

were mostly germline heterozygous, and variants labeled as ‘hap>3’ were mostly false 

positives as expected.

To identify mosaic variants, we first built an RF model using over 30 read-level features as 

predictors and the haplotype number (Hap=2, Hap=3, Hap>3) as the response, at all 

phasable sites on diploid chromosomes (Supplementary Table 4). Then we applied this 

‘Phasing prediction model’ genome-wide, excluding non-unique mapping regions21 (see 
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Methods). This model resulted in modest validation rates for ‘hap=3’ sites, with 67% 

(55/82) in non-repeat regions and 34% (28/82) within repeat regions (Supplementary Fig. 5 

and Supplementary Table 5; we define ‘repeat region’ to include interspersed repeats and 

low complexity sequences identified by RepeatMasker22). However, we noticed that many 

variants are clustered, in mostly repeat or non-diploid regions, when all individuals are 

considered together (~46% of those predicted to be ‘hap≥3’ were enriched in regions that 

together span only ~19MB; see Methods; Supplementary Table 6). After removing these 

clustered variants, the overall validation rate for the Phasing prediction model increased to 

76% (55/72) in non-repeat regions and 49% (28/57) in repeat regions (Fig. 1d, 

Supplementary Table 5). This constitutes a 7-fold increase (non-repeat regions) and a 43-

fold increase (repeat regions) in precision compared to the initial MuTect2 calls, with 

minimal loss of sensitivity.

With experimental validation data at phasable sites, we can further improve our prediction 

model. Because the haplotype number was only moderately correlated with the mosaic 

status (Fig. 1c, top), we reasoned that an intermediate model that defines the genotype more 

accurately using validation data could generate a better training set for the subsequent RF 

model. Visual inspection in the principal component space of the read-based features 

revealed that some ‘hap=3’ variants clustered with variants that were found to be 

repeat/CNV or reference-homozygous, suggesting that read-level data can help refine the 

genotype predictions (Supplementary Fig. 6a–c). With a multinomial logistic regression 

model incorporating the read-level features (Fig. 1a), we converted the genotyping 

categories from haplotype counts to ‘het’, ‘mosaic’, ‘refhom’ and ‘repeat’. The refined 

categories were in much better agreement with the orthogonally evaluated calls: whereas 

only 50% of hap=3 variants were validated mosaics, 85% of the ‘mosaic’ predictions from 

the regression model were validated mosaics (Fig. 1c). The resulting model was then applied 

to all phasable sites to generate their four-category genotype labels (Supplementary Table 4).

Using the phasable sites and their refined genotypes as a training set, we predicted mosaics 

genome-wide. We built an RF classification model (‘Refined genotypes prediction model’) 

on all phasable sites with over 30 features as covariates and the refined genotypes as the 

response. We then applied the RF model to the 135,250 non-phasable candidate mutations 

(Supplementary Table 7). Sites within non-unique mapping regions21 (mappability score=0) 

as well as sites within clustered regions (Supplementary Fig. 6d) were excluded. Among the 

2,220 predicted (non-phasable) mosaics, 95 randomly selected sites were evaluated using 

orthogonal data (same validation method as for phasable sites). As shown in Fig. 2a, 78 

(82%) were confirmed as true mosaics (85% in non-repeat regions and 77% in repeat 

regions). Top-ranked features of the RF model are listed in Supplementary Fig. 6e.

We compared the performance of MosaicForecast with that of GATK HaplotypeCaller 

(GATK-HC)23, MuTect212 and MosaicHunter24 using three different approaches. First, we 

inspected the variants called by all methods in three 250X WGS brain samples for which 

single cell WGS data are available5, 10 (both phasable and non-phasable sites; leave-one-out 

cross validation for three individuals). Although the lineage information in single cells 

provides a very useful way to benchmark algorithm performance, one limitation of this 

approach is that variants with low allele fraction have a proportionally low chance of being 
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sampled if the number of cells is small; thus, we used deep-sequencing on the IonTorrent 

platform to further examine those variants identified as ‘refhom’ by single cell data (see 

Methods; Supplementary Fig. 7 and Supplementary Table 8). The results show that 

MosaicForecast-Phase and -Refine models achieve precision that is typically several-fold 

higher than other tools, while maintaining high sensitivity (Fig. 2a). GATK-HC with ploidy 

two (GATK-HC-p2) frequently misclassified heterozygous SNPs as mosaics; MuTect2 and 

GATK-HC with ploidy five (GATK-HC-p5) most often misclassify repeat/CNV variants; 

and MosaicHunter could only detect variants within non-repeat regions, thus losing ~50% of 

true mosaics. At the individual level (Fig. 2b), the precision was ~92% (24/26), ~81% 

(25/31) and ~73% (24/33) for the MosaicForecast-Refine model, suggesting a consistently 

high validation rate. MosaicForecast was also able to detect more low-allele fraction variants 

with VAF≤0.05 (30/41) than MosaicHunter (14), GATK-HC-p5 (4) and GATK-HC-p2 (0) 

(Supplementary Fig. 8a).

