
Gene Expression Levels In Different Stages of Progression in Oral Squamous
Cell Carcinoma

Winston Patrick Kuo, DDS, MS'4'4, Tor-Kristian Jenssen, MSc,6,, Peter J. Park, PhD2,
Mark W. Lingen, DDS, PhD7, Rifat Hasina, DDS, PhD7, Lucila Ohno-Machado, MD,PhD" 4

'Decision Systems Group, Brigham and Women's Hospital, Harvard Medical School
2Children's Hospital Informatics Program, Harvard Medical School

3Harvard School of Dental Medicine
4Division of Health Sciences and Technology, Massachusetts Institute of Technology

5Department of Computer and Information Science, Norwegian University of Science and
Technology

6Department of Tumor Biology, The Norwegian Radium Hospital
7Head and Neck Cancer Research Program, Cardinal Bernardin Cancer Center,

Loyola University School of Medicine

ABSTRACT

Oral squamous cell carcinoma (OSCC) is one of the
most common cancer types worldwide. The
prognosis for patients with this disease is generally
poor and little is known about its progression. Gene
expression studies may provide important insights to
the molecular mechanisms of this disease. We
analyzed gene expression data from a small panel of
patients diagnosed with OSCC. Even with only 13
patient samples we were able to find genes with
significant differences in expression levels between
normal, dysplasia, and cancer samples. The largest
differences in expression were generally found
between normal and cancer samples, but significant
differences were also found for several genes
between dysplasia and the other two sample types.
We also represent the significance levels of
differentially expressed genes on the chromosome
domain. The genes and genetic features we examine
are potentially important factors on the molecular
level in the progression ofOSCC.

INTRODUCTION

Oral squamous cell carcinoma (OSCC) represents
approximately 3% of all cancers [1]. Pathologists and
clinicians in charge of the management of OSCC are
facing two major problems, namely the heterogeneity
of the disease and the lack of conventional
histological and clinical features that reliably predict
the progression of the disease. The prognosis of
OSCC patients is still poor, as little is known about

the molecular mechanisms responsible for this
malignancy. New prognostic and predictive factors
are desired to allow for individualized treatment
based on the characteristics of each patient.

Recent advances in technology have made it possible
to develop molecular portraits of diseases on a global
scale. Combined with laser-capture-microdissection
(LCM) [2], DNA microarrays [3] allow for accurate
measurement of the mRNA expression levels of
thousands of genes simultaneously, and several
studies using complementary DNA (cDNA)
microarrays have already identified important genes
comparing normal and head and neck squamous cell
carcinomas [4, 5]. This technology should be equally
useful for a comprehensive molecular
characterization of OSCC. In particular,
comprehensive analyses of gene expression can be
used for classification of different stages of this
disease, such as discrimination between normal,
dysplasia, and malignant cells.

Incorporating microarray data with other types of
genetic features is also an important task. For
example, malignant tumors have been shown to
contain chromosomal aberrations, and the pattern of
abnormalities varies greatly among malignancies.
However, as a rule, the total number of chromosomal
aberrations is roughly proportional to the risk of
metastasis [6]. Genetic aberrations in OSCC have
been investigated as markers of disease progression
including amplifications of 3q, 8q, 9q, 20q, 5p, 7p,
and 1 ql3 [7].
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Here we report the use of cDNA microarray filters to
investigate differentially expressed genes through
OSCC progression. After identifying those genes and
expressed sequence tags (ESTs) that best
discriminate between normal, dysplasia, and cancer
samples, we map them to their respective
chromosomal positions, and plot the p-values
representing their significance in differentiating the
groups. Our results demonstrate that gene expression
profiling combined with such genetic features as
chromosomal locations can be used to provide
valuable information concerning the disease.

MATERIALS AND METHODS

The samples for analysis were classified according to
histology from biopsy specimens into normal,
dysplasia, and cancer. A total of 13 samples were
used for this study. Normal (5 samples), dysplasia (3
samples), and cancer (5 samples) cells were
specifically targeted and picked up from snap-frozen
surgical tissue using LCM. Total RNA was extracted,
amplified and reverse-transcribed into anti-sense
RNA, labeled with p33 and hybridized on
complementary DNA microarrays filters containing
4,132 genes.

