Others

Namekawa SH, Park PJ, Zhang L-F, Shima JE, McCarrey JR, Griswold MD, Lee JT. Postmeiotic sex chromatin in the male germline of mice. Curr Biol 2006;16(7):660-7.Abstract

In mammals, the X and Y chromosomes are subject to meiotic sex chromosome inactivation (MSCI) during prophase I in the male germline, but their status thereafter is currently unclear. An abundance of X-linked spermatogenesis genes has spawned the view that the X must be active . On the other hand, the idea that the imprinted paternal X of the early embryo may be preinactivated by MSCI suggests that silencing may persist longer . To clarify this issue, we establish a comprehensive X-expression profile during mouse spermatogenesis. Here, we discover that the X and Y occupy a novel compartment in the postmeiotic spermatid and adopt a non-Rabl configuration. We demonstrate that this postmeiotic sex chromatin (PMSC) persists throughout spermiogenesis into mature sperm and exhibits epigenetic similarity to the XY body. In the spermatid, 87% of X-linked genes remain suppressed postmeiotically, while autosomes are largely active. We conclude that chromosome-wide X silencing continues from meiosis to the end of spermiogenesis, and we discuss implications for proposed mechanisms of imprinted X-inactivation.

Larschan E, Alekseyenko AA, Lai WR, Park PJ, Kuroda MI. MSL complex associates with clusters of actively transcribed genes along the Drosophila male X chromosome. Cold Spring Harb Symp Quant Biol 2006;71:385-94.Abstract

Dosage compensation in Drosophila serves as a model system for understanding the targeting of chromatin-modifying complexes to their sites of action. The MSL (male-specific lethal) complex up-regulates transcription of the single male X chromosome, thereby equalizing levels of transcription of X-linked genes between the sexes. Recruitment of the MSL complex to its binding sites on the male X chromosome requires each of the MSL proteins and at least one of the two large noncoding roX RNAs. To better understand how the MSL complex specifically targets the X chromosome, we have defined the binding using high-resolution genomic tiling arrays. Our results indicate that the MSL complex largely associates with transcribed genes that are present in clusters along the X chromosome. We hypothesize that after initial recruitment of the MSL complex to the X chromosome by unknown mechanisms, nascent transcripts or chromatin marks associated with active transcription attract the MSL complex to its final targets. Defining MSL-complex-binding sites will provide a tool for understanding functions of large noncoding RNAs that have remained elusive.

Yoon SS, Segal NH, Park PJ, Detwiller KY, Fernando NT, Ryeom SW, Brennan MF, Singer S. Angiogenic profile of soft tissue sarcomas based on analysis of circulating factors and microarray gene expression. J Surg Res 2006;135(2):282-90.Abstract

BACKGROUND: Broader understanding of diverse angiogenic pathways in a particular cancer can lead to better utilization of anti-angiogenic therapies. The aim of this study was to develop profiles of angiogenesis-related gene and protein expression for various histologic subtypes of soft tissue sarcomas (STS) growing in different sites. MATERIALS AND METHODS: Plasma levels of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), angiopoietin 2 (Ang2), and leptin were determined in 108 patients with primary STS. Gene expression patterns were analyzed in 38 STS samples and 13 normal tissues using oligonucleotide microarrays. RESULTS: VEGF and bFGF plasma levels were elevated 10-13 fold in STS patients compared to controls. VEGF levels were broadly elevated while bFGF levels were higher in patients with fibrosarcomas and leiomyosarcomas. Ang2 levels correlated with tumor size and were most elevated for tumors located in the trunk, while leptin levels were highest in patients with liposarcomas. Hierarchical clustering of microarray data based on angiogenesis-related gene expression demonstrated that histologic subtypes of STS often shared similar expression patterns, and these patterns were distinctly different from those of normal tissues. Matrix metalloproteinase 2, platelet-derived growth factor receptor, alpha and Notch 4 were among several genes that were up-regulated at least 7-fold in STS. CONCLUSIONS: STS demonstrate significant heterogeneity in their angiogenic profiles based on size, histologic subtype, and location of tumor growth, which may have implications for anti-angiogenic strategies. Comparison of STS to normal tissues reveals a panel of upregulated genes that may be targets for future therapies.

