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Abstract

The Drosophila MSL complex mediates dosage compensation by increasing transcription of the single X chromosome in
males approximately two-fold. This is accomplished through recognition of the X chromosome and subsequent acetylation
of histone H4K16 on X-linked genes. Initial binding to the X is thought to occur at ‘‘entry sites’’ that contain a consensus
sequence motif (‘‘MSL recognition element’’ or MRE). However, this motif is only ,2 fold enriched on X, and only a fraction
of the motifs on X are initially targeted. Here we ask whether chromatin context could distinguish between utilized and
non-utilized copies of the motif, by comparing their relative enrichment for histone modifications and chromosomal
proteins mapped in the modENCODE project. Through a comparative analysis of the chromatin features in male S2 cells
(which contain MSL complex) and female Kc cells (which lack the complex), we find that the presence of active chromatin
modifications, together with an elevated local GC content in the surrounding sequences, has strong predictive value for
functional MSL entry sites, independent of MSL binding. We tested these sites for function in Kc cells by RNAi knockdown of
Sxl, resulting in induction of MSL complex. We show that ectopic MSL expression in Kc cells leads to H4K16 acetylation
around these sites and a relative increase in X chromosome transcription. Collectively, our results support a model in which
a pre-existing active chromatin environment, coincident with H3K36me3, contributes to MSL entry site selection. The
consequences of MSL targeting of the male X chromosome include increase in nucleosome lability, enrichment for H4K16
acetylation and JIL-1 kinase, and depletion of linker histone H1 on active X-linked genes. Our analysis can serve as a model
for identifying chromatin and local sequence features that may contribute to selection of functional protein binding sites in
the genome.
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Introduction

In Drosophila, Male Specific Lethal (MSL) complex binds to the

single male X chromosome to increase transcription approxi-

mately two-fold, in order to equalize the output of both female X

chromosomes [2–4]. We have proposed that MSL complex locates

its target binding sites using a two-step mechanism [5]. First, the

complex distinguishes X from autosomes by binding a subset of

200–300 sites on X known as ‘‘chromatin entry sites’’ (CES) [6–8]

or ‘‘high affinity sites’’ (HAS) [9,10]. Recognition of CES is a

sequence-dependent step, as these sites share a GA-rich motif

[8,10] designated the ‘‘MSL recognition element’’, or MRE,

whose function has been demonstrated by site-directed mutagen-

esis [8]. In contrast, the second targeting step lacks a consensus

sequence but is strongly linked to transcription [11–14], with the

complex locating active genes on the same chromosome [15].

CES were first identified in msl3 mutant embryos, in which the

initial, sequence-specific step of MSL binding occurs but the

second, sequence-independent step does not [7,8]. The MRE

sequence motif was discovered based on the first 150 mapped CES

(Figure 1A). CES function was tested in transgenes for the ability

to attract MSL complex to autosomal insertion sites, and found to
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be dependent upon the intact MRE motif [8]. 150 is likely an

underestimate of the total number of CES and functional MREs

on X, as subsequent analysis of high occupancy MSL binding sites

in wild type cells has revealed 309 peaks containing 379 MREs [8].

However, a conservative set of 150 should be sufficient to test for

predictive features.

The MRE motif is only modestly enriched on the X

chromosome compared to the autosomes. At a stringency where

137 of 150 CES contain the consensus motif (p-value of 1025),

there is a 1.8 fold higher MRE density on X compared to

autosomes (on average 1 per 6 Kb on X, and 1 per 11 Kb on

autosomes; Figure S1A), [8]. These average densities correspond

to 12,481 total MREs in the genome, of which only 1 in 91

correspond to the set of CES considered here. Even if we restrict

our attention to chromosome X, only 1 in 28 MREs maps to the

CES set. Therefore, a key question is how functional MREs within

CES are somehow recognized amongst a vast excess of un-utilized

sites. That the MSL complex targets only a fraction of potential

MRE sites for initial binding is a characteristic it shares with many

sequence-specific binding factors whose predicted target motifs are

often in vast excess to the sites actually utilized [16,17]. Here, we

investigate whether chromatin features influence binding site

selection, using the MSL complex and a large compendium of

genome-wide ChIP-chip profiles generated by the NHGRI

modENCODE project as a model [18]. Our results support a

model in which active chromatin composition and intrinsic GC

content help define the initial binding sites of the MSL complex.

Results

An active chromatin context is predictive of functional
MREs

To search for chromatin features that can distinguish functional

MREs from those that do not recruit MSL complex (i.e., non-

functional MREs), we defined five classes of MREs in the

Drosophila genome. The first set consists of 137 MREs that were

experimentally defined by MSL complex binding [8], as discussed

above. We called this set ‘‘Functional MREs’’. The remaining four

sets of 150 sequences each consist of the MREs that have the best

consensus motif matches on either X or a control autosomal arm

(2L) (‘‘Best on X’’ and ‘‘Best on 2L’’ respectively), and 150 MREs

chosen at random from either X or 2L (‘‘Random X’’ and

‘‘Random 2L’’ respectively). We note that, in general, functional

MREs display a broad range of motif binding specificity rather

than being the best matches to the MRE consensus motif (Figure

S1B). The result of this analysis is not affected by the choice of

chromosome arm or the choice of random MREs (data not

shown).