To determine those genes that were differentially
expressed in the three groups, we used the Kruskal-
Wallis test. This is a nonparametric method for
testing the null hypothesis that the mean is the same
across all the groups. VW chose a nonparametric
approach since estimating the within group variances
with such a small number of samples is unreliable
and since the normality (or log-normality)
assumption is questionable. Once we find that a gene
is differentially expressed across three groups, we
also used the Wilcoxon rank-sum test for pairwise
comparisons. (The Kruskal-Wallis test reduces to the
Wilcoxon test for two groups) With this
nonparametric approach, there may be some loss of
information, but we gain a valid testing procedure.
We note that due to the small sample size, the p-value
for a gene cannot be too low, even when it
discriminates the groups perfectly. As identifiers for
the genes, we used gene symbols or GenBank
accession numbers when the former was not
available.

Chromosome positions for chromosome-mapped
ESTs from the Human Genome Working Draft
(August 6, 2001 freeze; http://genome.ucsc.edu) were
downloaded. The p-values from the Kruskal-Wallis
test were obtained and mapped onto their respective

positions on all 23 chromosomes. Chromosome
positions for all mapped cytobands from the same
version of the Human Genome Draft were also
downloaded. Plots with chromosome-mapped
negative logarithms (base 10) of p-values and
cytobands were created in MATLAB (The Math
Works, Natick, MA).

The negative logarithms of the p-values of all the
scored genes were entered into a literature cluster
analysis program called PubGene
(www.pubgene.org), developed by Jenssen at al. [8].
The software returned clusters of genes with
prognostic value, pointing to possible pathways
(consisting of co-regulated genes) associated with
OSCC.

RESULTS

The results of the Kruskal-Wallis tests were obtained
and ranked. This procedure identified the genes with
most significant differences in expression when all
three groups were considered. The vast majority of
the genes investigated showed lower expression
levels in normal samples than in cancer samples,
possibly reflecting a composition of the gene set
biased towards oncogenes. Expression levels in
dysplasia were generally intermediate and mostly
closer to expression in normal samples than cancer
samples. Log-transformedp-values from the Kruskal-
Wallis tests were subsequently mapped to
chromosomal positions (Figure 1). We have
examined all of the chronDsomes but we only
showed one as an example. In the plot of
chromosome 1, cytoband region 1q21 -q23.2 appears
to be a possible amplified region because many genes
and ESTs were significantly up-regulated in cancer.

Table 1. List of significant genes found in Chromosome 1.
(p <0.05)

Accession
number

AA488073
AA002086
AA479058
AA678021
AA485748
AA458779
N95761

AA424344
AA150416

Gene
name

MUCI
CDlC
THPO
SNRPE
FMOD
HMGCL
FUCA1
UROD
TNFR2

Cytoband
location
1q21

1 q21-q23
1q31.1
1q32
1q32.1

1 pter-p33
1p34

1p34
1 p36.3-p36.2

416

-



_.mO

.I

kJ4 Pe. i p.*S1
a sm 1~'I

Mai a

at0*4 mrt
I

ga

be pevrpo.Wn

qotr .- ; . m,-Off 61a ton3MI am!
~~W-2VWe__ta w' a"

g" 2,, i , 3_ , _

a
.

A I

a as
xie0

Figure 1. Chromosome plot of chromosome I (log-transformed p-values from the Kruskal-Wallis test). Each bar is located at the
start of the EST used to detect expression of a given gene. The height of the bar is proportional to the log-transfomned p-value. At
the bottom cytobands (to-scale) are shown. Cytobands with positive staining are shown in red and bands with negative staining are
colored in black.

For example, MUCI has been reported to be
associated with OSCC. Other significant up-regulated
known genes on chromosome 1 are listed in Table 1.

As the first part of investigating changes in
expression levels that could be related to cancer
progression, we compared the normal and dysplasia
groups. We identified seven genes and ESTs from the
normal and dysplasia comparison that were
significant in the rank-sum test p < 0.05). All of
these genes displayed higher expression in dysplasia
than normal (Table 2). DDB2 [9], CYP21 [10] and
CPS1 [11] have been reported to be associated with
cancer.