As a second mode of validation, we evaluated candidate mosaics called by MosaicForecast-

Refine in the 75 individuals using amplicon-based sequencing (~30,000X on IonTorrent). Of 

the 75, the IonTorrent validation rate (Supplementary Table 9) was ~94% (161/171) for the 

64 samples that were sequenced using PCR-free libraries (~95%, 149/157, for diploid and 

~86%, 12/14, for haploid chromosomes). For the remaining 11 sequenced using PCR-based 

libraries, the validation rate was ~61% (42/68; 68%, 42/62, on diploid and 0/6 for haploid 

chromosomes). The lower validation rate for the PCR-based samples is likely due to the 

PCR-induced biases, as reflected in a significantly higher proportion of G>T mutations 

(OR=4.1, p<1e-15, Fisher’s Exact test, Supplementary Fig. 8b), which are associated with 

oxidative damage25. If we focus on non-phasable sites from diploid chromosomes (Fig. 3a), 

validation rates were ~95% (105/111) and ~67% (30/45) for PCR-free and PCR-based 

samples, respectively. In addition, the validation rates were similar in non-repeat regions 

(87%, 118/136) and repeat regions (85%, 17/20). Among the 177 MosaicForecast mosaics in 

non-repeat regions confirmed by IonTorrent, GATK-HC-p5 was only able to detect ~62% 

(109/177), followed by MosaicHunter (~59%, 105/177), and GATK-HC-p2 (~20%, 35/177). 

Among the 26 MosaicForecast mosaics in repeat regions confirmed by IonTorrent, GATK-

HC-p5 and -p2 were only able to detect ~58% (15/26) and ~19% (5/26), respectively 

(MosaicHunter does not make calls in repeat regions). A large fraction of low VAF (≤0.05) 

mosaics were called by MosaicForecast but missed by both MosaicHunter and GATK 

HaplotypeCaller (~52%, 48/92, Supplementary Fig. 8c), indicating that MosaicForecast is 

particularly advantageous for detecting low VAF mutations.

Third, we tested the haplotype numbers for the extra variants identified by the other callers. 

Across the 75 individuals, the other methods called 1 to 80 times more mutations than 

MosaicForecast, but read-based phasing showed that a large proportion of phasable sites 

from these tools had two haplotypes or more than three haplotypes, inconsistent with mosaic 

variants (Fig. 1c and Fig. 2a). For example, the percentages of ‘hap>3’ variants were 58%, 

49%, and 26% for MuTect2, GATK-HC-p5, and GATK-HC-p2, respectively; another 51% 

of GATK-HC-p2 were ‘hap=2’. These numbers indicate that the false positive rates are 

indeed very high for other methods (Supplementary Fig. 9).

Dou et al. Page 5

Nat Biotechnol. Author manuscript; available in PMC 2020 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To determine the performance of our model across VAFs, we applied the model to a 

simulated dataset containing spike-in mutations (see Methods). We found that the model had 

similarly good performance over a relatively wide range of AFs, from 0.02 to 0.3, as 

reflected in the ROC curves (Supplementary Fig. 10a–b). It performed substantially worse 

when the AFs approach 0.5, as it becomes impossible to separate somatic variants from 

germline variants; in that case, a case-control scheme would be a better choice.

To examine the detection power of MosaicForecast as a function of read-depth, we simulated 

lower coverage data by down-sampling from the original 250X brain-WGS data, and trained 

one RF model at each read-depth using only the features extracted from the phasable sites in 

the corresponding down-sampled data. Although power decreases with coverage as 

expected, MosaicForecast was still able to detect ~80% (108/135) of the validated 250X 

variants at 50X (Fig. 3a, Supplementary Table 10). We also applied the brain WGS-trained 

models to the HapMap sample NA12878 to determine whether a model trained in one 

dataset could be applied to another dataset. For testing, we generated simulated mutations in 

the 300X WGS data for NA1287826 following a realistic allele fraction distribution of early-

embryonic mosaics and down-sampled to 50-250X (see Methods and Supplementary Fig. 