In each of the five classes of MREs, their locations are

distributed along the length of the chromosome arm with no

obvious clustering (Figure S1C). Within each set of sequences, we

calculated the average profiles of various chromatin marks

mapped by the modENCODE Drosophila Chromatin Consor-

tium using genome-wide ChIP-chip. The average ChIP enrich-

ment profiles for 10 kb regions centered around the motif in two

male cell lines (S2 and BG3) are shown in Figure 1B–1C. We

found that a number of chromatin marks associated with active

transcription are strikingly enriched near functional MREs in

CES, and not in the best or random MRE classes on X or

autosomes. These include RNA pol II, H3K36me3, H3K9ac, and

H2B-ubiquitin. In addition, functional sites are relatively depleted

for core histone H4 and linker histone H1. Consistent binding of

the sequence-dependent GAGA factor [19] across categories

serves as an important control to demonstrate that GA-rich

elements are broadly represented in each group of MREs. Another

notable feature of these profiles is the enhancement of H4K16ac

on the X chromosome as a whole [20–22], with additional

enrichment of H4K16ac on true CES (Figure 1B–1C). Since

enrichment of H4K16 acetylation is a known consequence of MSL

targeting, we proceeded to ask whether the observed difference in

chromatin context for other chromatin marks at CES might

simply be a consequence of MSL binding rather than a

contributing factor.

Predictive chromatin marks are independent of MSL
binding

To test whether the observed difference in chromatin context at

CES is a consequence of MSL binding rather than a contributing

factor, we examined the profiles of the same subset of chromatin

marks in female Kc cells. Interestingly, we found that the set of

marks that correlates with MRE function in male S2 cells were

likewise informative in female Kc cells, in the absence of MSL

complex (Figure 1D). The enrichment of H4K16 acetylation on

the male X is notably less pronounced in female Kc cells lacking

MSL complex. Still, this mark is enriched over functional MREs,

consistent with previous observations of MSL-independent

H4K16 acetylation at active genes on all chromosomes in males

and females [21,22]. Most strikingly, H3K36me3 and JIL-1, are

enriched in functional MREs in both male and female cells,

suggesting that these marks are independent of MSL binding at

CES.

We also examined MREs for intrinsic sequence composition to

search for correlations with function (Figure 1E). Surprisingly, we

found a marked elevation of GC content in the 10 Kb flanking

region surrounding functional MREs, coupled with a decrease in

GC content in the 1 Kb nearest the functional MREs. Taken

together, our results support a model in which local sequence

characteristics and the active chromatin context of functional

MREs may facilitate their initial selection.

Next, we wanted to directly test the potential of MREs in an

active chromatin environment in females to recruit MSL complex.

The key female sex determination protein, SXL, represses dosage

compensation by inhibiting MSL2 translation [23,24]. Loss of

SXL results in the expression, stabilization, and targeting of the

Author Summary

The genomes of complex organisms encompass hundreds
of millions of base pairs of DNA, and regulatory molecules
must distinguish specific targets within this vast landscape.
In general, regulatory factors find target genes through
sequence-specific interactions with the underlying DNA.
However, sequence-specific factors typically bind only a
fraction of the candidate genomic regions containing their
specific target sequence motif. Here we identify potential
roles for chromatin environment and flanking sequence
composition in helping regulatory factors find their
appropriate binding sites, using targeting of the Drosoph-
ila dosage compensation complex as a model. The initial
stage of dosage compensation involves binding of the
Male Specific Lethal (MSL) complex to a sequence motif
called the MSL recognition element [1]. Using data from a
large chromatin mapping effort (the modENCODE project),
we successfully identify an active chromatin environment
as predictive of selective MRE binding by the MSL
complex. Our study provides a framework for using
genome-wide datasets to analyze and predict functional
protein–DNA binding site selection.

Epigenetic Targeting of Dosage Compensation
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MSL complex in female cells [25]. Therefore, we depleted SXL by

RNA interference (RNAi) in Kc cells [26]. Upon treatment, we

observed a general, MSL2-dependent increase in transcription

from the female X chromosomes, consistent with a partial

induction of dosage compensation (Figure 2A–2B). The increase

in X-linked gene expression did not reach the maximum

theoretical amount for perfect compensation (log22 = 1), consistent

with observations that MSL-independent ploidy effects can also

contribute to overall compensation [27,28].

The induction of MSL complex in Kc cells allowed us to ask

whether ectopic MSL complex in female cells recognized the

same functional subset of MREs on X as in male cells, by

examining the distribution of H4K16 acetylation as a mark of

MSL function. We found that Sxl RNAi induces high levels of

this modification preferentially at the same MREs that are

functional in males (Figure 2C), supporting the idea that MSL

complex recognizes MREs in an active chromatin context. Our

findings with MSL complex parallel recent results for the heat

shock transcription factor HSF [29], suggesting that sequence-

specific DNA binding factors may generally utilize chromatin

context to facilitate selective targeting within a complex euka-

ryotic genome.

Figure 1. Active chromatin context and elevated GC content are associated with functional MSL recognition elements (MREs) on
the X chromosome, independent of MSL binding. (A) The sequence motif for the MRE. (B–D) The average enrichment of various chromatin
modifications or chromatin-binding proteins around (+/25 kb) the functional and non-functional MREs is visualized using a heat map in each of three
Drosophila cell lines: S2 in panel B; BG3 in panel C; and Kc in panel D. (E) A heat map showing the average GC content around each class of MREs. The
data were obtained from genome-wide ChIP-chip profiles generated as part of the modENCODE project. Many active marks are broadly enriched
around functional MREs in both male and female cell lines, suggesting that active chromatin is strongly associated with functional MREs independent
of MSL binding. See also Figures S1 and S2.
doi:10.1371/journal.pgen.1002646.g001
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Identification of the best chromatin marks for prediction
of functional MREs

Since specific chromatin marks are enriched near MREs that

are utilized compared with those that are not, we next asked

whether these marks provide enough information, either individ-

ually or in combination, to explain the MSL entry site binding

pattern on X. To address this question, we systematically

investigated the predictive power of the chromatin marks for

functional MREs in Kc cells, which have the potential for MSL

targeting but do not express the MSL complex. We asked whether

we could build a simple prediction model based on individual or a

combinations of chromatin features in Kc cells that would

distinguish functional MREs from non-functional ones in male

S2 and BG3 cells, where MSL complex is expressed.