Park PJ, Hou TY. Multiscale Numerical Methods for Singularly Perturbed Convection-Diffusion Equations. International Journal of Computational Methods 2004;1(1):17-65.Abstract

We present an efficient and robust approach in the finite element framework for numerical solutions that exhibit multiscale behavior, with applications to singularly perturbed convection-diffusion problems. The first type of equation we study is the convection-dominated convection-diffusion equation, with periodic or random coefficients; the second type of equation is an elliptic equation with singularities due to discontinuous coefficients and non-smooth boundaries. In both cases, standard methods for purely hyperbolic or elliptic problems perform poorly due to sharp boundary and internal layers in the solution.

We propose a framework in which the finite element basis functions are designed to capture the local small-scale behavior correctly. When the structure of the layers can be determined locally, we apply the multiscale finite element method, in which we solve the corresponding homogeneous equation on each element to capture the small scale features of the differential operator. We demonstrate the effectiveness of this method by computing the enhanced diffusivity scaling for a passive scalar in the cellular flow. We also carry out the asymptotic error analysis for its convergence rate and perform numerical experiments for verification. For a random flow with nonlocal layer structure, we use a variational principle to gain additional information in our attempt to design asymptotic basis functions. We also apply the same framework for elliptic equations with discontinuous coefficients or non-smooth boundaries. In that case, we construct local basis function near singularities using infinite element method in order to resolve extreme singularity. Numerical results on problems with various singularities confirm the efficiency and accuracy of this approach.

Park PJ, Cao YA, Lee SY, Kim J-W, Chang MS, Hart R, Choi S. Current issues for DNA microarrays: platform comparison, double linear amplification, and universal RNA reference. J Biotechnol 2004;112(3):225-45.Abstract

DNA microarray technology has been widely used to simultaneously determine the expression levels of thousands of genes. A variety of approaches have been used, both in the implementation of this technology and in the analysis of the large amount of expression data. However, several practical issues still have not been resolved in a satisfactory manner, and among the most critical is the lack of agreement in the results obtained in different array platforms. In this study, we present a comparison of several microarray platforms [Affymetrix oligonucleotide arrays, custom complementary DNA (cDNA) arrays, and custom oligo arrays printed with oligonucleotides from three different sources] as well as analysis of various methods used for microarray target preparation and the reference design. The results indicate that the pairwise correlations of expression levels between platforms are relative low overall but that the log ratios of the highly expressed genes are strongly correlated, especially between Affymetrix and cDNA arrays. The microarray measurements were compared with quantitative real-time-polymerase chain reaction (QRT-PCR) results for 23 genes, and the varying degrees of agreement for each platform were characterized. We have also developed and tested a double amplification method which allows the use of smaller amounts of starting material. The added round of amplification produced reproducible results as compared to the arrays hybridized with single round amplified targets. Finally, the reliability of using a universal RNA reference for two-channel microarrays was tested and the results suggest that comparisons of multiple experimental conditions using the same control can be accurate.

Park PJ, Kahane IS, Kim JH. Rank-Based Nonlinear Normalization of Oligonucleotide Arrays. Genomics & Informatics 2003;1(2):94-100.Abstract

MOTIVATION: Many have observed a nonlinear relationship between the signal intensity and the transcript abundance in microarray data. The first step in analyzing the data is to normalize it properly, and this should include a correction for the nonlinearity. The commonly used linear normalization schemes do not address this problem. RESULTS: Nonlinearity is present in both cDNA and oligonucleotide arrays, but we concentrate on the latter in this paper. Across a set of chips, we identify those genes whose within-chip ranks are relatively constant compared to other genes of similar intensity. For each gene, we compute the sum of the squares of the differences in its within-chip ranks between every pair of chips as our statistic and we select a small fraction of the genes with the minimal changes in ranks at each intensity level. These genes are most likely to be non-differentially expressed and are subsequently used in the normalization procedure. This method is a generalization of the rank-invariant normalization (Li and Wong, 2001), using all available chips rather than two at a time to gather more information, while using the chip that is least likely to be affected by nonlinear effects as the reference chip. The assumption in our method is that there are at least a small number of nondifferentially expressed genes across the intensity range. The normalized expression values can be substantially different from the unnormalized values and may result in altered down-stream analysis.

Kulldorff M, Tango M, Park PJ. Power Comparisons for Disease Clustering Tests. Computational Statistics and Data Analysis 2003;42(4):665-684.Abstract

Many different methods have been proposed to test for geographical disease clustering, and more generally, for spatial clustering of any type of observations while adjusting for an inhomogeneous background population generating the observations. Despite the many proposed test statistics, there has been few formal comparisons conducted. We present a collection of 1,220,000 simulated benchmark data sets generated under 51 different cluster models and the null hypothesis, to be used for power evaluations. We then use these data sets to compare the power of the spatial scan statistic, the maximized excess events test and the nonparametric M statistic. All have good power, the first having an advantage for localized hot-spot type clusters and the second for global clustering where randomly located cases generate other cases close by. By making the simulated data sets publicly available, new tests can easily be compared with previously evaluated tests by analyzing the same benchmark data.