10c–d). MosaicForecast was sensitive in detecting simulated mosaics and effective in 

removing non-mosaic sites across read depths: at a 5% false discovery rate, it detected ~95% 

of the spike-in mutations at 250X. When the training and simulation were performed at 

lower depths, ~90% of the spiked-in mutations were detected at 100X and ~70% at 50X 

(Fig. 3b). We also found that the models were robust across different read depths (see 

Methods, Supplementary Fig. 11).

Although MosaicForecast used variants derived from MuTect2 as an initial set, it could also 

start with variants identified by other tools. Validation using single cell and IonTorrent data 

(see Methods and Supplementary Table 11) shows that MosaicForecast (trained on MuTect2 

calls) substantially raises the specificity of mosaic mutations with a minor loss in sensitivity, 

from 39% (38/98) to 90% (27/30) for GATK-HC-p2, from 7% (54/742) to 84% (42/50) for 

GATK-HC-p5, and from 47% (34/73) to 61% (31/51) for MosaicHunter (Supplementary 

Fig. 12). For maximal sensitivity, we could generate an input set simply by using samtools 

mpileup scanning, e.g., by taking all sites with ≥2% non-reference bases as potential 

mutations. Using single cell data to evaluate the sites called only by samtools, only a tiny 

fraction (1.8%, 104/5876) of a large mutation set was validated. With MosaicForecast, we 

achieved a striking improvement in the validation rate (45.9%, 78/170; Supplementary Fig. 

12). Compared to the MuTect2 validation result (73/89, Fig. 2a), only a few more true 

variants were captured at the expense of many false variants. We note that the single cell-

based validation strategy becomes less accurate as the VAF decreases, so the specificity and 

sensitivity for mpileup-based variants is likely to be an underestimate.

In addition to SNVs, MosaicForecast is capable of identifying mosaic indels (see Methods). 

Using the MuTect2-based approach as before, we obtained 59977 candidates (22893 

deletions, 37084 insertions) from the non-repeat regions of the 75 individuals. For mosaic 

deletions, an RF model trained using all 831 phasable sites (Supplementary Table 12 and 

Supplementary Fig. 13a–c) predicted 1356 sites as “hap=3”. With additional filtering criteria 

(see Methods), 102 sites were classified as confident mosaic deletions. All the high-
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confident mosaic deletions were from PCR-free samples. When evaluated using IonTorrent 

sequencing (see Methods and Supplementary Fig. 13d), ~75% (59/79) were validated as true 

deletions, with phasable (79%, 11/14) and non-phasable (~74%, 48/65) sites having similar 

validation rates (Fig. 3c and Supplementary Table 13). Two sites in the three individuals 

with single cell data (and at least one mutant cell) were both confirmed with lineage 

information (Supplementary Fig. 13e–f). Following the same approach (Supplementary Fig. 

14), 134 confident mosaic insertions were found, and ~59% (32/54) from PCR-free samples 

were validated (Fig. 3d and Supplementary Table 14). None of the mosaic insertions from 

PCR-based samples were validated (Supplementary Table 14). The excessive error rate of 

mosaic indels in PCR-based samples are likely to be caused by replication slippage of DNA 

polymerase27. In the process of detecting mosaic SNVs and indels, we also identified several 

mosaic multi-nucleotide variants (e.g., two adjacent base substitutions) as well as clumped 

variants (e.g., a SNV and a nearby insertion). We called three such events in the three 

individuals with single cell sequencing data, and two of the events were found in at least one 

mutant cell, suggestive of true mosaics (Supplementary Fig. 15).

In summary, MosaicForecast substantially improves the detection of mosaic SNVs and 

indels from reference-free sequencing data, confirming that proper incorporation of various 

read-level features in a nonlinear classifier provides an effective way to distinguish real 

mosaic mutations from germline variants (especially from CNV/repeat regions) and other 

artifacts. The strong performance of MosaicForecast is made possible by training predictive 

models on phasable sites—a method for constructing a highly-confident training set of 

mosaic variants in-silico, without having to carry out labor-intensive experimental 

validations. Identification of mosaic mutations in various non-tumor tissues by the proposed 

method will help gain insights into the origin and propagation of somatic mutations in 

development and disease.