We first tested whether individual chromatin features could

discriminate functional MREs from non-functional ones. A

chromatin feature is defined by its average ChIP enrichment

within the 10 kb region surrounding each MRE. In addition, we

defined two features to represent the average GC content near the

MRE (center 1 kb) or in its flanking regions (10 kb excluding the

center 1 kb). To test whether individual or combinations of

features could distinguish the functional MREs from the non-

functional ones, we used support vector machine (SVM), a

classification algorithm demonstrated to have excellent perfor-

mance in a wide range of problems [30,31]. Briefly, the set of

ChIP enrichment at each MRE is treated as a feature vector of

that MRE. Given a set of training samples, SVM calculates an

optimal hyperplane that can separate non-functional MREs from

functional MREs in the feature space. Here we used a SVM with a

radial basis kernel that is implemented in the R package e1071

(See Methods and Materials). To accurately estimate predictive

power, and to avoid the potential bias due to using the same set of

CES and non-functional MRE genomic locations in S2, BG3 and

Kc cell lines, we evaluated the predictive power of a feature using

10-fold cross-validation. In this scheme, we withhold a random

10% of the MREs, build a model based on the remaining 90%,

measure how well the model predicted the functionality of the

withheld MREs, and repeat this process multiple times to obtain

the average performance. The cross-validation result is presented

using a standard measure called the Area Under Curve (AUC) of

Receiver Operating Characteristic [32] curve. The ROC curve

(examples are shown in Figure 3C) quantifies the sensitivity and

specificity of classification by estimating true and false positive

rates over all threshold values, and the AUC summarizes the curve

with a single number. A random predictor receives an AUC of 0.5,

and a perfect predictor achieves an AUC of 1 [32].

By comparing the AUC of each individual chromatin feature in

Kc, S2 and BG3 cells, we observed that many active chromatin

marks could distinguish functional from non-functional MREs

(Figure 3A). Among all the features tested, H3K36me3 was the

best predictor in all three cell lines (mean AUC of 0.884), followed

by JIL-1 (mean AUC of 0.864). Interestingly, we had previously

speculated that H3K36me3 might be involved, based on MSL

affinity for this mark in active genes [8,12,14]. Since H3K36me3

Figure 2. Ectopic upregulation of MSL2 by Sxl RNAi treatment induces dosage compensation of X-linked genes in female Kc cells by
preferentially targeting MREs in an active chromatin context. (A) Distribution of gene expression ratios after Sxl knockdown in X
chromosome and autosomes compared to control. The y-axis (density) represents the scaled proportion of the number of genes for a given log2
expression ratio (x-axis). Repression of Sxl leads to ectopic expression of MSL2, which results in dosage compensation of the X chromosome. (B)
Distribution of gene expression ratios after Sxl and MSL2 double knockdown for X chromosome and autosomes compared to control. In the absence
of functional MSL2, no dosage compensation is observed. (C) A heat map showing the average enrichment of H4K16 acetylation (H4K16ac) around
(+/25 kb) the functional and non-functional MREs in control (GFP) and after two independent Sxl RNAi knockdowns. The gene expression data in
panels A and B are based on the same cells as replicate 1 in the heat map.
doi:10.1371/journal.pgen.1002646.g002
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and JIL-1 are enriched in Kc cells at predicted CES even without

MSL binding, they could prime functional MREs for sequence-

specific MSL binding, or be coincident with true causative factors.

Nearly all putative CES in Kc cells are embedded in a chromatin

environment enriched for H3K36me3 (Figure 3B), however, we

previously determined that when H3K36me3 is depleted, there are

still enough features for the MSL complex to distinguish MREs [12].

Since no single feature may be sufficient to drive MSL recognition,

we next asked whether combinations of marks and local sequence

composition might further improve predictive power for CES.

Predictions utilizing combinations of chromatin marks
and local GC content

On average, the GC content of CES is similar to the random or

best MREs in the 1 Kb of sequence immediately surrounding the

motif, but the GC content consistently rises in flanking sequences,

to produce a distinctive average profile (Figure 1E). Examination

of the individual heatmaps confirms that this is a broadly

consistent characteristic of CES (Figure S2). We found that the

relative GC content in D. melanogaster is elevated in genes

compared to intergenic sequence (44% vs. 41%) [33] so it is not

surprising to see this characteristic in conjunction with the active

gene clusters where CES are found. However, the distinctive shape

of the profile, with low GC immediately surrounding the CES, is

unexpected and not seen with autosomal MREs, even when

associated with H3K36me3 and thus presumably analogous active

gene clusters (Figure S2). The significance of this intrinsic feature

clearly merits future experimental analysis. However, GC profile

alone does not appear to provide enough information to predict

functional MREs with high accuracy (Figure 3C).

