Dosage compensation

2017
Kang H*, Jung YL*, McElroy KA, Zee BM, Wallace HA, Woolnough JL, Park PJ, Kuroda MI. Bivalent complexes of PRC1 with orthologs of BRD4 and MOZ/MORF target developmental genes in Drosophila. Genes Dev 2017;31(19):1988-2002.Abstract
Regulatory decisions in Drosophila require Polycomb group (PcG) proteins to maintain the silent state and Trithorax group (TrxG) proteins to oppose silencing. Since PcG and TrxG are ubiquitous and lack apparent sequence specificity, a long-standing model is that targeting occurs via protein interactions; for instance, between repressors and PcG proteins. Instead, we found that Pc-repressive complex 1 (PRC1) purifies with coactivators Fs(1)h [female sterile (1) homeotic] and Enok/Br140 during embryogenesis. Fs(1)h is a TrxG member and the ortholog of BRD4, a bromodomain protein that binds to acetylated histones and is a key transcriptional coactivator in mammals. Enok and Br140, another bromodomain protein, are orthologous to subunits of a mammalian MOZ/MORF acetyltransferase complex. Here we confirm PRC1-Br140 and PRC1-Fs(1)h interactions and identify their genomic binding sites. PRC1-Br140 bind developmental genes in fly embryos, with analogous co-occupancy of PRC1 and a Br140 ortholog, BRD1, at bivalent loci in human embryonic stem (ES) cells. We propose that identification of PRC1-Br140 "bivalent complexes" in fly embryos supports and extends the bivalency model posited in mammalian cells, in which the coexistence of H3K4me3 and H3K27me3 at developmental promoters represents a poised transcriptional state. We further speculate that local competition between acetylation and deacetylation may play a critical role in the resolution of bivalent protein complexes during development.
2016
Jung YL*, Kang H*, Park PJ, Kuroda MI. Correspondence of Drosophila Polycomb Group proteins with broad H3K27me3 silent domains. Fly 2016;Abstract

The Polycomb group (PcG) proteins are key conserved regulators of development, initially discovered in Drosophila and now strongly implicated in human disease. Nevertheless, differing silencing properties between the Drosophila and mammalian PcG systems have been observed. While specific DNA targeting sites for PcG proteins called Polycomb response elements (PREs) have been identified only in Drosophila, involvement of non-coding RNAs for PcG targeting has been favored in mammals. Another difference lies in the distribution patterns of PcG proteins. In mouse and human cells, PcG proteins show broad distributions, significantly overlapping with H3K27me3 domains. In contrast, only sharp peaks on PRE regions are observed for most PcG proteins in Drosophila, raising the question of how large domains of H3K27me3, up to many tens of kilobases, are formed and maintained in Drosophila. In this Extra View, we provide evidence that PcG distributions on silent chromatin in Drosophila are considerably broader than previously detected. Using BioTAP-XL, a chromatin crosslinking and tandem affinity purification approach, we find a broad, rather than PRE-limited overlap of PcG proteins with H3K27me3, suggesting a conserved spreading mechanism for PcG in flies and mammals.

2014
Ferrari F, Alekseyenko AA, Park PJ, Kuroda MI. Transcriptional control of a whole chromosome: emerging models for dosage compensation. Nat Struct Mol Biol 2014;21(2):118-25.Abstract

Males and females of many animal species differ in their sex-chromosome karyotype, and this creates imbalances between X-chromosome and autosomal gene products that require compensation. Although distinct molecular mechanisms have evolved in three highly studied systems, they all achieve coordinate regulation of an entire chromosome by differential RNA-polymerase occupancy at X-linked genes. High-throughput genome-wide methods have been pivotal in driving the latest progress in the field. Here we review the emerging models for dosage compensation in mammals, flies and nematodes, with a focus on mechanisms affecting RNA polymerase II activity on the X chromosome.

