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Immunogenomic profiling determines responses to
combined PARP and PD-1 inhibition in ovarian
cancer
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Combined PARP and immune checkpoint inhibition has yielded encouraging results in ovarian

cancer, but predictive biomarkers are lacking. We performed immunogenomic profiling and

highly multiplexed single-cell imaging on tumor samples from patients enrolled in a Phase I/II

trial of niraparib and pembrolizumab in ovarian cancer (NCT02657889). We identify two

determinants of response; mutational signature 3 reflecting defective homologous recom-

bination DNA repair, and positive immune score as a surrogate of interferon-primed

exhausted CD8+ T-cells in the tumor microenvironment. Presence of one or both features

associates with an improved outcome while concurrent absence yields no responses. Single-

cell spatial analysis reveals prominent interactions of exhausted CD8+ T-cells and PD-L1+
macrophages and PD-L1+ tumor cells as mechanistic determinants of response. Further-

more, spatial analysis of two extreme responders shows differential clustering of exhausted

CD8+ T-cells with PD-L1+macrophages in the first, and exhausted CD8+ T-cells with

cancer cells harboring genomic PD-L1 and PD-L2 amplification in the second.
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Ovarian cancer remains the most lethal gynecologic
malignancy and the fifth most frequent cause of cancer-
related mortality in women in the US1. While che-

motherapy, Poly-ADP Ribose Polymerase inhibitor (PARPi)
therapy, and antiangiogenic therapy have demonstrated excellent
activity in this disease, ovarian cancer is one of the few malig-
nancies where immunotherapy with immune checkpoint block-
ade exhibits only modest activity [objective response rate (ORR)
of ~8–9%] with infrequent durable responses, and currently has
no FDA approved indication2,3. The development of new stra-
tegies for improving the efficacy of immune checkpoint blockade
is therefore a high priority for treatment of ovarian cancer.

Preclinical work in murine ovarian cancer models by us and
others has demonstrated synergistic antitumor activity for com-
binations of PARP inhibitors and anti-PD-1/PD-L1 agents4–6.
Specifically, in a syngeneic genetically engineered mouse model of
high-grade serous ovarian cancer driven via concurrent loss of
p53 and Brca1 and overexpression of c-Myc, PARP inhibitor
olaparib induced activation of Stimulator of Interferon Genes
(STING) pathway accompanied by increased expression of
Interferon-beta, PD-L1 and CXCL104. In the same model, com-
bination therapy with olaparib and PD-1 blockade augmented the
activity of olaparib while anti-PD-1 alone did not have any effect.
Similar results, but using a homologous recombination proficient
ID8 model, were reported by Shen et al.5, which showed that the
PARP inhibitor talazoparib induced STING activation, increased
PD-L1, CCL5, and CXCL10 expression and exhibited synergistic
activity with an anti-PD-L1 antibody.

Based on this, we conducted a phase I/II clinical trial of the
PARPi niraparib in combination with the anti-PD-1 antibody
pembrolizumab in recurrent ovarian cancer (TOPACIO trial7);
the trial enrolled 62 patients with a median of 3 prior lines of
therapy (range 1–5). The majority (76%) of patients had acquired
platinum resistant or refractory disease while the remaining 24%
of patients were ineligible to receive platinum therapy due to
prior toxicity or allergic reaction. The niraparib/pembrolizumab
combination was well tolerated and exhibited a confirmed ORR
of 18% [5% complete responses (CRs) and 13% partial responses
(PRs)] and a clinical benefit rate of 65%, clearly exceeding the
expected activity of niraparib or pembrolizumab as mono-
therapies in recurrent platinum-resistant ovarian cancer.
Responses were durable and median duration of response was not
reached (range 4.2–14.5+) months.

Despite this promising activity, many patients did not respond,
highlighting the need for predictive biomarkers to identify
ovarian cancer patients prospectively who would benefit from the
niraparib/pembrolizumab combination. This is particularly rele-
vant for patients with platinum-resistant ovarian cancer who have
poor prognosis and therefore require careful selection of their
next treatment regimen. In the context of the TOPACIO trial,
known biomarkers of response to PARPi and immune checkpoint
blockade were not associated with response to the niraparib/
pembrolizumab combination; these biomarkers include tumor
BRCA mutation status, homologous recombination deficiency
(HRD) status (assessed by the Myriad HRD test), and PD-L1
status. Here, using advanced genomic analyses and single-cell
imaging, we show that mutational signature 3 and interferon
signaling in the CD8+ T-cell compartment of the tumor
microenvironment determine responses to niraparib plus pem-
brolizumab in patients enrolled in the TOPACIO trial.

Results
Mutational signature 3 correlates with clinical benefit. As
earlier analyses had failed to identify an association between the
BRCA mutation status and HRD status as assessed by the Myriad

HRD and clinical response7, we explored alternative determinants
of HRD. The clinical characteristics and correlative analyses are
summarized in Table 1. First, we performed BROCA targeted
sequencing using a panel of 84 DNA repair genes complimented
by methylation analysis for BRCA1 and RAD51C (Fig. 1a).
BROCA sequencing identified 21/52 (40%) of the patients as
HRD. Fourteen of the patients had tumors that were positive for
BROCA but negative for BRCAmutations. Eleven of these tumors
had BRCA1 hypermethylation, two had mutations in CDK12, and
one had RAD51C hypermethylation. Similar to our prior results
with other biomarkers of HRD, BROCA status did not associate
with response (Fig. 1b and Supplementary Fig. 1A). We also
evaluated RAD51 by immunohistochemistry (IHC) as a func-
tional marker for HR deficiency8. In total, 11/38 (29%) of the
tumors lacked RAD51 foci, and therefore predicted to be HRD
(Fig. 1a). However, RAD51 status did not, significantly correlate
with response (Fig. 1c and Supplementary Fig. 1 B).