ONLINE METHODS

Data sets

WGS data from the prefrontal cortex of 75 individuals (~250X) and from the blood of two 

pairs of parents (~50X) were obtained by our group. Single cell WGS data from the neurons 

of three individuals were previously obtained5, 10. All data were 150bp, paired-end (PE) 

reads. FASTQ files and high-confidence SNV calls28 for NA12878 (~300X, 150bp PE) 

generated by the Genome in a Bottle Consortium (https://ftp-trace.ncbi.nlm.nih.gov/giab/) 

were down-sampled to different read depths. WGS data for 30 tumor tissues (~80X, 100 bp 

PE) and their matched normal samples (~40X) as well as consensus variant calls were 

obtained from the International Cancer Genome Consortium (ICGC)13. Reads were aligned 

to GRCh37 with decoy (hs37d5) using BWA29.

Variant calling

Five methods were used to call mosaic SNVs in the brain bulk data: MuTect2 (version 3.5 

nightly-r2016-04-25-g7a7b7cd, variants tagged as “str_contraction”, triallelic_site or 

“t_lod_fstar” were excluded); GATK HaplotypeCaller (v3.5-0), with ploidy set to two 

(GATK-HC-p2) or five (GATK-HC-p5), keeping only variants tagged as ‘PASS’; 
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MosaicHunter (v1.1) with the minimum VAF threshold adjusted from the default 5% to 2% 

to enable detection of mosaics with lower VAFs; and Samtools30 (v1.9) mpileup with sites 

with ≥2% non-reference bases (alt allele count ≥3, with mapping quality≥20 and base 

quality ≥20) called as putative mutations. Variants within segmental duplication regions 

according to the UCSC Genome Browser database31 were removed. Variants at <0.02 VAF 

calculated by each tool were excluded. Variants with VAF ≥0.4 or present in the gnomAD 

database19 were removed as likely germline variants. Variants called in multiple individuals 

by each method were excluded. For indels, variants present in the relevant “panel of 

normals” (PoN) or gnomAD as well as those present in repeat regions, including simple 

repeats32, RepeatMasker regions, and segmental duplication regions were excluded. Variants 

with VAF <0.02 or ≥0.4 as calculated by MuTect2 were removed. Outliers with >20 

deletions per sample were excluded, variants with >350X read depth, variants with ultra-low 

AF calculated by MosaicForecast (<0.01), variants with a high proportion (≥10%) of clipped 

reference reads, variants within clustered regions and variants present in the gnomAD 

database were removed. Further information is available in the Life Sciences Reporting 

Summary.

Variants generated by MuTect2 with a PoN were used as input variants to MosaicForecast, 

due to the high sensitivity of MuTect2. For brain data, one individual (UMB5308) likely to 

have contamination problems (obtain excess number of low-VAF mutations) was excluded. 

Sites with extra-high read depths (≥2X), sites with ≥1.5X read depths and ≥20% AF were 

marked as “low-confidence” and excluded. We evaluated the sensitivities of different tools in 

two ways: first, we generated spike-in mutations at allele fractions of 0.01, 0.02, 0.03, 0.05, 

0.1, 0.2, 0.3, 0.4 and 0.5 in the BAM files of NA12878 subsampled at 50X-250X, called 

variants from the BAM files with MuTect2, MosaicHunter, GATK-HC-p2 and GATK-HC-

p5, and compared their sensitivities in detecting mosaics at different allele fractions and read 

depths. MuTect2 achieved the highest sensitivity in all circumstances (Supplementary Fig. 

1a). Second, we also called candidate mosaics from real bulk sequencing data (250X) from 

three individuals with multiple single cells with the four different tools, and evaluated the 

variants using the single cell data. MuTect2 was able to detect >97% (98/101) of real 

mosaics called by different tools, whereas MosaicHunter, GATK-HC-p2, GATK-HC-p5 

were only able to detect 34, 38 and 54 percent of real mosaics, respectively (Supplementary 

Fig. 1b).

Orthogonal validation of variants

SNV candidates were evaluated by single cell sequencing, trio sequencing, or ultra-deep 

amplicon resequencing (Supplementary Table 3). To evaluate variants using single cell data 

in the three individuals (1465, 4643 and 4638)5, 10, we constructed lineage trees with single 

cell mutations assigned to different clades (Supplementary Table 8 and Supplementary Fig. 

4). Mutations that were only present in the cells assigned to the same clade were regarded as 

real mosaic mutations; mutations absent from all cells were regarded as refhom, and 

mutations present in multiple cells and assigned to conflicting clades were regarded as 

germline variants (het or repeat). To further classify germline variants (repeat or het), we 

used an empirical threshold: if mutant cells on average have ≥20% AF, we classified them as 

het variants; and if mutant cells on average have <20% AF, we classified then as repeat 
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variants (Supplementary Fig. 4e). We further checked all “het” variants, and if a variant had 

ultra-high read depth in the bulk data (>300X) and the bulk allele fraction deviated 

significantly from 50% (p<0.001, two-tailed binom test), we re-classified them as repeat 

variants. Moreover, “linked” variants close to each other with all alt alleles on the same 

reads were also classified as repeat variants.