Table 2. Normal and Dysplasia sample comparisons. Ust of
significant ESTs and genes using the Rank-Sum Test
DDB2, CYP21 and CPS1 have been associated with cancer
(p < 0.05).

Accession number
AA469965
AA400187
H77597

AA410404
T58430
T61078
H88329

Gene name

DDB2
CYP21
cpSI

Table 3 lists the ESTs and genes from the dysplasia
and cancer comparison where we found gene
expression levels higher in cancer than dysplasia:
significant according to the rank-sum test (p < 0.05).
Two of the five genes listed, RPL35A [12] and PAX6
[13], have been reported to be associated with cancer.

Table 3. Dysplasia and cancer sample comparisons. List of
significant ESTs and genes using the Rank-Sum Test. Of the
five known genes, RPL35A and PAX6 have been associated
with cancer (p < 0.05).

Accession number
AA878899
AA634360
AA888182
AA863383
AA400893
AA873351
H73914

AA481 543
R95962

Gene name
GLBI

RPS4X

RPL35A

PEPD
PAX6

The normal and cancer comparison had 365 ESTs
and 199 known genes whose expressions were
significanty up-regulated in cancer samples. We
used PubGene to determine whether significant genes
co-occurred in the literature. PubGene is a gene-to-
gene co-citation network for the 13,712 named
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human genes created by automated analysis of titles
and abstracts in over 10 million MEDLINE records.
In PubGene, the associations between genes are
annotated by linking genes to terms from the medical
subject heading (MeSH) index and terms from the
gene ontology (GO) database. We examined the
biomedical literature to evaluate the extent of
association to OSCC and other cancers previously
reported for the known genes using PubGene. We
found that 36 percent of the 199 genes in the list had
been previously described in the literature as
associated with OSCC, while an additional 42
percent has been associated with other types of
cancer.

The PubGene analysis of "normal and dysplasia"
comparison is shown in Figure 2. The high-scoring
gene clusters consist of four members: two genes
involved in DNA repair (DDB2 and DDB1); a tumor
suppressor gene (TP53); and uteroglobin (UGB)
which was found to play a role in cancer [14]. The
literature gene network confirms the relationship of
DDB2 to DDB1 and TP53 as well as TTD and
ERCC2 and ERCC3, all of which are involved in
cancer.

Fiur 2. PuGn anlyi of 'nra an dysp. asi.a

coprso.Te to-crnetok from serh by gene

(a)

values contained four genes shown in (a). Literature gene
network is shown in (b).

DISCUSSION

We have used a statistical approach to identify genes
from the three sample types representing the
progression of OSCC. We found that most of the
genes were generally higher in cancer than in the
other sample types. For example, DDB2, a damage
specific DNA protein, is involved in DNA repair
mechanism and is apparently compromised in certain
diseases [9]. We suspect that DDB2 is associated
with dysplasia and it can be a possible indicator for
OSCC. Other genes identified in this study can also
be possible prognostic indicators to the development
ofOSCC.

Based on the PubGene analysis, DDB2 is a subunit of
DDB1 and P53. It has been reported that primary
targets of P53 include genes involved in DNA repair
(e.g. BTG2, DDB2) [9]. From the statistical analysis,
DDB2 was significantly up-regulated in dysplasia
compared to normal and in cancer compared to
dysplasia. In contrast, DDB1 was significantly up-
regulated only in cancer and dysplasia comparison.
From this, we can speculate that DDB2 may be part
of the P53 pathway.

Plotting significant genes on the chromosomes was
useful for visualization of possible amplified regions.
In chromosome 1, for example, the region near
MUCI has low p-values that may be associated with
a possible amplified area. This area, lq21-q23.1 has
been associated with a gene that has been reported to
be a possible diagnostic marker for prediction of
premalignant and malignant lesions in the oral cavity
[15].

Constructing a signaling pathway through the
identification of the specific genes and the sequence
in which they appear in the transformation of a
normal to cancer can be beneficial in understanding
OSCC. The results from this study are preliminary
and further studies are necessary, but we believe
these findings are promising. Future work will
include more tissue samples and biological validation
by RT-PCR.
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