Nat Commun

2020
Goldman MJ*, Zhang J*, Fonseca NA*, Cortés-Ciriano I*, Xiang Q, Craft B, Piñeiro-Yáñez E, O'Connor BD, Bazant W, Barrera E, Muñoz-Pomer A, Petryszak R, Füllgrabe A, Al-Shahrour F, Keays M, Haussler D, Weinstein JN, Huber W, Valencia A, Park PJ, Papatheodorou I, Zhu J, Ferretti V, Vazquez M. A user guide for the online exploration and visualization of PCAWG data. Nat Commun 2020;11(1):3400.Abstract
The Pan-Cancer Analysis of Whole Genomes (PCAWG) project generated a vast amount of whole-genome cancer sequencing resource data. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumor types, we provide a user's guide to the five publicly available online data exploration and visualization tools introduced in the PCAWG marker paper. These tools are ICGC Data Portal, UCSC Xena, Chromothripsis Explorer, Expression Atlas, and PCAWG-Scout. We detail use cases and analyses for each tool, show how they incorporate outside resources from the larger genomics ecosystem, and demonstrate how the tools can be used together to understand the biology of cancers more deeply. Together, the tools enable researchers to query the complex genomic PCAWG data dynamically and integrate external information, enabling and enhancing interpretation.
2017
Cortes-Ciriano I*, Lee S*, Park W-Y, Kim T-M**, Park PJ**. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun 2017;8:15180.Abstract
Microsatellite instability (MSI) refers to the hypermutability of short repetitive sequences in the genome caused by impaired DNA mismatch repair. Although MSI has been studied for decades, large amounts of sequencing data now available allows us to examine the molecular fingerprints of MSI in greater detail. Here, we analyse ∼8,000 exomes and ∼1,000 whole genomes of cancer patients across 23 cancer types. Our analysis reveals that the frequency of MSI events is highly variable within and across tumour types. We also identify genes in DNA repair and oncogenic pathways recurrently subject to MSI and uncover non-coding loci that frequently display MSI. Finally, we propose a highly accurate exome-based predictive model for the MSI phenotype. These results advance our understanding of the genomic drivers and consequences of MSI, and our comprehensive catalogue of tumour-type-specific MSI loci will enable panel-based MSI testing to identify patients who are likely to benefit from immunotherapy.
Shin H-T*, Choi Y-L*, Yun JW*, Kim NKD*, Kim S-Y, Jeon HJ, Nam J-Y, Lee C, Ryu D, Kim SC, Park K, Lee E, Bae JS, Son DS, Joung J-G, Lee J, Kim ST, Ahn M-J, Lee S-H, Ahn JS, Lee WY, Oh BY, Park YH, Lee JE, Lee KH, Kim HC, Kim K-M, Im Y-H, Park K, Park PJ**, Park W-Y**. Prevalence and detection of low-allele-fraction variants in clinical cancer samples. Nat Commun 2017;8(1):1377.Abstract
Accurate detection of genomic alterations using high-throughput sequencing is an essential component of precision cancer medicine. We characterize the variant allele fractions (VAFs) of somatic single nucleotide variants and indels across 5095 clinical samples profiled using a custom panel, CancerSCAN. Our results demonstrate that a significant fraction of clinically actionable variants have low VAFs, often due to low tumor purity and treatment-induced mutations. The percentages of mutations under 5% VAF across hotspots in EGFR, KRAS, PIK3CA, and BRAF are 16%, 11%, 12%, and 10%, respectively, with 24% for EGFR T790M and 17% for PIK3CA E545. For clinical relevance, we describe two patients for whom targeted therapy achieved remission despite low VAF mutations. We also characterize the read depths necessary to achieve sensitivity and specificity comparable to current laboratory assays. These results show that capturing low VAF mutations at hotspots by sufficient sequencing coverage and carefully tuned algorithms is imperative for a clinical assay.
Chen J, Fu Y, Day DS, Sun Y, Wang S, Liang X, Gu F, Zhang F, Stevens SM, Zhou P, Li K, Zhang Y, Lin R-Z, Smith LEH, Zhang J, Sun K, Melero-Martin JM, Han Z, Park PJ, Zhang B, Pu WT. VEGF amplifies transcription through ETS1 acetylation to enable angiogenesis. Nat Commun 2017;8(1):383.Abstract
Release of promoter-proximally paused RNA polymerase II (RNAPII) is a recently recognized transcriptional regulatory checkpoint. The biological roles of RNAPII pause release and the mechanisms by which extracellular signals control it are incompletely understood. Here we show that VEGF stimulates RNAPII pause release by stimulating acetylation of ETS1, a master endothelial cell transcriptional regulator. In endothelial cells, ETS1 binds transcribed gene promoters and stimulates their expression by broadly increasing RNAPII pause release. 34 VEGF enhances ETS1 chromatin occupancy and increases ETS1 acetylation, enhancing its binding to BRD4, which recruits the pause release machinery and increases RNAPII pause release. Endothelial cell angiogenic responses in vitro and in vivo require ETS1-mediated transduction of VEGF signaling to release paused RNAPII. Our results define an angiogenic pathway in which VEGF enhances ETS1-BRD4 interaction to broadly promote RNAPII pause release and drive angiogenesis.Promoter proximal RNAPII pausing is a rate-limiting transcriptional mechanism. Chen et al. show that this process is essential in angiogenesis by demonstrating that the endothelial master transcription factor ETS1 promotes global RNAPII pause release, and that this process is governed by VEGF.
Alver BH*, Kim KH*, Lu P, Wang X, Manchester HE, Wang W, Haswell JR, Park PJ**, Roberts CWM**. The SWI/SNF chromatin remodelling complex is required for maintenance of lineage specific enhancers. Nat Commun 2017;8:14648.Abstract