To address the concern that some variants judged as “refhom” by the limited number of 

single cells could be real mosaic variants, we experimentally evaluated those “refhom” sites 

by using IonTorrent deep sequencing. But, in order to pick an informative set for IonTorrent 

validation, we first categorized the sites into different groups based on the caller used and 

checked the read alignments using IGV. By extensively checking IGV plots (with some 

examples in Supplementary Fig. 7b), we found that: 1. Candidate sites called by ≥2 tools 

were more likely to be true mosaics than those sites called by only one tool; 2. Candidate 

sites called by MosaicForecast and MosaicHunter were substantially more convincing, 

whereas sites called by GATK-HC-P5 and MuTect2 were much less so. Almost all of 

candidate mosaics from the latter set came from “messy” regions with many mismatches and 

were unlikely to be true mosaics. Based on observation, instead of experimentally evaluating 

all 674 sites evaluated by single cells as refhom, we only selectively evaluated sites called by 

≥2 tools. We should note that since we did not have more of the same DNA extraction for 

the three individuals (1465, 4643, 4638) sent out for WGS sequencing, we could only settle 

for the second best by using extracted DNA from nearby tissues for targeted sequencing. As 

a result, the validation rate could be slightly under-estimated overall. But the situation is the 

same for all callers.

For trio data, we considered the variants detected in the child and (i) absent from both 

parents as real mosaics, (ii) present in either parent with <20% VAF as CNV/repeat, and (iii) 

present in either parent with ~50% VAF as heterozygous. Two individuals (UMB5939 and 

UMB5771) had bulk WGS data from both parents (~50X), and their variant calls were 

evaluated with trio data.

As for IonTorrent, with additional testing of candidates in the 75 individuals, we evaluated a 

total of 250 candidate mosaic SNPs called by MosaicForecast (Supplementary Table 9). To 

compare the performance of different tools, 115 variants from different tools were evaluated 

by ultra-deep targeted sequencing (Supplementary Table 3). These included 54 with WGS 

VAF≤0.05, 24 with WGS VAF∈ (0.05,0.2] and 37 with VAF>0.2. Candidate mosaic indels 

were also evaluated with IonTorrent targeted sequencing. For each site, two or three different 

pairs of primers were designed and three sets of PCR products were generated. In addition, 

an experimental control was adopted as a comparison with the case samples. Given that 

IonTorrent sequencing has a high rate of indel errors33, only variants present in the case and 

absent from control, or present in case samples with much higher allele fractions than in 

controls were regarded as true mosaic indels (Supplementary Fig. 13d). For mosaic 

insertions specifically, since the “hap=3” and “hap>3” sites were not well distinguished in 

the PCA space (Supplementary Fig. 14), we expected higher false positive rate, and checked 

the read alignments using IGV as an additional filter before IonTorrent evaluation 

(Supplementary Table 14). Sites from “messy” regions with excessive mismatches, sites 

with the mutant alleles completely linked with nearby low-AF variants in the reads, and sites 
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with misalignment issues were classified as “repeat” or “het” variants. These false positive 

sites from IGV plot were included to calculate the validation rate of mosaic insertions in Fig. 

3d.

Read-based phasing

To identify germline SNPs near the SNVs detected by MuTect2, we scanned reads mapped 

up to 1kb away from each candidate site. After excluding reads with low mapping qualities 

(<20) or with low base quality at the mutant position (<20), a two-tailed binomial test was 

applied to remove variants whose VAFs deviated from 0.5 (p≤0.05). Variants with relatively 

low read depth (<20X) were also filtered.

After obtaining a set of high-confidence SNPs, we first computed the haplotype numbers 

along the genome using consecutive pairs of germline SNPs to determine if a region is non-

diploid; if so, candidate mosaics in the region were excluded as false positives 

(Supplementary Fig. 3a). Next, each candidate mosaic was phased with as many nearby 

germline SNPs as possible and classified as follows: (i) those leading to three haplotypes 

were treated as potential mosaics (Fig. 1a, Supplementary Fig. 3b); (ii) those leading to two 

haplotypes were treated as heterozygous mutations (Supplementary Fig. 3c); and (iii) those 

leading to more than three haplotypes were treated as false positives, as mosaic mutations 

arising in a diploid organism can only define three haplotypes (Fig. 1a, Supplementary Fig. 