To search for combinatorial marks that might distinguish

functional MREs, we compared the predictive power of the SVM

generated using every possible combination of features in our

dataset (Figure S3A–S3B). We found that the best individual

features (H3K36me3 and JIL-1) performed very well, similarly to

the best combinations of features when SVM trained using Kc

data, and tested on S2 or BG3 data (Figure 3C). There are many

combinations of features that predict functional MREs with high

accuracy. In general, the best performing combinations included

the following: (1) H3K36me3 or JIL-1; (2) H2B-ubiq or H3K9ac;

(3) a core histone; and (4) GC content (Figure S3A–S3B). The

excellent performance of this combination is consistent with the

identification of these factors as core features by feature correlation

analysis (Figure S3C).

The cross-validation results are summarized in the ROC plots

in Figure 3C and Figure S3D. Although not perfect, the best

combination separates the functional and non-functional MREs

with high accuracy (mean AUC = 0.931), as visualized in principal

component space in Figure 3D. Each MRE can be considered as a

point in multi-dimensions, with each axis as the enrichment level

for a mark; to show the data in two-dimensions, we define new

axes, called principal components, which are combinations of the

original variables satisfying certain desirable properties. We can

indeed observe a good separation of the functional from non-

functional MREs in this view (Figure 3D).

Genome-wide prediction of functional MREs
The analyses presented so far focused on only a subset of clearly

functional and non-functional MREs. This allowed us to

effectively identify chromatin features that can distinguish

functional MREs from non-functional ones, and to build a

predictive SVM model for functional MREs. Here we extend our

analysis to test whether our model could accurately select

additional functional MREs genome-wide. We trained an SVM

model with Kc cell chromatin features and then tested its ability to

eliminate non-functional MREs on autosomes and chromosome X

using S2 data. The SVM algorithm selects the decision threshold

that optimally separates functional from non-functional MREs, as

confirmed in Figure S3E, and the overall AUC of this prediction is

about 0.84 (Figure S3F). We specifically tested different individual

and combinations of features. Using the best combination of

features, our SVM model can eliminate over 75% of candidate

MRE sites on X, and ,85% of candidate sites on autosomes,

while retaining almost all of the functional MREs on the X

chromosome (up to 94%) (Table S2). Almost 10,000 non-

functional sites are eliminated using our model, with retention of

approximately 1600 MREs genome-wide. Approximately half

(763) of those remaining MREs map to the X chromosome but are

not included in the conservative set of 137 CES.

We suspect that the large number of remaining MREs on the X

chromosome indicates that there may be more true MSL binding

sites than the set of 137 CES we used in this study. Therefore, we

asked how many of these additional 763 MREs overlap with

previously mapped MSL binding sites identified by MSL3 ChIP-

seq [8]. Of the 763 SVM-predicted functional MREs on X, 503

overlapped with an MSL binding site (Figure 3E). This suggests

that the actual false positive rate on the X chromosome may be as

low as 260/3343 = 7.8%. This is slightly lower than the false

positive rates for the autosomes (895/8144 = 11%) (Table S2),

likely due to the fact that even though most strong peaks identified

in the MSL3 ChIP-seq data with stringent criteria are CES [8],

some may be sites to which MSL complex spreads.

Increased lability of nucleosomes at chromatin entry sites
correlates with MSL binding

In addition to enrichment for marks associated with active

genes, we also saw relative depletion of histone H1 over functional

MREs (Figure 1), and, from previous work, depletion of H3 and

thus presumably nucleosomes themselves [8,10]. Therefore, we

examined modENCODE data from S2 and Kc cells on the release

of nucleosomes following salt extraction to determine whether

functional MREs are packaged into more labile chromatin when

compared to non-utilized MREs [34]. We found that in male S2

cells functional MREs are depleted for histones in general, and

Figure 3. Chromatin context is predictive of functional MREs. (A) A bar plot showing the performance of individual chromatin features for
distinguishing functional and non-functional MREs using various training and testing schemes. The best features are H3K36me3 and JIL1. H4K16ac
shows strong association with the presence of functional MREs in both male cell lines but much weaker association in female Kc cells, supporting the
known role of H4K16ac as a key consequence of MSL binding. (B) A heat map showing the distribution of the H3K36me3 mark around individual
functional and non-functional MREs on the X chromosome in female Kc cells, ordered by the level of enrichment at the MREs. (C) Sensitivity (y-axis)
and 1 - specificity (x-axis) of prediction using a support vector machine (SVM) are shown using a receiver operator characteristic (ROC) curve. This
indicates that chromatin features in female Kc cells can be used to predict the identity of functional MREs in male S2 cells with high sensitivity (high
true positive rate) and specificity (low false positive rate). (D) A principal component projection of the functional and non-functional MREs based on
the best chromatin features in S2 cells, showing that the two MREs groups can be well-separated. See also Figure S3. (E) A genome browser view that
shows the overlap of SVM-predicted functional MREs and MSL binding sites identified by an independent MSL3 ChIP-seq analysis.
doi:10.1371/journal.pgen.1002646.g003
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enriched for nucleosomes that are extracted in low salt or remain

in the pellet after high salt extraction (Figure 4), both fractions that

were previously characterized as enriched in regulatory regions

[35]. In addition, the two sets of non-functional MREs on the X

chromosome appeared to have a milder, but discernable increase

in nucleosome lability when compared to the MREs on

autosomes, consistent with the observation that X chromosome

in male S2 cells generally adopts a more open chromatin

conformation [36].

In contrast, CES MREs in female Kc cells exhibit a modest

average decrease in nucleosomal occupancy (Figure 4), but

intriguingly, this appears to be a difference at a subset of sites

rather than the entire set (Figure S4). Notably, the entire X

chromosome in Kc cells does not appear to be packaged in a more

open chromatin state compared to autosomes (Figure 4). We

conclude that strong nucleosome depletion and a more open

chromatin conformation on X are mainly consequences rather

than causes of MSL binding.