Genes encoding subunits of SWI/SNF (BAF) chromatin remodelling complexes are collectively altered in over 20% of human malignancies, but the mechanisms by which these complexes alter chromatin to modulate transcription and cell fate are poorly understood. Utilizing mouse embryonic fibroblast and cancer cell line models, here we show via ChIP-seq and biochemical assays that SWI/SNF complexes are preferentially targeted to distal lineage specific enhancers and interact with p300 to modulate histone H3 lysine 27 acetylation. We identify a greater requirement for SWI/SNF at typical enhancers than at most super-enhancers and at enhancers in untranscribed regions than in transcribed regions. Our data further demonstrate that SWI/SNF-dependent distal enhancers are essential for controlling expression of genes linked to developmental processes. Our findings thus establish SWI/SNF complexes as regulators of the enhancer landscape and provide insight into the roles of SWI/SNF in cellular fate control.

2016
Mieczkowski J, Cook A, Bowman SK, Mueller B, Alver BH, Kundu S, Deaton AM, Urban JA, Larschan E, Park PJ, Kingston RE, Tolstorukov MY. MNase titration reveals differences between nucleosome occupancy and chromatin accessibility. Nat Commun 2016;7:11485.Abstract

Chromatin accessibility plays a fundamental role in gene regulation. Nucleosome placement, usually measured by quantifying protection of DNA from enzymatic digestion, can regulate accessibility. We introduce a metric that uses micrococcal nuclease (MNase) digestion in a novel manner to measure chromatin accessibility by combining information from several digests of increasing depths. This metric, MACC (MNase accessibility), quantifies the inherent heterogeneity of nucleosome accessibility in which some nucleosomes are seen preferentially at high MNase and some at low MNase. MACC interrogates each genomic locus, measuring both nucleosome location and accessibility in the same assay. MACC can be performed either with or without a histone immunoprecipitation step, and thereby compares histone and non-histone protection. We find that changes in accessibility at enhancers, promoters and other regulatory regions do not correlate with changes in nucleosome occupancy. Moreover, high nucleosome occupancy does not necessarily preclude high accessibility, which reveals novel principles of chromatin regulation.

2014
West JA*, Cook A*, Alver BH, Stadtfeld M, Deaton AM, Hochedlinger K, Park PJ**, Tolstorukov MY**, Kingston RE**. Nucleosomal occupancy changes locally over key regulatory regions during cell differentiation and reprogramming. Nat Commun 2014;5:4719.Abstract

Chromatin structure determines DNA accessibility. We compare nucleosome occupancy in mouse and human embryonic stem cells (ESCs), induced-pluripotent stem cells (iPSCs) and differentiated cell types using MNase-seq. To address variability inherent in this technique, we developed a bioinformatic approach to identify regions of difference (RoD) in nucleosome occupancy between pluripotent and somatic cells. Surprisingly, most chromatin remains unchanged; a majority of rearrangements appear to affect a single nucleosome. RoDs are enriched at genes and regulatory elements, including enhancers associated with pluripotency and differentiation. RoDs co-localize with binding sites of key developmental regulators, including the reprogramming factors Klf4, Oct4/Sox2 and c-Myc. Nucleosomal landscapes in ESC enhancers are extensively altered, exhibiting lower nucleosome occupancy in pluripotent cells than in somatic cells. Most changes are reset during reprogramming. We conclude that changes in nucleosome occupancy are a hallmark of cell differentiation and reprogramming and likely identify regulatory regions essential for these processes.