To look for additional genomic markers for HRD and
response, we performed OncoPanel targeted sequencing for 447
cancer-related genes (Supplementary Table 1). All tumors were
mutated for TP53, and the results of the mutational and copy
number variation analyses are summarized in Supplementary
Table 3. Of note, tumor mutational burden previously reported to
correlate with response to immune checkpoint blockade, was not
associated with response to niraparib/pembrolizumab or the
other determinants of HRD (data provided in Supplementary
Tables 3 and 4). Furthermore, none of the tumors were

Table 1 Summary of clinical data (A) and patient numbers in
correlative analyses (B).

(A)

Clinical details N (%)
Age (years)a 60 (46–83)b

ECOGa

1 44 (71)
2 18 (29)

Platinum responsec

Sensitive/ineligible 16 (25)
Resistant/refractory 46 (74)
Prior lines of therapyb 3 (1–5)
Confirmed BOR

CR 3 (5)
PR 8 (13)
SD 28 (45)
PD 20 (32)
ND 3 (5)

Duration of response (days) 190 (123–441)b

(B)

Correlative analyses N (%)
HRD test 55 (89)
BRCAmut 60 (97)
PD-L1 IHC 44 (71)
RAD51 IHC 38 (61)
BROCA 52 (84)
Oncopanel 39 (63)
Nanostring 44 (71)
CycIF 26 (37)

ECOG Eastern Cooperative Oncology Group Performance status, BOR best objective response,
CR complete response, PR partial response, SD stable disease, PD progressive disease, ND not
defined.
aAt screening.
bMedian (range).
cResponse to last platinum-based chemotherapy.
ECOG; Eastern Cooperative Oncology Group Performance status, BOR; Best objective response,
CR; Complete response, PR; Partial response, SD; Stable disease, PD; Progressive disease, ND;
Not defined.
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polymerase epsilon (POLE)-mutated or mismatch repair deficient
(MMRD); both are DNA repair defects known to associate with
excellent response to immune checkpoint blockade9,10.

Using a recently developed computational tool called SigMA
(Signature Multivariate Analysis), which is capable of determin-
ing mutational signatures even when tumor mutational burden is
low11 we were able to test for the presence of a specific mutational
signature, which has been shown to be associated with HRD,
called signature 312. Using SigMA on the OncoPanel sequencing
data, we identified the presence of signature 3 in 51% (20/39) of
the patients, thereafter denoted as Sig3 positive. SigMA thus
identified a larger proportion of tumors as HRD compared to
other markers of HRD (Fig. 1). Of the six tumors with a BRCA
mutation, SigMA was positive in four (i.e., consistent with the
false-positive rate of 2%; see methods); of note, the two BRCA
mutated tumors that were SigMA negative were also BROCA

negative. Furthermore, among the 15 patients with loss-of-
function of BRCA1/2 (nine tumors with BRCA1 hypermethyla-
tion, five tumors with BRCA1 mutation and one tumor with
BRCA2 mutation), SigMA identified ten to be Sig3 positive, again
consistent with the reported sensitivity of the SigMA algorithm
(see methods).

We found that Sig3 positivity was indicative of clinical benefit;
significantly more Sig3-positive patients had stable disease or
partial response (p= 0.02, Fisher’s exact test), compared to
patients who had progressive disease (Fig. 1b, c). Additionally,
Sig3 was associated with prolonged progression-free survival
(PFS; Fig. 1d): the median PFS in Sig3-positive patients was
5.0 months (range 2.1–22.7) compared to 2.2 months (range
0.5–8.6) in the Sig3-negative patients (p= 0.0005, Log-rank test),
with a hazard ratio for progression of 0.37 in the Sig3-positive
patients (95%CI 0.17–0.80).
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Fig. 1 Tumor mutational signature 3 positivity associates with prolonged progression-free survival with the combination of niraparib and
pembrolizumab. a SigMA identified a larger proportion of tumors positive for homologous recombination deficiency (HRD). The proportions of tumors
positive (red) and negative (blue) for HRD as annotated by the BRCA1/2 mutation, Myriad HRD test, BROCA, RAD51, and SigMA. b Sig3 positivity is
associated with clinical benefit as determined by either complete or partial response or stable disease. Correlations of HRD to clinical benefit (Fisher’s
exact test). c Proportions of patients positive (red) or negative (blue) for Sig3 according to best objective response. PD progressive disease, SD Stable
disease, PR partial response. d Sig3 associates with increased progression-free survival (PFS; Log-rank test). Kaplan–Meier graph for PFS for the
combination of niraparib and pembrolizumab according to Sig3 status. All test were two-sided.
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Immune score and Sig3 identify all objective responders. To
profile the immune microenvironment, we performed Nano-
String gene expression profiling using the PanCancer IO 360
Gene Expression Panel plus 30 DNA repair genes (Supplemen-
tary Table 1). We observed notable differences in the immune
microenvironment gene expression patterns between samples
obtained from tumors at diagnosis (chemo-naive samples) versus
the samples obtained from tumors previously exposed to
platinum-based chemotherapy (chemo-exposed samples; Sup-
plementary Fig. 2A, B; see methods). Specifically, chemo-exposed
samples exhibited higher scores for immune-related pathways
(Supplementary Fig. 2B) and immune cell-type scores (Supple-
mentary Fig. 2C) and had a positive correlation to PD-L1 posi-
tivity by immunohistochemistry (Supplementary Fig. 2D). Given
these differences between the chemo-naive and chemo-exposed
samples, we evaluated the associations to clinical response sepa-
rately within the chemo-naive or the chemo-exposed samples.

In chemo-naive samples, pathway analysis revealed six path-
ways significantly enriched among tumors with objective
response to niraparib/pembrolizumab (Fig. 2a). Of these path-
ways, three were related to Type-I interferon signaling and these
were also significantly associated with objective response rate
(ORR; Fig. 2b). Of note, all responders had a high score (the
highest 25% as being positive) for at least one of the 3 Type-I
interferon pathways (Supplementary Fig. 2E).