Kuo WP, Mendez E, Chen C, Whipple ME, Farell G, Agoff N, Park PJ. Functional relationships between gene pairs in oral squamous cell carcinoma. AMIA Annu Symp Proc 2003;:371-5.Abstract

We developed a novel method for the discovery of functional relationships between pairs of genes based on gene expression profiles generated from microarrays. This approach examines all possible pairs of genes and identifies those in which the relationship between the two genes changes in different diseases or conditions. In contrast to previous methods that have focused on differentially expressed genes, this method attempts to find changes in the correlation between genes. These changes may be indicative of the functional relationships related to a disease mechanism. We demonstrate the utility of this approach by applying it to an oral squamous cell carcinoma (OSCC) microarray data set. Our results suggest new directions for future experimental investigations.

Kuo WP, Whipple ME, Jenssen T-K, Todd R, Epstein JB, Ohno-Machado L, Sonis ST, Park PJ. Microarrays and clinical dentistry. J Am Dent Assoc 2003;134(4):456-62.Abstract

BACKGROUND: The Human Genome Project, or HGP, has inspired a great deal of exciting biology recently by enabling the development of new technologies that will be essential for understanding the different types of abnormalities in diseases related to the oral cavity. LITERATURE REVIEWED: The authors review current literature pertaining to the advanced microarray technologies arising from the HGP and how they can contribute to dentistry. This technology has become a standard tool for monitoring activities of genes at both academic and pharmaceutical research institutions. RESULTS: With the availability of the DNA sequences for the entire human genome, attention now is focused on understanding various diseases at the genome level. Deciphering the molecular behavior of genetically encoded proteins is crucial to obtaining a more comprehensive picture of disease processes. Important progress has been made using microarrays, which have been shown to be effective in identifying gene expression patterns and variations that correlate with cellular development, physiology and function. Arrays can be used to classify tissue samples accurately based on molecular profiles and to select candidate genes related to a number of cancers, including oral cancer. This type of oral genetic approach will aid in the understanding of disease progression, thus improving diagnosis and treatment for patients. CLINICAL IMPLICATIONS: Microarrays hold much promise for the analysis of diseases in the oral cavity. As the technology evolves, dentists may see these tools as screening tests for better managing patients' dental care.

Kuo WP, Jenssen T-K, Park PJ, Lingen MW, Hasina R, Ohno-Machado L. Gene expression levels in different stages of progression in oral squamous cell carcinoma. Proc AMIA Symp 2002;:415-9.Abstract

Oral squamous cell carcinoma (OSCC) is one of the most common cancer types worldwide. The prognosis for patients with this disease is generally poor and little is known about its progression. Gene expression studies may provide important insights to the molecular mechanisms of this disease. We analyzed gene expression data from a small panel of patients diagnosed with OSCC. Even with only 13 patient samples we were able to find genes with significant differences in expression levels between normal, dysplasia, and cancer samples. The largest differences in expression were generally found between normal and cancer samples, but significant differences were also found for several genes between dysplasia and the other two sample types. We also represent the significance levels of differentially expressed genes on the chromosome domain. The genes and genetic features we examine are potentially important factors on the molecular level in the progression of OSCC.

A nonparametric scoring algorithm for identifying informative genes from microarray data.
Park PJ, Pagano M, Bonetti M. A nonparametric scoring algorithm for identifying informative genes from microarray data. Pac Symp Biocomput 2001;6:52-63.Abstract

Microarray data routinely contain gene expression levels of thousands of genes. In the context of medical diagnostics, an important problem is to find the genes that are correlated with given phenotypes. These genes may reveal insights to biological processes and may be used to predict the phenotypes of new samples. In most cases, while the gene expression levels are available for a large number of genes, only a small fraction of these genes may be informative in classification with statistical significance. We introduce a nonparametric scoring algorithm that assigns a score to each gene based on samples with known classes. Based on these scores, we can find a small set of genes which are informative of their class, and subsequent analysis can be carried out with this set. This procedure is robust to outliers and different normalization schemes, and immediately reduces the size of the data with little loss of information. We study the properties of this algorithm and apply it to the data set from cancer patients. We quantify the information in a given set of genes by comparing its distribution of the score statistics to a set of distributions generated by permutations that preserve the correlation structure among the genes.

Pages