2013
Soruco MML*, Chery J*, Bishop EP*, Siggers T, Tolstorukov MY, Leydon AR, Sugden AU, Goebel K, Feng J, Xia P, Vedenko A, Bulyk ML, Park PJ, Larschan E. The CLAMP protein links the MSL complex to the X chromosome during Drosophila dosage compensation. Genes Dev 2013;27(14):1551-6.Abstract

The Drosophila male-specific lethal (MSL) dosage compensation complex increases transcript levels on the single male X chromosome to equal the transcript levels in XX females. However, it is not known how the MSL complex is linked to its DNA recognition elements, the critical first step in dosage compensation. Here, we demonstrate that a previously uncharacterized zinc finger protein, CLAMP (chromatin-linked adaptor for MSL proteins), functions as the first link between the MSL complex and the X chromosome. CLAMP directly binds to the MSL complex DNA recognition elements and is required for the recruitment of the MSL complex. The discovery of CLAMP identifies a key factor required for the chromosome-specific targeting of dosage compensation, providing new insights into how subnuclear domains of coordinate gene regulation are formed within metazoan genomes.

Alekseyenko AA, Ellison CE, Gorchakov AA, Zhou Q, Kaiser VB, Toda N, Walton Z, Peng S, Park PJ, Bachtrog D, Kuroda MI. Conservation and de novo acquisition of dosage compensation on newly evolved sex chromosomes in Drosophila. Genes Dev 2013;27(8):853-8.Abstract

Dosage compensation has arisen in response to the evolution of distinct male (XY) and female (XX) karyotypes. In Drosophila melanogaster, the MSL complex increases male X transcription approximately twofold. X-specific targeting is thought to occur through sequence-dependent binding to chromatin entry sites (CESs), followed by spreading in cis to active genes. We tested this model by asking how newly evolving sex chromosome arms in Drosophila miranda acquired dosage compensation. We found evidence for the creation of new CESs, with the analogous sequence and spacing as in D. melanogaster, providing strong support for the spreading model in the establishment of dosage compensation.

Ferrari F*, Jung YL*, Kharchenko PV, Plachetka A, Alekseyenko AA, Kuroda MI, Park PJ. Comment on "Drosophila dosage compensation involves enhanced Pol II recruitment to male X-linked promoters". Science 2013;340(6130):273.Abstract

Conrad et al. (Reports, 10 August 2012, p. 742) reported a doubling of RNA polymerase II (Pol II) occupancy at X-linked promoters to support 5' recruitment as the key mechanism for dosage compensation in Drosophila. However, they employed an erroneous data-processing step, overestimating Pol II differences. Reanalysis of the data fails to support the authors' model for dosage compensation.

Ferrari F, Plachetka A, Alekseyenko AA, Jung YL, Ozsolak F, Kharchenko PV, Park PJ, Kuroda MI. "Jump start and gain" model for dosage compensation in Drosophila based on direct sequencing of nascent transcripts. Cell Rep 2013;5(3):629-36.Abstract

Dosage compensation in Drosophila is mediated by the MSL complex, which increases male X-linked gene expression approximately 2-fold. The MSL complex preferentially binds the bodies of active genes on the male X, depositing H4K16ac with a 3' bias. Two models have been proposed for the influence of the MSL complex on transcription: one based on promoter recruitment of RNA polymerase II (Pol II), and a second featuring enhanced transcriptional elongation. Here, we utilize nascent RNA sequencing to document dosage compensation during transcriptional elongation. We also compare X and autosomes from published data on paused and elongating polymerase in order to assess the role of Pol II recruitment. Our results support a model for differentially regulated elongation, starting with release from 5' pausing and increasing through X-linked gene bodies. Our results highlight facilitated transcriptional elongation as a key mechanism for the coordinated regulation of a diverse set of genes.