JIL-1 kinase enrichment and histone H1 depletion on
active gene bodies of the MSL–bound X chromosome

Once MSL complex identifies the male X, we have proposed

that it spreads to affect the active genes on the chromosome as a

whole [5]. In addition to the core MSL complex consisting of

proteins that are essential in males but not females (MSL1, MSL2,

MSL3, MOF, and MLE), the JIL-1 kinase is known to be enriched

on the male X [37]. JIL-1 is essential in both males and females

and binds interband regions on all chromosomes in both sexes

[38]. Since we observed that JIL-1 is enriched at functional MREs

(Figure 1 and Figure 3A), we tested whether it is also associated

with active gene bodies. We constructed average scaled profiles of

JIL-1 binding (meta-gene profiles) of all genes greater than 2 kb in

length based on the FlyBase dm3 gene annotation [39]. Gene

expression in the three cell lines was determined by RNA-seq data

(Figure S5) [34]. We found that JIL-1 binds active gene bodies,

with a bias towards 39 ends, on all chromosome arms (Figure 5A).

On the male X, this pattern is increased in its intensity above the

level on autosomes and correlates strongly with binding of the

MSL complex since the increased occupancy is not seen on female

X chromosomes (Figure 5B). These results are consistent with

previous polytene immunostaining [37] and ChIP analyses [40].

In contrast to JIL-1, the linker histone H1 shows depletion on

active genes (Figure 5C). Interestingly, in male cells this depletion

is more prominent on X-linked gene bodies than on autosomal

gene bodies, whereas X and autosomes show no obvious difference

in female cells (Figure 5D), consistent with previous polytene

immunostaining results [41]. These two results further underscore

the distinct character of the Drosophila male X chromosome once

MSL complex is bound to active genes.

When examining our modENCODE data, we noticed that

many additional data sets are slightly enriched on the entire X

chromosome compared to autosomes in male S2 cells, but not in

female Kc cells (Figure S6, and Table S3). X-chromosome-wide

enrichment of nucleoporins, Megator and Nup153 have also been

observed in male S2 cells, but not in female Kc cells [42]. These

Figure 4. Increased lability of nucleosomes at chromatin entry sites correlates with MSL binding. Average enrichment profiles of
chromatin properties around MREs are shown for S2 and Kc cells. Nucleosome density and successive salt extracted fractions of MNase-treated
chromatin from S2 and Kc cells were described previously [28]. Profiled chromatin properties comprise nucleosome density (black) and successive salt
extracted fractions of MNase-treated chromatin: low salt (pink, 80 mM NaCl), high salt (blue, 600 mM NaCl), and pellet (green, salt insoluble). The
dashed red lines on each plot indicate the MRE centers. In male S2 cells, nucleosomes are more labile at the MREs on the X chromosome in general,
and nucleosome density is especially low at functional MREs. The relative lability of nucleosomes on the X chromosome is not seen in female Kc cells,
and the extent of nucleosome depletion at functional MREs is less pronounced. See also Figure S4.
doi:10.1371/journal.pgen.1002646.g004
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results are unlikely to simply reflect increased access of antibodies

to X chromatin in the ChIP procedure, because histone H1 shows

the opposite trend. Therefore, these enrichments may be related to

dosage compensation of the male X, either directly, as is the case

for H4K16ac, JIL-1, and possibly RNA pol II, or indirectly, as a

consequence of the more open chromatin environment created by

the dosage compensation mechanism.

MSL1 and H4K16 acetylation are found on virtually all
active X linked genes in male cells

MSL-dependent dosage compensation is thought to be an

organism-wide phenomenon in Drosophila males, excluded from

the germline [43], but otherwise not restricted to particular tissues

or developmental time points. Classical mitotic recombination

experiments support a requirement for MSL proteins throughout

development in dividing tissues [44]. In addition, comparison of

gene expression in males and females demonstrates that the vast

majority of X-linked genes are up-regulated in males [45].

However, stable MSL binding appears to be more restricted than

its functional consequence, H4K16 acetylation [22], so we

wondered whether binding favored particular types of genes. To

examine this, we plotted the chromatin marks and MSL binding

along active X linked genes in S2 cells (.2 Kb long), asking if

clustering might define genes of particular structure, expression

level, or gene ontogeny category (Figure 6). We found that MSL1

and H4K16 acetylation cover the vast majority (86%) of active X

linked genes. Apparent exceptions (green cluster) are interesting as

those genes also lack H3K36me3 (Figure 6) and H2B-ubiquitin

(data not shown), two prominent marks of transcription [18].

While MSL1 and H4K16ac are associated with the bodies of

virtually all active X linked genes in male S2 cells, the MOF

H4K16 histone acetyltransferase was notably absent from a subset

(dark brown cluster at bottom of Figure 6). Most of these genes still

showed limited MOF enrichment around the promoter region, but

not within the gene bodies as is characteristic of MSL complex.

We were unable to identify any feature, such as relative expression

level or chromatin state, that would distinguish these genes from

the genes that showed MOF enrichment.

Since functional MSL chromatin entry sites are also preferen-

tially associated with active gene marks, we asked where CES map

relative to the set of clustered genes on X, indicating the location

of CES by red dots on the gene structures in Figure 6 (H3K36me3

column). Our results demonstrate that CES are located at variable

positions relative to active genes, with a bias towards their 39-ends.