In the chemo-exposed samples, we observed elevated relative
scores for exhausted CD8+ T-cells in tumors with an objective
response (Fig. 2c). Furthermore, the relative cell-type score for
exhausted CD8+ T-cell (calculated using gene expression levels
of CD244, EOMES, LAG3, and PTGER4; see methods) vs. total
CD8+ T-cells (calculated using CD8a, CD8b) was significantly
higher in the responders as compared to non-responders (p=
0.02, Mann–Whitney U-test, Fig. 2d). In the subset of patients
displaying clinical benefit the relative cell-type score positively
correlated with the amount of tumor regression. However, the
cell-type scores for the total CD8+ T-cell score or the relative
cell-type score, calculated based on the gene expressions for
exhausted CD8+ T-cells vs. the gene signatures score for total
tumor infiltrating lymphocytes (TILs) were not significantly
different in the responders compared to non-responders (Fig. 2d).
There were no significant differences between the responders and
non-responders in the cell-type scores within the chemo-naive-
or pathway scores within the chemo-exposed samples.

We next assigned an Immune Score (IS), annotating the
samples with the highest 25% of the pathway score for any of the
interferon pathways as being positive for the IS in the chemo-
naive, and the samples with the highest 25% of the exhausted
CD8+ T-cell/CD8+ T-cell score in the chemo-exposed samples,
respectively. IS positivity significantly correlated with OR (p=
0.01, Fisher’s exact test, Fig. 2e). As displayed in the waterfall plot,
we confirmed that all patients that had an OR to the combination,
were positive for either Sig3 or IS or both (Fig. 2f). Positivity for
Sig3, IS, or both, defined as being positive for a Combined score,
significantly associated with clinical benefit (Fig. 2g), and
positivity for the combined score significantly associated with
prolonged PFS (Fig. 2h) with a hazards ratio (HR) of 0.32 (95%CI
0.15–0.70, p= 0.002, Log-rank test). Importantly, none of the
patients whose tumors were negative for the combined score
exhibited an OR to niraparib/pembrolizumab (ORR 0%; Fig. 2i).

Single-cell imaging reveals potential mechanisms of response.
To gain further insights into the mechanisms of response to
combined niraparib/pembrolizumab, we performed highly mul-
tiplexed single-cell imaging of 26 tumor samples using t-CyCIF13.
We generated single-cell resolution data on samples for 30

different antigens (see Supplementary Table 2 for a list of anti-
bodies and their targets), which made it possible to identify
immune cell types and assay functional cell states. In total, we
analyzed 6.6 million successfully segmented single cells (average
2.5 × 105 per tumor sample, range 1.6 × 103–7.1 × 105). The mean
levels of markers across all cells in the samples did not associate
with treatment response or other clinical features (Fig. 3a). We
next annotated the cells into pre-defined cell types based on
marker expression using FlowSOM (see Methods), and visualized
the data using semi-supervised Uniform Manifold Approxima-
tion and Projection (UMAP) dimensionality reduction (Fig. 3b).
The UMAP embedding and visualization showed agreement with
the classified tumor, immune, and stromal cells (top), and further
to immune cell subpopulations (bottom), allowing us to inter-
rogate the tumor microenvironment at single-cell resolution.

Consistent with mRNA data, prior exposure to chemotherapy
resulted in a lower proportion of tumor cells, and a larger
proportion of immune, and stromal cells as compared to the
chemo-naive samples (Fig. 3c and Supplementary Fig. 3A–C).
Macrophages were the most abundant immune cell-type in the
tumor microenvironment followed by CD8+ and CD4+ T-cells
(Supplementary Fig. 3F) and both antigen presenting cells and
neutrophils were more abundant in chemo-exposed samples
(Supplementary Fig. 3D, E). However, differences in tumor
microenvironment composition did not associate with response
(Supplementary Fig. 3F). At single-cell resolution, PD-L1
expression was the highest in cells corresponding to the
macrophage—dendritic cell cluster (Supplementary Fig. 4A),
and the expression of PD-L1 was higher only in the stromal cells
of chemo-exposed as compared to chemo-naive samples
(Supplementary Fig. 4B).

In light of our expression profiling findings showing that Type-
I interferon signaling was enriched in samples from patients with
responses to niraparib/pembrolizumab, we assessed the cell-type
context for interferon pathway activation in the tumor micro-
environment using phospho-STAT1 (pSTAT1) expression as a
marker for interferon activation. In this regard, increased mean
pSTAT1 protein expression levels in exhausted, PD-1 high
expressing, CD8+ T-cells significantly associated with OR (p=
0.04, Mann–Whitney U-test, Fig. 3d) and clinical benefit (p=
0.03, Mann–Whitney U-test, Fig. 3e). Further, increased pSTAT1
and a higher expression of Ki67, indicative of a higher
proliferative state, in CD8+ effector T-cells, associated with
objective response (p= 0.04 and 0.002, respectively;
Mann–Whitney U-test; Fig. 3e, f). Higher pSTAT1 and Ki67
was also verified in visualizing the markers in representative
immunofluorescence images of a responder compared to a non-
responder (Fig. 3h). Interestingly, tumors that were Sig3 positive
had higher mean levels of PD-L1 specifically in tumor cells
(Supplementary Fig. 4C), and in IBA1+CD11b+macrophages
(Supplementary Fig. 4D), compared to Sig3-negative tumors.
These differences in the tumor microenvironment associated with
HRD as measured by Sig3, could potentially contribute to the
clinical benefit associated with a Sig3-positive status. This
association was not detected with the other measures for HRD,
including tumor BRCA, Myriad HRD, BROCA, and RAD51 (data
provided in Supplementary Table 4). Further, in Cox regression
analysis, including relevant clinical and correlative variables, Sig3
was an independent predictor of PFS (Supplementary Table 5).

