Power Comparisons for Disease Clustering Tests


Kulldorff M, Tango M, Park PJ. Power Comparisons for Disease Clustering Tests. Computational Statistics and Data Analysis 2003;42(4):665-684. Copy at http://www.tinyurl.com/yyst64zj


Many different methods have been proposed to test for geographical disease clustering, and more generally, for spatial clustering of any type of observations while adjusting for an inhomogeneous background population generating the observations. Despite the many proposed test statistics, there has been few formal comparisons conducted. We present a collection of 1,220,000 simulated benchmark data sets generated under 51 different cluster models and the null hypothesis, to be used for power evaluations. We then use these data sets to compare the power of the spatial scan statistic, the maximized excess events test and the nonparametric M statistic. All have good power, the first having an advantage for localized hot-spot type clusters and the second for global clustering where randomly located cases generate other cases close by. By making the simulated data sets publicly available, new tests can easily be compared with previously evaluated tests by analyzing the same benchmark data.

See also: Others, Primary
Last updated on 10/26/2015