3d).

Read-level features

The 31 features are described in Supplementary Table 1. Two of the features, ‘mapq_p’ and 

‘mapq_difference’, encode mapping qualities; three account for the number of mismatches 

per read (‘major_mismatches_mean’, ‘minor_mismatches_mean’, ‘mismatches_p’); and six 

are calculated using base qualities (‘baseq_p’, ‘baseq_t’, ‘ref_baseq1b_p’, ‘ref_baseq1b_t’, 

‘alt_baseq1b_p’, ‘alt_baseq1b_t’). The remaining features are read-depth, VAF, genotyping 

likelihoods, strand bias, biases of the read pairs towards the ref/alt alleles, bias of the 

sequencing cycle towards the ref/alt alleles, read mapping position bias, bias of the base 

query position of the ref/alt alleles, local mappability score21, proportion of clipped reads, 

multiallelic examination, GC content and the three-nucleotide base context of the mutation.

Although most of these features were calculated by comparing positions or qualities of 

reference alleles/reads with alternative alleles/reads, we also compared the qualities of 

alleles at the mutant position and at 1-bp downstream of the mutant position 

(‘ref_baseq1b_p’, ‘ref_baseq1b_t’, ‘alt_baseq1b_p’, ‘alt_baseq1b_t’), since systematic 

sequencing errors have been reported to have lower base quality at the mutant position34. We 

also estimated genotype likelihoods of four different genotypes (refhom, het, althom, 

mosaic) based on Bernoulli sampling24, 35 to capture sequencing errors and ref/alt allele 

read-depth biases, assuming that the real mutant allele fractions are 0 (refhom), 0.5 (het), 1 

(althom), and uniformly distributed between 0 and 1 (Mosaic). The formulas to calculate the 

four genotypes are as follows:
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L(G = het |Data) = depth
r 0.5depth

L(G = refhom|Data) = depth
r ∏i = 1

depthP ri = ref qi, oi

L(G = althom|Data) = depth
r ∏i = 1

depthP ri = alt qi, oi

L(G = mosaic |Data) = ∫0
1

θr 1 – θ depth–rdθ = depth
r beta(r + 1, deptℎ – r + 1)

r = ∑
i = 1

depth
P(ri = alt qi, oi)

where ri denotes read i, oi denotes observed allele on read i at the mutant position, qi denotes 

base quality on read i at the mutant position, and θ denotes the real mutant allele fraction.

Compared with SNVs, indels tend to cause alignment uncertainty problems and a merely 

position-based method would no longer be adequate. We therefore modified several read-

level features and designed several new features/filters to adapt MosaicForecast for calling 

mosaic indels. Specifically, “alt reads” were re-defined as reads carrying an alt allele or 

reads clipped at the mutant position; candidate sites within Simple Repeats and 

homopolymer regions were filtered; candidate sites with >=10% reference reads being soft-

clipped were filtered; and when computing the difference of baseQ at the mutant position 

and neighboring position, the 1bp neighboring position was re-defined as read regions 

excluding mutant indels. All the read-level features were computed using custom Python 

scripts that relied on the PySam30 library (https://github.com/pysam-developers/pysam).

Identification of regions with clustered mutations

To identify non-diploid regions that are likely to be enriched for artifacts, we applied the 

Phasing prediction model on all MuTect2-PoN calls from the 75 individuals and extracted 

variants predicted to be ‘hap=3’ or ‘hap>3’. We then selected regions with ≥3 consecutive 

‘hap≥3’ sites among the 75 individuals (distance <5,000 bp between adjacent variants). The 

clustered ‘hap=3’ variants in these mostly repeat regions had significantly higher read-

depths (p<1e-15, two-tailed Wilcoxon’s rank sum test) and lower mappability scores 

(p<1e-15, two-tailed Wilcoxon’s rank sum test) than non-clustered ‘hap=3’ sites, suggesting 

that these regions are likely to be non-diploid or otherwise error-prone regions that should be 

blacklisted. Validation using single cell, IonTorrent, and trio data for 540 clustered “hap=3” 

sites showed that ~99% of them were false positives (Supplementary Table 6).
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Genotype refinement

Given that the genotype cannot be inferred accurately when the haplotype number is three or 

more (Fig. 1c), we first performed principal component analysis (PCA) of all variants called 

by MuTect2 (tumor-only mode) using all read features to determine whether real mosaics 

can be distinguished from false positive sites in the PCA space (Supplementary Fig. 5). 