Unique single-cell spatial features of extreme responders. We
next performed a deeper phenotyping of samples from two
patients with exceptional responses. The clinical details and
tumor characteristics of these patients are summarized in Sup-
plementary Table 6: both had platinum-resistant ovarian cancer
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and experienced long-term partial responses, which were still
ongoing at the time of the data cutoff (September 2018). The
first patient had a PR lasting over 10 months, and an 87%
tumor regression from the baseline (Fig. 4a). Her tumor was
positive for mutational Sig3, and BROCA analysis revealed a

hypermethylation of BRCA1 and a loss-of-function mutation in
TP53. Her tumor was enriched for CD163+ IBA1+ CD11b+
macrophages and exhausted CD8+ T-cells (Fig. 4b). The highest
PD-L1 expression was observed in CD163+ IBA1+ CD11b+
macrophages (Fig. 4c, d). When we looked at the spatial
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clustering of the cell types using 10 nearest neighbors, the
neighborhoods with the highest scores for exhausted CD8+ T-
cells involved also PD-L1+macrophages and dendritic cells
(Fig. 4e, f). This finding suggests that the interaction between
macrophages or dendritic cells and exhausted CD8+ T-cells may
be the most relevant cell-cell interaction for the PD-1/PD-L1
mediated immune suppression in this patient.

The second extreme responder in the trial had a PR, with a
53% tumor regression from the baseline and a durable response
of over one year and ongoing at the time of the data cutoff. Her
tumor was also positive for Sig3, and OncoPanel sequencing
revealed high-level genomic amplifications in CD274 (PD-L1)
and PDCD1LG2 (PD-L2), which were confirmed by FISH
(Fig. 4g). The tCycIF quantitative single-cell analysis revealed
that neutrophils, antigen presenting cells and macrophages had
the highest PD-L1 expression (Supplementary Fig. 4E). Neigh-
borhood analysis showed increased proximity of the CD8+ T-
cells and the PD-L1-positive tumor cells, whereas the PD-L1-
positive macrophages clustered separately (Fig. 4h). Further the
exhausted CD8+ T-cells spatially clustered together with the PD-
L1+ tumor cells whereas the neighborhoods with the PD-L1-
positive macrophages clustered spatially separately, with a low
neighborhood score for the exhausted CD8+ T-cell (Fig. 4i).
Unlike the first extreme responder in which exhausted CD8+ T-
cell preferentially were adjacent to PD-L1+macrophages and
dendritic cells, data from this patient therefore suggested enriched
immune suppressive PD-L1/PD-1 signaling specifically between
the PD-L1-positive cancer cells (which exhibited PD-L1/PD-L2
amplification) and exhausted CD8+ T-cells.

To confirm these findings we performed 12-marker tCyCIF on
regions of interest at higher magnification; this type of imaging is
increases the resolution >3-fold (Fig. 4j and Supplementary
Table 2). In the first patient (first row), we confirmed high-level
PD-L1 expression in the macrophages, which were next to
exhausted CD8+ T-cells, with strong co-staining of PD-1 and
PD-L1. By contrast, in the second patient with PD-L1 amplified
tumor (second row), there was a clear PD-L1 staining in the
tumor cell compartment, and the exhausted CD8+ T-cells were
in closer proximity to the tumor cells than to macrophages.

Exhausted CD8+ T-cell interactions correlate with response.
We applied a statistical neighborhood analysis the t-CyCIF data
of all the 26 samples to determine whether spatial interactions of
cell subpopulations in the tumor microenvironment associate
with response. We compared the frequencies of spatial

interactions between the different cell types and functionally
relevant cell states to a control group of 1,000 random permu-
tations of all cell labels, with a significant (p < 0.05) positive fold-
change indicative of attraction and a negative fold-change indi-
cative of avoidance (Supplementary File). Since exhausted CD8+
T-cells were identified as the key cell-type associated with
response, we next focused on the spatial interactions of other cell
types towards the exhausted CD8+ T-cells. We observed a
cluster of significant attractions of exhausted CD8T-cells with
macrophages, antigen presenting cells, and T-cell subpopulations
(Fig. 5a). Importantly, and a higher attraction between exhausted
CD8+ T-cells and macrophages significantly associated with
response (p= 0.02, Mann–Whitney U-test, Fig. 5b), whereas
there were no differences in the interactions of exhausted CD8+
T-cells with other cell types in the responders compared to non-
responders (data presented in Supplementary File). To look closer
into the PD-1/PD-L1 spatial interactions in the tumor micro-
environment, we next looked into which of the PD-L1-positive
cell subpopulations forms the largest fraction of neighbors of an
exhausted CD8+ T-cell in the responders. We found that the
responders had a higher fraction of PD-L1-positive macrophages
(Fig. 5c) and tumor cells (Fig. 5d) as neighbors of an exhausted
CD8+ T-cell compared to the non-responders. Moreover, the
fraction of PD-L1-positive tumor cells, and not macrophages
(Supplementary Fig. 4F), interacting with exhausted CD8+ T-
cells was significantly higher in Sig3-positive tumors compared to
Sig3 negative (p= 0.004; Mann–Whitney U-test, Fig. 5e), indi-
cating that the exhausted CD8+ T-cells are more frequently
surrounded by PD-L1-positive tumor cells in Sig3-positive
tumors compared to Sig3-negative tumors. A graphical sum-
mary of the main findings in the study are presented in Fig. 5f.