2012
Larschan E, Soruco MML, Lee O-K, Peng S, Bishop EP, Chery J, Goebel K, Feng J, Park PJ, Kuroda MI. Identification of chromatin-associated regulators of MSL complex targeting in Drosophila dosage compensation. PLoS Genet 2012;8(7):e1002830.Abstract

Sex chromosome dosage compensation in Drosophila provides a model for understanding how chromatin organization can modulate coordinate gene regulation. Male Drosophila increase the transcript levels of genes on the single male X approximately two-fold to equal the gene expression in females, which have two X-chromosomes. Dosage compensation is mediated by the Male-Specific Lethal (MSL) histone acetyltransferase complex. Five core components of the MSL complex were identified by genetic screens for genes that are specifically required for male viability and are dispensable for females. However, because dosage compensation must interface with the general transcriptional machinery, it is likely that identifying additional regulators that are not strictly male-specific will be key to understanding the process at a mechanistic level. Such regulators would not have been recovered from previous male-specific lethal screening strategies. Therefore, we have performed a cell culture-based, genome-wide RNAi screen to search for factors required for MSL targeting or function. Here we focus on the discovery of proteins that function to promote MSL complex recruitment to "chromatin entry sites," which are proposed to be the initial sites of MSL targeting. We find that components of the NSL (Non-specific lethal) complex, and a previously unstudied zinc-finger protein, facilitate MSL targeting and display a striking enrichment at MSL entry sites. Identification of these factors provides new insight into how MSL complex establishes the specialized hyperactive chromatin required for dosage compensation in Drosophila.

Alekseyenko AA*, Ho JWK*, Peng S*, Gelbart M, Tolstorukov MY, Plachetka A, Kharchenko PV, Jung YL, Gorchakov AA, Larschan E, Gu T, Minoda A, Riddle NC, Schwartz YB, Elgin SCR, Karpen GH, Pirrotta V, Kuroda MI**, Park PJ**. Sequence-specific targeting of dosage compensation in Drosophila favors an active chromatin context. PLoS Genet 2012;8(4):e1002646.Abstract

The Drosophila MSL complex mediates dosage compensation by increasing transcription of the single X chromosome in males approximately two-fold. This is accomplished through recognition of the X chromosome and subsequent acetylation of histone H4K16 on X-linked genes. Initial binding to the X is thought to occur at "entry sites" that contain a consensus sequence motif ("MSL recognition element" or MRE). However, this motif is only ∼2 fold enriched on X, and only a fraction of the motifs on X are initially targeted. Here we ask whether chromatin context could distinguish between utilized and non-utilized copies of the motif, by comparing their relative enrichment for histone modifications and chromosomal proteins mapped in the modENCODE project. Through a comparative analysis of the chromatin features in male S2 cells (which contain MSL complex) and female Kc cells (which lack the complex), we find that the presence of active chromatin modifications, together with an elevated local GC content in the surrounding sequences, has strong predictive value for functional MSL entry sites, independent of MSL binding. We tested these sites for function in Kc cells by RNAi knockdown of Sxl, resulting in induction of MSL complex. We show that ectopic MSL expression in Kc cells leads to H4K16 acetylation around these sites and a relative increase in X chromosome transcription. Collectively, our results support a model in which a pre-existing active chromatin environment, coincident with H3K36me3, contributes to MSL entry site selection. The consequences of MSL targeting of the male X chromosome include increase in nucleosome lability, enrichment for H4K16 acetylation and JIL-1 kinase, and depletion of linker histone H1 on active X-linked genes. Our analysis can serve as a model for identifying chromatin and local sequence features that may contribute to selection of functional protein binding sites in the genome.