Interestingly, the subset of genes lacking strong MOF binding

within gene bodies also lack nearby entry sites, in agreement with

the observation that MSL binding is strongest in the close vicinity

of mapped chromatin entry sites [10,46].

Figure 5. The bodies of active X-linked genes are enriched for JIL-1 kinase and depleted for histone H1 in S2 but not Kc cell lines.
Each panel shows the average scaled ChIP enrichment profile (meta-gene profile) of active and inactive genes located on X chromosome and
autosomes. (A) JIL-1 in S2 cells, (B) JIL-1 in Kc cells, (C) H1 in S2 cells, and (D) H1 in Kc cells. Notably, JIL-1 is enriched along the gene bodies of X-linked
genes in males, while histone H1 is depleted. See also Figure S5.
doi:10.1371/journal.pgen.1002646.g005
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Discussion

Genetic, genomic, and biochemical analyses in eukaryotes have

revealed that DNA binding motifs alone are insufficient to explain

the selective occupancy or specificity of regulatory factor function

[16,17]. The number of predicted binding sites is often vastly

greater than the number of sites actually utilized. Therefore, a very

important question in transcriptional regulation is how to identify

additional parameters that must govern accurate binding site

selection.

In this study, we considered the roles of chromatin environment

and flanking sequence composition in selection of functional

binding sites by a sequence-specific protein complex. It is generally

not clear whether the chromatin features that are often observed at

the binding sites of proteins contribute directly to binding

selectivity or are simply a consequence of binding. In the dosage

compensation system of the X chromosome in Drosophila, we had a

unique opportunity to address this question because we can

compare the chromatin environment of MSL binding sites in

female cells, in the absence of the complex, to male cells, where the

functional sites are bound. We also utilized binding data from an

RNAi experiment in which we knocked down a component of the

sex determination pathway in females to induce dosage compen-

sation. Our bioinformatic analysis of a large number of profiles

from the modENCODE project suggests that a pre-existing active

chromatin context plays a critical role in establishing the initial

binding of the MSL complex on the X. We also made the

surprising discovery that GC content in the DNA surrounding

functional binding sites has a characteristic profile.

In summary, our results strongly support a model in which an

active chromatin composition helps define the initial entry sites

selected by the MSL complex (Figure 7). Functional MSL binding

results in increased lability of local nucleosomal composition, and

H4K16 acetylation and JIL-1 binding along the bodies of virtually

all active X-linked genes. Our work provides key insights into the

order of events leading to dosage compensation in Drosophila, and

can also serve as a model for using genome-wide data sets to

understand how sequence-specific factors find their ultimate

targets.

Materials and Methods

modENCODE ChIP-chip data processing
The majority of the ChIP-chip data are from the modENO-

CODE project [18]. Genomic DNA Tiling Arrays v2.0 (Affyme-

trix) were used to hybridize both ChIP and input DNA. We

obtained the log-intensity ratio values (M-values) for all perfect

match (PM) probes: M = log2(ChIP intensity)2log2(input intensi-

Figure 6. MSL1 and H4K16 acetylation are found on virtually all active X linked genes in male S2 cells. The plot shows the positions of
exons, and the regions of enrichment for MSL1, MOF acetyltransferase, H4K16ac, and H3K36me3 along the bodies of active X linked genes. Each row
represents an active gene scaled to the same size. The genes were clustered based on the chromatin features. These profiles show that CES (red dot
on the H3K36me3 map) are located closer to the 39 end in general and are embedded within domains enriched for H3K36me3 as well as MSL1, MOF,
and H4K16ac.
doi:10.1371/journal.pgen.1002646.g006
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ty), and performed a whole-genome baseline shift so that the mean

of M in each microarray is equal to 0. The smoothed log intensity

ratios were calculated using LOWESS with a smoothing span

corresponding to 500 bp, combining normalized data from two

replicate experiments. All data are publicly accessible online

through the modENCODE project (URL listed in Table S1). Data

analysis was performed in R statistical programming environment

(http://www.r-project.org). For the visualization of the heatmap

(e.g., Figure 1), the +/25 kb region surrounding each MRE was

separated into non-overlapping bins of 200 bp. The smoothed

probe value within each bin is averaged to obtain the enrichment

value for that bin.

Local sequence GC content
The GC content around each nucleotide is defined as the

proportion of G or C in the closest 101 bp (ie, the target

nucleotide, 50 bp upstream and 50 bp downstream). Similar to the

ChIP-chip data, we separated the +/25 kb region surrounding

each MRE into non-overlapping bins of 200 bp. The average GC

content in each bin represents the average of the GC content of

the 200 bp within that bin.

RNAi followed by expression analysis and ChIP–chip
We generated double-stranded RNA (dsRNA) to target GFP

(negative control) or Sxl transcripts (amplicons designed by the

Drosophila RNAi Screening Center (www.flyrnai.org), as described

previously [22]. The following primer sets were utilized to amplify

PCR products to template dsRNA synthesis:

GFP

F 59-TAATACGACTCACTATAGGGAGAGGTGAGCAA-

GGGCGAGGAGCT-39

R 59-TAATACGACTCACTATAGGGAGATCTTGAAGT-

TCACCTTGATGCCG-39

Sxl (DRSC21490)

F 59-TAATACGACTCACTATAGGGAGAGATCACAGC-

CGCTGTCC-39

R 59-TAATACGACTCACTATAGGGAGATACCGAATT-

AAGAGCAAATAATAA-39

Sxl (DRSC28896)

F 59-TAATACGACTCACTATAGGGAGACCCTATTCAG-

AGCCATTGGA-39

R 59-TAATACGACTCACTATAGGGAGAGTTATGGTA-

CGCGGCAGATT-39

For expression analyses, GFP and Sxl DRSC21490 RNAi was

performed in Kc cells using 6-well plates as described [47].