Discussion
We report two previously unrecognized candidate predictive
biomarkers to the combination of PARPi niraparib and PD-1
inhibitor pembrolizumab therapy in platinum-resistant ovarian
cancer: the presence of mutational signature 3 as a surrogate of
HRD and a positive immune score (IS) as a surrogate of inter-
feron-primed, CD8-exhausted effector T-cells in the tumor
microenvironment. Presence of one or both tumor features was
associated with significantly prolonged PFS (HR= 0.32) while
absence of both was associated with absence of response to nir-
aparib/pembrolizumab (ORR 0%). These results are clinically
relevant and suggest that Sig3 and immune score may aid in
selection of patients with platinum-resistant ovarian cancer who

Fig. 2 Immune signatures associate with tumor regression and objective response to niraparib and pembrolizumab. a In the chemo-naive samples,
pathway scores for six biological pathways were higher in the responders. The red dots depict the mean difference of Nanostring pathway scores between
responders (n= 4) compared to non-responders (n= 15), and the red lines show the 95% confidence interval (CI) for the difference. p < 0.05 was
considered significant, r; effect size, Mann–Whitney U-test. b The Nanostring pathway scores of three pathways related to Type-I interferon signaling were
significantly higher in the responders compared to non-responders (Mann–Whitney U-test). c In the chemo-exposed samples, heatmap of the Nanostring
cell-type z-scores showed a higher signature of relative exhausted CD8+ T-cell-scores (black box) in the responders (CR, PR; n= 6) compared to non-
responders (SD, PD; n= 16). d The inferred relative cell-type scores from Nanostring advanced analysis are presented as the specific cell-type score over
(indicated by versus; vs.) the general cell-type score. The relative score for exhausted CD8+ T-cells over the total CD8+ T-cells was significantly higher in
the responders compared to non-responders (p= 0.02, Mann–Whitney U-test), and positively correlated with the percentage of best tumor regression
from baseline in patients with clinical benefit (p= 0.01, Spearman’s correlation, Rho 0.68; n= 13). The cell-type scores for total CD8+ T-cells or the
relative cell-type score for Exhausted CD8+ T-cells over the total tumor infiltrating lymphocytes (TILs) were not significantly different in the responders
compared to non-responders. e Immune score associated with objective response (p= 0.01, Fisher’s exact test). f Waterfall plot of best percent of tumor
regression from baseline as annotated by Sig3 and Immune score (IS) showing that all patients with tumor regression (dashed line represents ≥30%) were
positive for Sig3, Immune score or both. g Combined score of tumors being positive for Immune score, Sig3 or both associated with clinical benefit (p=
0.01, Fisher’s exact test). h Positivity the combined score significantly correlated with prolonged PFS (p= 0.002, Log-rank test). i None of the patients
whose tumors were negative for the combined score achieved objective response (p= 0.06, Fisher’s exact test). All test were two-sided. No adjustment
was made for multiple hypothesis testing (see materials and methods). Box plots are presented as the range (whiskers), center line as the median, bounds
of box mark the highest and lowest quartiles, and the dashed line represents the mean.
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would benefit from niraparib/pembrolizumab. These findings also
underscore the translational relevance, given that several pre-
viously reported biomarkers of response to PARPi and immune
checkpoint inhibitors were unable to predict responses to the
niraparib/pembrolizumab combination.

In addition to the assessment of mutations in specific homo-
logous recombination repair genes, such as BRCA1 and BRCA2,
several genomic approaches have been utilized to detect HRD in
clinical samples. These approaches include detection of hyper-
methylation of key DNA repair genes such as BRCA1 and
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RAD51C14 and detection of specific genomic aberrations or
genomic “scars” that are characteristic of HRD such as loss of
heterozygosity (LOH)15, telomeric allelic imbalance (TAI)16 and
large-scale state transitions (LST)16, all of which are captured by
the Myriad HRD test (which was evaluated in the TOPACIO
trial7). Functional biomarkers of HRD have also been developed,
such as the assessment of RAD51 foci assembly in cancer cells,
which is known to correlate with proficient homologous
recombination4,17–19. Unlike other markers for HRD, Sig3 is a
specific mutational signature characterized by a high number of
larger deletions (up to 50 bp) with overlapping microhomology at
breakpoint junctions, and commonly detected in ovarian, breast
and pancreatic cancers12. Its presence reflects the fact that HRD
leads to dependence on alternative error-prone repair mechan-
isms such as alternative non-homologous end joining (alt-NHEJ)
or microhomology-mediated end joining, which utilize micro-
homology at rearrangement junctions to rejoin and repair DNA
double strand breaks. Using a machine-learning-based algorithm
(SigMA)11 applied on panel-based sequencing data from our
institutional targeted sequencing assay (OncoPanel), we found
that Sig3 positivity was significantly associated with clinical
benefit and prolonged PFS to the combination of niraparib and
pembrolizumab. To our knowledge, this is the first time that Sig3
positivity has been associated with a response to PARPi therapy
(either alone or in combination) in ovarian cancer or any other
malignancy. Of note, our approach using SigMA facilitated the
detection of Sig3 on panel-based sequencing, which is routinely
performed on patient samples in clinical practice nowadays,
without the requirement for genome-wide sequencing or fresh
sample material. Furthermore, Sig3 positivity was identified in a
larger proportion of tumors (51% of samples) than positivity for
other markers of HRD, suggesting that Sig3 may identify HRD
tumors that are missed by other HRD assays. Importantly, no
assay is currently considered “gold standard” for assessing HRD
in the clinical setting. Consistently, data from two large rando-
mized phase III trials of PARPi maintenance in ovarian cancer,
which incorporated either LOH, or the combination of LOH,
TAI, and LST as biomarkers of HRD, showed that these measures
did not capture all responders to PARPi20,21. In fact, PARPi
responses occurred even if tumors were negative for any of the
HRD biomarkers thereby prompting the FDA to approve PARPis
regardless of the status of the explored biomarkers of HRD.