When we projected the experimentally-evaluated phasable sites onto the PCA space, we 

found that the variants validated as mosaic, heterozygous, reference-homozygous and 

repeat/CNV variants form distinct clusters (Supplementary Fig. 6a,c), suggesting that the 

read-level features could be used to separate real mosaic mutations from germline variants 

and other false positive calls with higher accuracy than haplotype information alone.

Analysis of the PCA space revealed that some of the candidate mosaic variants with hap=3 

clustered with hap>3 variants. Validation data showed that those hap=3 variants were 

repeat/CNV or reference-homozygous (Supplementary Fig. 6a). For example, genotyping 

likelihoods, difference of ref/alt allele query position, difference of read mapping positions 

and difference of ref/alt reads mapping qualities were the main features contributing to PC1; 

difference of mismatches per ref/alt read and difference of ref/alt allele base qualities were 

important features contributing to PC2 (Supplementary Fig. 6b). Repeat/CNV sites tended to 

have lower base qualities and more mismatches per alt read, different base query positions 

for ref/alt alleles, different read mapping positions and different mapping qualities for ref/alt 

reads, and thus were better separated from real mosaic variants along PC1 and PC2 

(Supplementary Fig. 6a–b). We thus reasoned that genotype labels of phasable sites could be 

better predicted using these first five principal components, which collectively explained 

~50% of the variance (Supplementary Fig. 5d). We used phasing as well as the first five PCs 

for experimentally evaluated phasable sites as covariates to model their true genotypes using 

multinomial linear regression (Supplementary Table 4). The resulting model was used to 

predict refined genotype labels for the remaining non-phasable sites. Subsequently, the 

labels ‘hap=2’, ‘hap=3’, and ‘hap>3’ were converted to ‘het’, ‘mosaic’, ‘repeat’ and 

‘refhom’, respectively. The R package glmnet36 was used to build the multinomial 

regression model, and the R package mlr37 was used to visualize the classification as shown 

in Supplementary Fig. 6c.

Construction of the Random Forest (RF) model

To construct a RF classification model applicable to both phasable and non-phasable 

candidate mosaics, we used all phasable sites from diploid chromosomes as the training set 

and used the read-level features described above for phasable sites as covariates. We used 

the R package caret38 to build the RF model. The model was trained to predict the haplotype 

numbers for the ‘Phasing prediction model’ and it was trained to predict the four refined 

genotypes (‘refhom’, ‘het’, ‘repeat’, and ‘mosaic’) assigned to phasable sites for the 

‘Refined genotype prediction model’. To train models applicable to sequencing data with 

different read depths, reads for all candidate sites in the 250X training set were down-

sampled to 50X, 100X, 150X and 200X respectively, and all the read-level features of 

phasable sites were extracted from the sampled reads to build the corresponding RF models 

(Supplementary Table 10).
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Evaluation of brain WGS-trained model in WGS data with different read depths

We trained models with phasable sites from the brain-WGS data (down-sampled to 50-250X 

depth) and tested on non-phasable sites from the brain-WGS data at 50-250X as well as on 

the simulated data constructed using NA12878 (Supplementary Fig. 11). To evaluate the 

validation rate in real WGS data, reads for all candidate sites called by MuTect2 in the 250X 

data (from the three individuals with single cell sequencing data available) were down-

sampled to 50X, 100X, 150X and 200X respectively, and all the read-level features for non-

phasable sites were extracted from the sampled reads. We then applied the brain WGS-

trained RF models trained with phasable sites at 50-250X read depths to non-phasable sites 

in the three individuals. When evaluated with single cell or IonTorrent data (Supplementary 

Table 3), performance was only slightly better when training and testing datasets had similar 

coverages. For example, ~74% of variants (40/54) were validated as true mosaics when 

applying a model trained at 50X WGS data to 50X test data, whereas ~66% (40/61) were 

validated when applying a model trained at 250X WGS data to 50X test data 

(Supplementary Fig. 11).