2011
Kharchenko PV, Xi R, Park PJ. Evidence for dosage compensation between the X chromosome and autosomes in mammals. Nat Genet 2011;43(12):1167-9; author reply 1171-2.
Larschan E*, Bishop EP*, Kharchenko PV, Core LJ, Lis JT, Park PJ**, Kuroda MI**. X chromosome dosage compensation via enhanced transcriptional elongation in Drosophila. Nature 2011;471(7336):115-8.Abstract

The evolution of sex chromosomes has resulted in numerous species in which females inherit two X chromosomes but males have a single X, thus requiring dosage compensation. MSL (Male-specific lethal) complex increases transcription on the single X chromosome of Drosophila males to equalize expression of X-linked genes between the sexes. The biochemical mechanisms used for dosage compensation must function over a wide dynamic range of transcription levels and differential expression patterns. It has been proposed that the MSL complex regulates transcriptional elongation to control dosage compensation, a model subsequently supported by mapping of the MSL complex and MSL-dependent histone 4 lysine 16 acetylation to the bodies of X-linked genes in males, with a bias towards 3' ends. However, experimental analysis of MSL function at the mechanistic level has been challenging owing to the small magnitude of the chromosome-wide effect and the lack of an in vitro system for biochemical analysis. Here we use global run-on sequencing (GRO-seq) to examine the specific effect of the MSL complex on RNA Polymerase II (RNAP II) on a genome-wide level. Results indicate that the MSL complex enhances transcription by facilitating the progression of RNAP II across the bodies of active X-linked genes. Improving transcriptional output downstream of typical gene-specific controls may explain how dosage compensation can be imposed on the diverse set of genes along an entire chromosome.

2009
Gelbart ME, Larschan E, Peng S, Park PJ, Kuroda MI. Drosophila MSL complex globally acetylates H4K16 on the male X chromosome for dosage compensation. Nat Struct Mol Biol 2009;16(8):825-32.Abstract

The Drosophila melanogaster male-specific lethal (MSL) complex binds the single male X chromosome to upregulate gene expression to equal that from the two female X chromosomes. However, it has been puzzling that approximately 25% of transcribed genes on the X chromosome do not stably recruit MSL complex. Here we find that almost all active genes on the X chromosome are associated with robust H4 Lys16 acetylation (H4K16ac), the histone modification catalyzed by the MSL complex. The distribution of H4K16ac is much broader than that of the MSL complex, and our results favor the idea that chromosome-wide H4K16ac reflects transient association of the MSL complex, occurring through spreading or chromosomal looping. Our results parallel those of localized Polycomb repressive complex and its more broadly distributed chromatin mark, trimethylated histone H3 Lys27 (H3K27me3), suggesting a common principle for the establishment of active and silenced chromatin domains.

Gorchakov AA, Alekseyenko AA, Kharchenko P, Park PJ, Kuroda MI. Long-range spreading of dosage compensation in Drosophila captures transcribed autosomal genes inserted on X. Genes Dev 2009;23(19):2266-71.Abstract

Dosage compensation in Drosophila melanogaster males is achieved via targeting of male-specific lethal (MSL) complex to X-linked genes. This is proposed to involve sequence-specific recognition of the X at approximately 150-300 chromatin entry sites, and subsequent spreading to active genes. Here we ask whether the spreading step requires transcription and is sequence-independent. We find that MSL complex binds, acetylates, and up-regulates autosomal genes inserted on X, but only if transcriptionally active. We conclude that a long-sought specific DNA sequence within X-linked genes is not obligatory for MSL binding. Instead, linkage and transcription play the pivotal roles in MSL targeting irrespective of gene origin and DNA sequence.

2008
Sural TH, Peng S, Li B, Workman JL, Park PJ, Kuroda MI. The MSL3 chromodomain directs a key targeting step for dosage compensation of the Drosophila melanogaster X chromosome. Nat Struct Mol Biol 2008;15(12):1318-25.Abstract

The male-specific lethal (MSL) complex upregulates the single male X chromosome to achieve dosage compensation in Drosophila melanogaster. We have proposed that MSL recognition of specific entry sites on the X is followed by local targeting of active genes marked by histone H3 trimethylation (H3K36me3). Here we analyze the role of the MSL3 chromodomain in the second targeting step. Using ChIP-chip analysis, we find that MSL3 chromodomain mutants retain binding to chromatin entry sites but show a clear disruption in the full pattern of MSL targeting in vivo, consistent with a loss of spreading. Furthermore, when compared to wild type, chromodomain mutants lack preferential affinity for nucleosomes containing H3K36me3 in vitro. Our results support a model in which activating complexes, similarly to their silencing counterparts, use the nucleosomal binding specificity of their respective chromodomains to spread from initiation sites to flanking chromatin.