In the context of the TOPACIO study, Sig3-positive status in
patients with acquired platinum-resistant ovarian cancer may
indicate either non-restored or incompletely restored homo-
logous recombination and ongoing reliance on error-prone DNA
repair mechanisms, thus leading to retained sensitivity to PARP
inhibition. Additionally, tCycIF single-cell imaging showed that
Sig3-positive tumors exhibited higher PD-L1 expression in tumor
cells and in macrophages, suggesting that Sig3 positivity may also
be a surrogate of enhanced immunogenicity and thus response to
immune checkpoint blockade. This is consistent with the

literature linking HRD with enhanced immunogenicity and
increased PD-L1 expression in ovarian cancer22,23. Despite being
an independent predictor for PFS and a surrogate for both HRD
and enhanced immunogenicity, Sig3 positivity did not capture all
responders to niraparib/pembrolizumab. Rather, we show that
the combination of Sig3 positivity with a positive immune score
determined the responses by increased interferon activation and
exhausted CD8+ T-cells at the mRNA level. Consistently, using
single-cell imaging we revealed an interferon-activated state of
exhausted and effector CD8+ T-cells to be significantly asso-
ciated with response, further highlighting the role of exhausted
CD8+ T-cells and the response to this niraparib/pembrolizumab
combination.

In the analysis of the two extreme responders, the response in
the first patient was attributed to the high proportions and spatial
clustering of the PD-L1-positive macrophages and exhausted
CD8+ T-cells in the tumor microenvironment. By contrast, the
response in the second patient was driven by genomic PD-L1 and
PD-L2 amplification in the tumor cells, and their spatial inter-
action towards CD8+ T-cells. To our knowledge, this is the first
time that PD-L1/PD-L2 amplification has been identified in an
extreme responder to immunotherapy in ovarian cancer. Besides
the two extreme responders, advanced single-cell spatial analyses
in the whole dataset revealed prominent spatial interactions of
exhausted CD8+ T-cells with macrophages and tumor cells in
the responders, suggesting the that both interactions potentially
contribute to the CD8+ T-cell exhaustion in the ovarian cancer
tumor microenvironment. The finding that tumor cell PD-L1/
exhausted CD8+ T-cell interaction occurred particularly in Sig3-
positive tumors provides evidence on the spatially divergent
tumor microenvironment of HR-deficient tumors, potentially
contributing to the enhanced responses seen in Sig3-positive
tumors. In this study, the t-CyCIF single-cell imaging provided
valuable insights into mechanisms of response to niraparib/
pembrolizumab. Overall, our data support the premise that both
molecular and spatial features in the tumor microenvironment,
including spatial interactions of immune cell subpopulations at
different functional states are potentially linked to response to
immunotherapy, further underscoring the power of multiplexed
imaging in biomarker discovery over conventional methods24.

We acknowledge certain limitations of this study. The two
candidate predictive biomarkers we identified in this Phase 1/2
trial of niraparib/pembrolizumab in ovarian cancer are explora-
tory and require independent validation in subsequent studies of
this or analogous PARPi/PD-1 inhibitor combinations. Samples
were collected from patients enrolled in 34 different study sites in
the United States, and, despite our best efforts, insufficient tumor
material was available for all patients for completion of all
aforementioned studies. These limitations notwithstanding, our
findings are clinically and translationally-relevant given that
combined PARP and immune checkpoint inhibition is an area of
active clinical investigation with several ongoing clinical trials in

Fig. 3 Interferon activation and proliferative state of CD8+ T-cells associate with response. a A hierarchical clustering heatmap of the mean expression
levels of single-cell quantification using tCycIF and annotated with Sig3 status, Nanostring Immune score, sample category (Sample cat), and confirmed
best objective response (confirmed BOR) in 26 patients. b Cell-type calls visualized using semi-supervised UMAP dimensionality reduction reveals the
clustering of tumor-stroma immune (upper panel), and the tumor microenvironment immune cell subpopulations (lower panel) into distinct clusters.
c Chemo-exposed samples had a higher immune- and stromal infiltration in the tumor microenvironment. The proportions of immune (blue), tumor (gray)
and stromal (yellow) cells of the 26 samples (rows) analyzed via single-cell imaging. d Mean pSTAT1 protein expression in exhausted CD8+ T-cells was
higher in responders (n= 10) compared to non-responders (n= 16) and e in patients with clinical benefit (n= 20) compared to patients with no clinical
benefit (n= 6). f pSTAT1 expression and g Ki67 levels in effector CD8+ T-cells associated with response. p < 0.05 was considered significant, r; effect
size, Mann–Whitney U-test, all test were two-sided. h We observed increased pSTAT1 and Ki67 expression in the exhausted and effector CD8+ T-cells in
the responders (upper row) compared to non-responders (lower row). Scale bar 50 µm. Box plots are presented as the range (whiskers), center line as the
median, bounds of box mark the highest and lowest quartiles, and the dashed line represents the mean.
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ovarian cancer (in both first-line and recurrent settings), as well
as in multiple other cancer types. Our study highlights that
careful analysis of genomic information and single-cell spatially
resolved data from clinical samples can provide valuable infor-
mation on the determinants of response to therapy, and accel-
erate the development of predictive biomarkers to aid in patient
stratification.

Materials and methods
Tumor samples. Formalin-fixed paraffin-embedded (FFPE) tumor samples were
collected from the 62 patients that had been enrolled from 34 sites into the
TOPACIO study7. The study was conducted in accordance with ethical principles
founded in the Declaration of Helsinki. This study received central approval by the
Dana-Farber institutional review board, and/or relevant competent authorities at
each site. All patients provided written informed consent to participate in the
study. The archival FFPE samples were collected when sufficient (>20% tumor
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content) tumor material was available. Summary of the clinical data and correlative
analyses is presented in Table 1. These samples were obtained either from the time
of diagnosis (n= 30, chemo-naive), or after a median of 4.3 months (range
1.5–91.1) following diagnosis, during which time the patient received platinum-
based chemotherapeutics as part of clinical care (n= 32, chemo-exposed). No
archival resection tissue was available from two patients so biopsies were obtained.
The median time from diagnosis to trial entry was 35.8 months (range
11.4–136.5 months). The HRD and clinical data are presented in Supplementary
table 4. The timing of the sample did not affect the results from targeted
sequencing analyses or RAD51 immunohistochemistry.