Simulation of mosaic mutations and extraction of false sites

We also evaluated the performance of MosaicForecast in simulated datasets at different read 

depths. The 300X WGS data for the HapMap sample NA1287826 was down-sampled to 

50X, 100X, 150X, 200X, and 250X using SAMtools30. Spike-in mosaic mutations with 

expected allele fractions of 0.02, 0.03, 0.05, 0.1 and 0.3 were generated for each case 

(Supplementary Fig. 10). These simulated mosaics were randomly selected and mixed in 

proportion (4:4:4:2:1) to mimic the real early-embryo mosaic mutations in non-tumor 

tissues, assuming constant mutation rate per cell division (Supplementary Fig. 10c). To 

simulate a set of high-quality and correctly phased mosaic variants, simulated mutations 

were generated in BAM files by converting alternative alleles of the high-confidence 

heterozygous SNPs39 to reference alleles with Bernoulli sampling. In the 250X data, the 

spike-in mutations were generated at higher density at variant allele fractions (0.01, 0.02, 

0.03, 0.05, 0.1, 0.2, 0.3, 0.4) and were used to determine the performance of the models 

across a wider variety of VAFs.

To extract a set of false variants from real sequencing data, candidate sites were called from 

the down-sampled BAM files (down-sampled from the original HapMap sample NA12878, 

without spike-in mutations) with MuTect2 (version 3.5 nightly-r2016-04-25-g7a7b7cd). 

Variants at <0.02 VAF calculated by MuTect2 were excluded. Variants with VAF ≥0.4 

calculated by MuTect2, or present in the gnomAD whole-genome database19 with ≥0.1% 

MAF were excluded. We then applied phasing on all candidate variants, and heterozygous 

SNPs were chosen as those with 2 haplotypes; sites with a misalignment issue within non-

diploid regions were chosen as those with >3 haplotypes. The two kinds of mutations were 

used as simulated false sites (Supplementary Fig. 10d). We then applied the pre-trained RF 

models at different read-depths to predict mosaics in simulated datasets and evaluate 

performance.
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Statistics

13 out of 31 read level features were calculated with scipy (v1.2.1), by doing two-tailed 

Wilcoxon’s rank sum test, two-tailed t-test or two-tailed Fisher’s exact test to compare base 

qualities, mapping qualities, positions of ref alleles/reads and alt alleles/reads, compare base 

qualities at the mutant position and neighboring positions as well as evaluate strand bias, 

read1/read2 biases. Refer to Supplementary Table 1 for more details. Other statistical tests 

for each analysis are calculated with R (v3.6.1) and are described in the Method part. 

Further information is available in the Life Sciences Reporting Summary.

Reporting Summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.
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Fig. 1: Framework of MosaicForecast to detect mosaic SNVs from bulk sequencing data.
(a) Candidate mosaics were classified as ‘hap=2’, ‘hap=3’ or ‘hap>3’ by read-based 

phasing, and a Random Forest model was trained to predict the phasing by using 25 read-

level features as covariates. The model was then applied to non-phasable sites to predict 

their genotypes. Given a list of experimentally-evaluated sites, the model could be further 

improved by an additional genotype-refinement step. (b) The relative importance of the 

features from the RF model for the brain WGS data, with four examples of read-level 

features. (c) 483 phasable sites were orthogonally evaluated by single cell, trio, and targeted 

sequencing data. After genotype refinement, the phasable sites classified as ‘hap=2’, ‘hap=3’ 

and ‘hap>3’ were converted to ‘het’, ‘mosaic’, ‘repeat/CNV’ and ‘refhom’ for training. (d) 
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We applied MosaicForecast to non-phasable MuTect2 candidate mosaics and evaluated them 

in single cell, trio, and targeted sequencing data. In non-repeat regions, the precision 

increased from 8.9% (MuTect2) to 76% for the Phasing prediction model and 85% for the 

Refined genotypes prediction model; in the RepeatMaster region, it increased from 1% 

(MuTect2) to 50% in the Phasing prediction model and 77% in the Refined genotypes 

prediction model in RepeatMasker regions.
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Fig. 2: Comparison among algorithms.
(a) Candidate mosaics (both phasable and non-phasable) in the three individuals with single 

cell data were evaluated (see Methods). (b) Precision and recall are plotted separately for the 

non-repeat and repeat regions (as defined by RepeatMasker) and for each individual.
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Fig. 3: Impact of read depth on sensitivity and detection of mosaic indels.
(a) At each coverage, a different RF model was trained on the phasable sites and predictions 

were made on non-phasable sites. Amplicon-sequencing data were used for validation. 

Although fewer true mosaics were identified at lower coverages, the sensitivity did not drop 

significantly (e.g., at 50X, MosaicForecast was able to detect ~80% of real variants 

identified at 250X). (b) Similar to (a) but using simulated data. The sensitivity was ~70% at 

50X. (c) >70% of mosaic deletions called by MosaicForecast were validated by IonTorrent; 

the ‘hap=3’ sites and non-phasable sites had similar validation rates. (d) similar to (c) but for 

mosaic insertions.
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