Alekseyenko AA, Peng S, Larschan E, Gorchakov AA, Lee O-K, Kharchenko P, McGrath SD, Wang CI, Mardis ER, Park PJ, Kuroda MI. A sequence motif within chromatin entry sites directs MSL establishment on the Drosophila X chromosome. Cell 2008;134(4):599-609.Abstract

The Drosophila MSL complex associates with active genes specifically on the male X chromosome to acetylate histone H4 at lysine 16 and increase expression approximately 2-fold. To date, no DNA sequence has been discovered to explain the specificity of MSL binding. We hypothesized that sequence-specific targeting occurs at "chromatin entry sites," but the majority of sites are sequence independent. Here we characterize 150 potential entry sites by ChIP-chip and ChIP-seq and discover a GA-rich MSL recognition element (MRE). The motif is only slightly enriched on the X chromosome ( approximately 2-fold), but this is doubled when considering its preferential location within or 3' to active genes (>4-fold enrichment). When inserted on an autosome, a newly identified site can direct local MSL spreading to flanking active genes. These results provide strong evidence for both sequence-dependent and -independent steps in MSL targeting of dosage compensation to the male X chromosome.

2006
High-resolution ChIP-chip analysis reveals that the Drosophila MSL complex selectively identifies active genes on the male X chromosome.
Alekseyenko AA, Larschan E, Lai WR, Park PJ**, Kuroda MI**. High-resolution ChIP-chip analysis reveals that the Drosophila MSL complex selectively identifies active genes on the male X chromosome. Genes Dev 2006;20(7):848-57.Abstract

X-chromosome dosage compensation in Drosophila requires the male-specific lethal (MSL) complex, which up-regulates gene expression from the single male X chromosome. Here, we define X-chromosome-specific MSL binding at high resolution in two male cell lines and in late-stage embryos. We find that the MSL complex is highly enriched over most expressed genes, with binding biased toward the 3' end of transcription units. The binding patterns are largely similar in the distinct cell types, with approximately 600 genes clearly bound in all three cases. Genes identified as clearly bound in one cell type and not in another indicate that attraction of MSL complex correlates with expression state. Thus, sequence alone is not sufficient to explain MSL targeting. We propose that the MSL complex recognizes most X-linked genes, but only in the context of chromatin factors or modifications indicative of active transcription. Distinguishing expressed genes from the bulk of the genome is likely to be an important function common to many chromatin organizing and modifying activities.

Namekawa SH, Park PJ, Zhang L-F, Shima JE, McCarrey JR, Griswold MD, Lee JT. Postmeiotic sex chromatin in the male germline of mice. Curr Biol 2006;16(7):660-7.Abstract

In mammals, the X and Y chromosomes are subject to meiotic sex chromosome inactivation (MSCI) during prophase I in the male germline, but their status thereafter is currently unclear. An abundance of X-linked spermatogenesis genes has spawned the view that the X must be active . On the other hand, the idea that the imprinted paternal X of the early embryo may be preinactivated by MSCI suggests that silencing may persist longer . To clarify this issue, we establish a comprehensive X-expression profile during mouse spermatogenesis. Here, we discover that the X and Y occupy a novel compartment in the postmeiotic spermatid and adopt a non-Rabl configuration. We demonstrate that this postmeiotic sex chromatin (PMSC) persists throughout spermiogenesis into mature sperm and exhibits epigenetic similarity to the XY body. In the spermatid, 87% of X-linked genes remain suppressed postmeiotically, while autosomes are largely active. We conclude that chromosome-wide X silencing continues from meiosis to the end of spermiogenesis, and we discuss implications for proposed mechanisms of imprinted X-inactivation.