Targeted sequencing. BRCA mutation testing (tBRCAmut), and HRD testing
were previously performed using the Myriad Genetics (Salt Lake City, UT, USA)
research assay7. BROCA testing was performed as previously described14, and
included sequencing of 84 DNA repair genes and methylation analysis for BRCA1
and RAD51C. In addition, OncoPanel sequencing was performed at the Dana-
Farber Cancer Institute core25 on samples from 35 patients, which had >20%
tumor purity as assessed by H&E staining. Briefly, the pooled sample reads were
deconvoluted and sorted using the Picard tools, and the reads were aligned to the
reference sequence b37 edition from the Human Genome Reference Consortium,
using bwa (version0.7.17). Duplicate reads were identified and removed using
Picard (version 1.90). The alignments were further refined using the Genome
Analysis Toolkit (GATK, version 1.6-5-g557da77) for localized realignment around
indel sites and recalibration of the quality scores. Mutation analysis for single-
nucleotide variants was performed using MuTect v. 1.1.4 and annotated by
Oncotator, and insertions and deletions were called using Indelocator. For each
sequencing run, non-neoplastic FFPE and blood samples were included to identify
and filter batch-specific sequencing artefacts. To filter out potential germline var-
iants, the standard pipeline removes SNPs present at >0.1% in Exome Variant
Server, NHLBI GO Exome Sequencing Project (ESP), Seattle, WA (URL: http://evs.
gs.washington.edu/EVS/ accessed 30 May, 2013), present in dbSNP, or present in
an in-house panel of normals (n= 141), but rescues those also present in the
COSMIC database. We further filtered this data by removing variants present at
>0.1% in the gnomAD v.2.1.1 database or were annotated as Benign or Likely
Benign in the ClinVar database. Any filtered variants that were reported in
COSMIC more than twice were rescued and presented for manual review. All
remaining mutations were used for the mutational signature calls with SigMA,
including mutations that do not have a consequence such as synonymous and
intronic mutations. Mutational signatures were called using SigMA11. For this
study, SigMA was optimized for OncoPanel using simulations generated specifi-
cally for its library using whole genome sequenced ovarian cancer datasets11. To
minimize false positives, we applied a stringent threshold so that the estimated
false-positive rate was 2%, which corresponds to a sensitivity of 65%. The valida-
tion of Sig3 calls is show in Supplementary Fig. 1. The SNV and SCNA calls from
the International Cancer Genome Consortium (ICGC) project were downloaded
from its DCC data portal (https://dcc.icgc.org/releases). Consensus SNV and SCNA
calls for the MSK-IMPACT panel data26 were downloaded from the cBioPortal
(http://cbioportal.org/msk-impact). SCNA calls for the MSK-IMPACT data were
produced using CNVkit27. For two patients analyzed for Sig3 the data for best
objective response was not available.

RAD51 IHC assay, and fluorescent in-situ hybridization (FISH) for PD-L1 and
PD-L2. Immunohistochemistry (IHC) for RAD518, and FISH for PD-L1 and PD-
L2 was performed on tumor sections28.

NanoString mRNA expression analysis. Total RNA was isolated from 2 to 4 5-
µm FFPE sections with a Qiagen total RNA kit (Cat# 75144), and quantified by
Bioanalyser. The NanoString assay was performed using the PanCancer IO 360
Gene Expression Panel with an additional 30 DNA repair genes as spike-ins
(Supplemental Table 1). Gene expression was normalized to 20 housekeeping
genes. The data was analyzed using the NanoString NSolver Advanced Analysis
platform. Pathway- and cell-type scores were calculated as the first principal
component of pathway gene normalized29,30. Immune score positivity was calcu-
lated from the pathway and cell-type scores using a cutoff of the ≥25% as positive
for the score, and below that as negative. In the chemo-naive samples IS was called
positive if the sample presented with a score of ≥25% of any of the three interferon
pathways due to the overlap of the genes in the three pathways. In the chemo-
exposed samples, a positive IS was assigned to a sample if the exhausted CD8+ T-
cell/CD8T-cell score was among the ≥25%. A combined score was assigned using
Sig3 and IS data so that tumors positive for IS, Sig3, or both being positive, and
tumors, which were negative for both IS and Sig3 being negative for the
combined score.

Tissue-based cyclic multiplexed immunofluorescence (tCyCIF). The samples
were stained with the validated antibodies (Supplementary Table 2) and scanned
with RareCyte CyteFinder scanner following the tCycIF protocol13. Scanned image
files were corrected using the BaSiC tool, and stitched and registered using the
ASHLAR algorithm31 to align image tiles and successive images of tiles from all
cycles to each other. Cell segmentation was performed by applying marker-
controlled watershed segmentation to pixel probability maps generated with a
UNet neural network32. Median fluorescence intensities were computed for each
cell and each channel with HistoCAT v1.7333. Poor quality events were filtered out
based on loss of signal across cycles, background signal from the initial cycle, and
solidity metrics.

Cyclic immunofluorescence in high-resolution imaging. Z-stacks of 5 µm tissue
were acquired on a Deltavision Elite (GE Life Sciences) using a 60×/1.42NA
objective lens with oil matching for spherical aberration correction. Excitation
channels were 632/22 nm (peak emission/half-width; nominally Cy5), 542/27 nm
(TRITC), 475/28 nm (FITC), and 390/18 nm (DAPI) in that sequence on an Edge
5.5 sCMOS camera. Z-stacks were deconvolved using the constrained iterative
algorithm in SoftWorx, maximum intensity projected and cycles then registered
with DAPI channel using MATLAB (version 2018b, The MathWorks, Inc., Natick,
Massachusetts, United States.).