For ChIP-chip, RNAi using GFP, Sxl DRSC 21490, and Sxl

DRSC28896 amplicons in Kc cells was scaled up to T225 flasks

and chromatin preparation, and H4K16ac ChIP was performed

using anti-H4K16ac antibody (Millipore, 07-329) and custom

Nimblegen tiling arrays as described [22].

Kc GFP H4K16ac ChIP-chip datasets were published previ-

ously [22]: Gene Expression Omnibus accession numbers:

GSM372470 (replicate #1) and GSM372471 (replicate #2).

Cross-validation
We used 10-fold cross-validation to estimate the predictive

power of a classification model based on a training dataset (e.g.,

chromatin feature in Kc cells) and a test dataset (e.g., chromatin

feature in S2 cells). Each sample in a dataset is an MRE, a feature

is a histone modification (e.g., H3K36me3) or a chromatin binding

protein (RNA Pol II), and the label for each sample is either

‘‘Functional MRE’’ (positive class) or ‘‘Non-functional MRE’’

Figure 7. Model for binding site selection by a chromatin associated factor. Our results support roles for local chromatin environment and
flanking GC content in discrimination of true target sites of the MSL dosage compensation complex. The model depicts the GC content and active
chromatin marks surrounding MREs in female Kc cells that predict binding by MSL complex in male S2 or BG3 cells (or after MSL induction in female
Kc cells). MREs that do not pre-exist in a favorable environment are not bound by MSL complex and thus are non-functional. Definition of the
favorable chromatin features that pre-exist factor binding may be a general tool, in addition to DNA motif analysis, for prediction of functional
binding sites.
doi:10.1371/journal.pgen.1002646.g007
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(negative class). The aim is to train a prediction model that can

distinguish functional from non-functional MREs based on the

chromatin features. In a 10-fold cross-validation, the training data

are randomly divided into 10 equal-sized portions in which the

same proportion of positive and negative samples are preserved in

each portion. In each of the 10 iterations, the data from nine

portions are used to train a predictive model, while the remaining

one portion is used to test the performance of the prediction

model. Performance is measured by true positive rate (sensitivity)

and false positive rate (1-specificity). The tradeoff between true

and false positive rates are often represented by a receiver

operation characteristic curve, and the Area Under the ROC

Curve (AUC) is a measure of the prediction accuracy that takes

into account both sensitivity and specificity of the prediction

model. A random predictor receives an AUC of 0.5, and a perfect

predictor achieves an AUC of 1. Using 10-fold cross-validation, an

AUC is calculated for each fold (one iteration), and the mean and

standard deviation of the 10 AUC values are recorded.

Calculation and visualization of the ROC curves were performed

by the ROCR package [32].

Support vector machine (SVM)
SVM is a supervised classification algorithm that separates two

classes of data based on a set of features [30,31]. In this study, the

set of ChIP enrichment at each MRE is treated as a feature vector

of that MRE. Given a set of feature vectors from functional MREs

and a set of feature vector from non-functional MREs, the SVM

algorithm calculates an optimally-separating hyperplane by

maximizing the distance (called margin) between the hyperplane

and the nearest points from the two classes. This hyperplane

effectively divides the space of feature vectors into two regions, one

for each class, with the idea that the larger margin lowers the error

of the classifier. To make a prediction, the feature vector

corresponding to a MRE from the test set is compared to this

hyperplane to determine on which side of the separating boundary

this sample is located. We used the SVM implementation in the R

package e1071, which is optimized for the radial basis function

kernel and uses an Sequential Minimal Optimization-type

algorithm [48] using default parameters for training the SVM.

ChIP–seq data processing
We used the MSL3-TAP ChIP-seq data from Alekseyenko et al

[8]. The raw sequence reads were aligned to the Drosophila

melanogaster genome assembly dm3 using bowtie with default

options [49]. We only allowed uniquely mapped reads to be

reported. This procedure resulted in 2.8 and 2.4 million mapped

reads for ChIP and input DNA samples. The aligned reads were

then analyzed with SPP [50] to identify ChIP-enriched regions

(FDR threshold of 0.05).

RNA–seq gene expression data
Gene expression level estimates in S2, BG3 and Kc cells were

obtained from the modENCODE project [34]. The expression of

each gene is quantified in terms of RPKM (reads per million reads

per kilobase). The distribution of gene expression in each cell line

was assessed and a cut-off of RPKM = 3 was determined to be a

good threshold to separate active vs. inactive genes (Figure S5A).

This definition of active vs. inactive genes was used in the

construction of meta-gene profiles.

Construction of meta-gene profiles
We used the gene annotation from FlyBase [39] to define

transcription start and end sites (TSS and TES respectively). We

only included genes with a minimum length of 2 kb (7,231 of

15,186 genes) to exclude short genes from our analysis. The ChIP

enrichment in the 2 kb region centered on the TSS and TES, as

well as the ChIP enrichment within the gene body scaled to 1 kb,

were calculated and averaged for the active and inactive genes in

X and autosomes. The definitions of active vs. inactive genes were

defined by RNA-seq data.

Accession numbers
All ChIP-chip and RNA-seq data are available from mod-

ENCODE, and the URL for individual datasets is listed in Table

S1. The ChIP-chip and microarray gene expression data

pertaining to the Sxl RNAi experiments are accessible from

GEO (Accession number: GSE34859).