Cell class-based analysis of single-cell imaging data. We computed cell-type
labels for each cell using the R package flowSOM34 Briefly, we clustered all cells
into a 100-node self-organized map using markers that were used to annotate the
cell types and then computed a score for each node and each cell-type label with
the flowSOM function QueryStarPlot. This process was performed first for global
cell types defined as stromal cells, tumor cells, and immune cells, followed by

Fig. 4 Two extreme responders show differential spatial patterns of cellular interactions in the tumor microenvironment. a The graph showing the
percentage of tumor regression from baseline over time (weeks) in the first extreme responder; she achieved a PR lasting over 10 months with 87% tumor
regression from the baseline. b The proportion of immune cell subpopulations out of total immune cells in the tumor microenvironment. The patient’s
tumors immune infiltration was enriched in macrophages and exhausted CD8+ T-cells. c The normalized (z-score) PD-L1 expression according to the
tumor microenvironment cell subpopulations. The highest PD-L1 expression was observed in CD163+ IBA1+CD11b+Macrophages. Individual dots
represent single cells. Box plots are presented as the range (whiskers), center line as the median, bounds of box mark the highest and lowest quartiles, and
the dashed line represents the mean. dMultiplexed immunofluorescent images confirmed the high infiltration of macrophages and PD-1 positive exhausted
CD8+ T-cells (higher row), and the high expression of PD-L1 in the macrophages (lower row). Scale bar 50 µm. e Spatial visualization of neighborhood
(k= 10) composition shows increased interaction between PD-1+ exhausted CD8+ T (E.CD8+ T)-cells and PD-L1-positive macrophages (PD-L1+M)
shown in magenta, compared to PD-L1-positive tumor cells (PD-L1+ T) Scale bar 50 µm. f K-means clustering indicated that neighborhood clusters
containing PD-1+ exhausted CD8+ T-cells contain PD-L1+macrophages and not PD-L1-positive tumor cells. g The second extreme responder exhibits
PD-L1 and PD-L2 amplification confirmed by FISH. Scale bar 10 µm. h Spatial visualization of neighborhood (k= 10) composition shows increased
interaction between PD-1+ exhausted CD8+ T (E.CD8+ T)-cells and PD-L1-positive tumor cells (PD-L1+ T) shown in yellow, compared to PD-L1-positive
macrophages (PD-L1+M). Scale bar 50 µm. i K-means clustering indicated that neighborhoods containing most of the PD-1+ exhausted CD8+ T-cells
cluster together with the PD-L1+ tumor cells and less with the PD-L1-positive macrophages. j High-resolution imaging of the two extreme responders
using cyclic immunofluorescence. First row depicts the first patient, with exhausted CD8+ T-cells, tumor cells and macrophages in the tumor
microenvironment (first column), with positive PD-L1 expression (second column) in the IBA1+macrophages, most of which were also positive for CD163
(third column), and co-localization of the exhausted CD8+ T-cells with the PD-L1-positive macrophages (fourth column). In the second patient (second
row), the exhausted CD8+ T-cells were spatially more next to the tumor cells (first column), while there was clear staining of PD-L1 also in the tumor cell
compartment (second column, arrows), in addition to the macrophages (third column), and PD-1/PD-L1 the exhausted CD8+ T-cells. Scale bar 20 µm.
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and a negative as avoidance, with a two-sided test and a cutoff of p < 0.05. b In the 16 tumors with significant attraction, of IBA+ CD11b+Macrophages
towards exhausted CD8+ T-cells the attraction score was higher in the responders (n= 6) compared to non-responders (n= 10). The responders (n=
10) had a significantly higher fraction (z-score) of PD-L1-positive macrophages (c) and tumor cells (d) interacting with exhausted CD8+ T-cells compared
to non-responders (n= 16). e The fraction (z-score) of PD-L1-positive tumor cells neighboring exhausted CD8+ T-cells was higher in the Sig3+ (n= 12)
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mark the highest and lowest quartiles, and the dashed line represents the mean.
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recursive iterations within each cell subtype represented by the antibody panel
(Supplementary Table 7). To visualize the data, we applied semi-supervised UMAP
dimensionality reduction using cell-type calls as the target metric (https://arxiv.org/
abs/1802.03426). The cell labels were then used to identify relevant spatial inter-
actions between cell types and reveal cellular organization using a permutation
test33. We compared the frequencies of interactions between all pairs of cell types
to a control group of 1000 random permutations of all the cell-type labels. An
interaction was identified as “attraction” or “avoidance” depending on the sign of
the fold-change between actual frequencies to those from the randomized sce-
narios. Significance threshold was set at p < 0.05. To compare the abundance of
PD-L1+ neighbors of Exhausted T cells in each sample, we gated PD-L1+ cells
within each sample manually and calculated the fraction of PD-L1+ neighbors to
Exhausted T cells. Sample-wise z-score normalization is used to visualize and
compare between samples.

Statistics. The differences between categorical variables were tested using the
Fisher’s exact test, and continuous variables were compared between groups using
Mann–Whitney U or Student’s t-test when appropriate. Continuous variables were
correlated with linear regression and Spearman’s Rho. Kaplan–Meier graphs were
plotted using standard methodologies and patients that remained on treatment
without progression were censored. Outcomes were compared using the log-rank
test. No patients were lost to follow-up. Cox-proportional hazards models were
conducted using the likelihood ratio Chi-square test. The key analyses are based on
<20 simultaneous statistical tests (<20), and thus correcting for multiple hypothesis
testing was not considered required. For Nanostring pathway analyses, multiple
hypothesis correction was not performed due to violation of due to the violation of
the assumption of independence due to overlapping genes in the signatures. Effect
size (r) for Mann–Whitney U-statistics was calculated as the Z-statistic divided by
the square root of the number of samples. As the sample material from the clinical
trial were extremely limited, we performed each experiment only once (sequencing,
Nanostring, tCycIF staining), or twice (the high-resolution imaging). Two-sided p-
value <0.05 was considered significant.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The source data underlying Figs. 1, 2, 3, and 5 are provided as a Source Data file.
Oncopanel sequencing, Nanostring and the highly multiplexed images are available in
Synapse at https://doi.org/10.7303/syn21593960.

Code availability
Code and algorithms produced in this study for the multiplexed imaging data analysis
are available at https://github.com/farkkilab/pubs/tree/master/Farkkila-et-al-1.
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