Supporting Information

Figure S1 Distribution of functional and non-functional MREs.

(A) The number of MREs per megabase (Mb) on each major

chromosome arm based on motif detection with different p-value

thresholds. The number of MREs located on the X chromosome is

roughly twice the number of each autosomal chromosome arm. (B)

The distribution of motif detection p-values for each of the classes

of MREs defined in this study. The motif specificity (as

approximated by motif detection p-value) of the functional MREs

at chromatin entry sites (CESs) is similar to other random MREs

on chromosome X and an autosomal arm (chr2L). (C) Histograms

showing the distance between consecutive randomly chosen 137

non-functional MREs (left panel) and 137 functional MREs (right

panel) along the X chromosome. The red dotted lines indicate the

average log2 distance in base pairs between two consecutive

MREs. The mean distances of the functional and non-functional

MREs are not significantly different (t-test), suggesting there is no

significant difference in the distribution and clustering of

functional and non-functional MREs.

(TIFF)

Figure S2 Average GC content around different classes of

MREs. (A) The average plot of GC content around chromatin

entry site (CES), autosomal MREs that have H3K36me3

enrichment, and MREs chosen randomly from chromosome 2L.

(B) Heat maps showing the distribution of GC content for the

MREs shown in panel A. It is particularly striking to observe that

even though GC content is generally higher at functional MREs

and non-functional autosomal MREs enriched for H3K36me3,

there is a strong decrease in GC content only at the center of

functional MREs.

(TIFF)

Figure S3 Chromatin features are predictive of functional

MREs in both male and female cells. (A–B) AUC of individual

and all possible combinations of chromatin features for predicting

functional MREs based on 10-fold cross-validation. For each

feature or feature set, an SVM model was trained on the

chromatin ChIP-chip data of Kc cells, and the prediction

performance was tested on data from S2 and BG3 cells.

H3K36me3 and JIL-1 are the best individual features, and the

best SVM prediction models use a combination of 4 or 5 features.

The AUC of the best individual, best combination, or all features

are show in brackets. (C) Correlation between every pair of

features using the Kc cells data. (D) ROC curves showing the

ability of various chromatin features to discriminate functional

MREs from non-functional MREs based on 10-fold cross-

validation, where SVM was trained on Kc cells, and the

performance was assessed on data from BG3 cells. (E) The
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trade-off between retention of CES and elimination of non-

functional autosomal MREs when using SVM for genome-wide

prediction of functional MREs. After we train an SVM, we can use

different thresholds (distance to hyperplane) to determine whether

an MRE is functional or not. The default threshold is 0 (i.e., the

best binary classification is achieved using the SVM-determined

hyperplane). (F) The trade-off between true positive rate (defined

as proportion of CES retained) and false positive rate (defined as

proportion of autosomal MRE retained) can be visualized as an

ROC curve. The AUC is about 0.84.

(TIFF)

Figure S4 Decreased nucleosome occupancy upon MSL

binding on X chromosome. (A) The average nucleosome

occupancy in functional and non-functional MREs in male S2

cells. There is a strong decrease of nucleosome occupancy in

functional MREs on the X chromosome. (B) The average

nucleosome occupancy in functional and non-functional MREs

in female Kc cells. There is a less pronounced difference in

nucleosome occupancy among different classes of MREs.

Collectively, these observations suggest that decrease in nucleo-

some occupancy is mainly a result of MSL binding on the X

chromosome.

(TIFF)

Figure S5 Estimating gene expression activity in S2, BG3 and

Kc cells using RNA-seq, and additional meta-gene profiles. (A)

Distribution of normalized read counts (RPKM) in S2, BG3 and

Kc cell lines. A bimodal distribution of gene expression is

apparent. A threshold of log2(RPKM+1) = 2 (ie, RPKM = 3) was

chosen as a threshold to distinguish active from inactive genes (red

dotted lines). (B) Meta-gene profiles of JIL-1 and H1 in active and

inactive genes of BG3 cells. (C) Meta-gene profiles of H4K16ac in

active and inactive genes of S2 and Kc cells.

(TIFF)

Figure S6 Chromosome-wide enrichment of different histone

marks. There is generally no significant difference between the

enrichment distribution on chromosome X and the autosomes in

female Kc cells. However, there is enrichment of H2B-ubiq and

H3K36me3 and depletion of H1 and H4 in the male S2 and BG3

cell lines, suggesting X chromosome specific enrichment of certain

active histone marks in male cells upon dosage compensation. See

also Table S2.

( )

Table S1 URL of the modENCODE datasets used in this study.

(DOC)

Table S2 The number and proportion of non-functional MREs

eliminated from each chromosome using the best combination of

features, best individual features only (H3K36me3 or JIL-1), or

GC content only. Chromatin features can eliminate over 85% of

the non-functional MREs on autosomes, and over 75% of non-

functional MREs on X. The high proportion of false positives on

the X chromosome indicates that there are likely more true MSL

binding sites than the set of sites we used in this study.

(DOC)

Table S3 Chromosome-wide enrichment of many active

chromatin marks on the male X chromosome compared to

autosomes. The mode of the ChIP enrichment density profile is

calculated for each major chromosome arm in S2, BG3 and Kc

cells. The mode of the X chromosome enrichment is compared to

the average of the modes of autosome enrichment in each sample.

We observe that the mode of enrichment density is similar in all

profiles in Kc cells. In contrast, there is enrichment in many active

chromatin marks on the male X chromosome compared to

autosomes, as well as depletion of core and linker histones on the

male X.

(DOC)
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