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Abstract

We present HiGlass, an open source visualization tool built on web technologies that provides a rich interface for
rapid, multiplex, and multiscale navigation of 2D genomic maps alongside 1D genomic tracks, allowing users to
combine various data types, synchronize multiple visualization modalities, and share fully customizable views with
others. We demonstrate its utility in exploring different experimental conditions, comparing the results of analyses,
and creating interactive snapshots to share with collaborators and the broader public. HiGlass is accessible online at
http://higlass.io and is also available as a containerized application that can be run on any platform.
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Background
The development of chromosome capture assays meas-
uring the spatial contacts between two or more regions
of the genome is essential for elucidating how the struc-
ture and dynamics of the genome affect gene regulation
and cellular function [1, 2]. Genome-wide maps of
chromosomal interactions obtained by techniques such
as Hi-C have revealed features of genome organization
such as compartmentalization, i.e., spatial segregation of
active and inactive regions of the genome, topologically
associating domains (TADs), and associated peaks of
contact frequency (often referred to as loops) [1, 3–5].
Hi-C maps have helped implicate changes in genome
organization in a variety of disorders, including acute
lymphoblastic leukemia [6], colorectal cancer [7], and
limb development disorders [8]. More fundamentally,
they provide insights into the mechanisms by which
genome conformation structures arise, are maintained,
and change over time [9–11]. Major efforts like the 4D
Nucleome Network and the ENCODE project are gener-
ating such data at large scale across different cell lines
and conditions with the aim of understanding the mech-
anisms that govern processes such as gene regulation

and DNA replication as well as to cross-validate the
results from different experimental assays [12, 13].
Despite the large amounts of generated Hi-C data,

major challenges remain in (i) identifying known fea-
tures unambiguously [14]; (ii) discovering new features;
(iii) establishing relationships between Hi-C features and
known (epi)genetic profiles; (iv) establishing the effects of
various genetic, biochemical, and physical perturbations
on chromatin organization, assessing meaningful differ-
ences between cell types [15], and assessing changes
across the cell cycle and along differentiation pathways
[16]. These challenges necessitate the development of
methods to visually explore, compare, and share not only
the raw data but also related datasets and derived analysis
results. An effective visualization platform needs to meet
the following criteria: (1) Provide researchers with the
means to explore their data and look for patterns that may
help to interpret the results of experiments and generate
hypotheses. (2) Enable efficient comparison by juxtapos-
ition or other means of different samples or conditions
and integration of both similar and heterogeneous data
types. (3) Allow researchers to overlay computationally
derived annotations to visually validate analytical results
as well as to compare the outputs of different data pro-
cessing pipelines. (4) Enable sharing of results with collab-
orators and the public. And crucially, an effective platform
does this all in a fast, intuitive, and accessible manner.
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To obtain genome conformation capture maps, raw
Hi-C sequencing data are processed to identify proximity
ligation events representing captured contacts between
genomic loci, which are then binned to form contact
matrices [17–19]; see Lajoie et al. [20] and Ay and Noble
[21] for reviews of Hi-C data processing. The discovery
and elucidation of genome organizational principles and
mechanisms, however, also require sophisticated visual
tools for exploring features relevant at scales ranging from
tens to millions of base pairs [18, 22, 23]. Given the multi-
scale features of genome organization, it is crucial that
such visualization tools support comparison across mul-
tiple scales and conditions as well as integration with add-
itional genomic and epigenomic data. Existing tools
provide different ways of displaying contact frequencies,
such as rectangular heatmaps, triangular heatmaps, arc
plots, or circular plots, and different degrees of interactiv-
ity ranging from static plotting to interactive zooming and
panning, as well as different degrees of integration with
other genomic data types [18, 24–29]. While tools such as
Juicebox [18] and Genome Contact Map Explorer [30]
provide synchronized exploration of multiple contact
maps, they lack an interface for dynamically arranging the
views of several Hi-C datasets, and customizing the levels
of synchronization between loci, zoom levels, and samples.
Furthermore, none provide an interface for continuous
panning and zooming of the sort popularized by
web-based geographical and road maps.
To address these shortcomings, we created HiGlass, an

open source, web-based application designed to support
multiscale contact map and genomic data track
visualization across multiple resolutions, loci, and condi-
tions (http://higlass.io; Additional file 1: Supplementary
methods). HiGlass was built with an emphasis on usabil-
ity. It provides an interface for continuous panning and
zooming across genome-wide data. To facilitate compari-
son and exploration, HiGlass introduces the concept of
“composable linked views” for genomic data visualization
(Fig. 1). Each view in HiGlass is a collection of 1D and 2D
tracks sharing common genomic axes. Views can be filled
with data tracks, resized, arranged spatially, and linked to
synchronize their axes by location or zoom level. This ap-
proach enables users to interactively compose the layout,
content, and synchronization of locus, zoom level, and
other properties across multiple views (Fig. 1). By creating,
sizing, arranging, and linking individual views, users can
create custom compositions ranging from the juxtapos-
ition of two or more heatmaps to sophisticated arrange-
ments of views containing matrices, tracks, and “viewport
projections” mapping the extents of one view inside
another (Figs. 1, 4, and 5, Additional file 1: Figure S1). We
demonstrate how HiGlass has been used to detect and
analyze novel features in Hi-C data and to visualize, valid-
ate, and compare tools for detection of known features.

Multiple views within the same browser window, with
synchronized panning and zooming, allow fast compari-
son of Hi-C maps for different samples/conditions.
Views can, in the simplest case, be arranged to show the
same location at the same zoom level across multiple
samples (Figs. 2 and 3). In other cases, the investigator
may wish to view multiple loci within the same sample
(Fig. 1b and Additional file 1: Figure S2). More complex
arrangements can pair views with different zoom levels
in a context–detail arrangement (Figs. 4 and 5) [31].
View compositions serve to display data at multiple scales,
to corroborate observations with other types of evidence
and to facilitate comparisons between experiments. As a
web-based tool, HiGlass also supports storing and sharing
of view compositions with other investigators and the
public via hyperlinks. The tool can be used to access
selected public datasets at http://higlass.io or it may be
run locally and populated with private data using a
provided Docker container. It can also be embedded
within other applications to provide a component for
displaying Hi-C or other genomic data [32].

Results
Exploring and comparing different experimental
conditions
To illustrate the utility of composable linked views in
exploring different experimental conditions, we used
HiGlass to highlight key results of a recent study
showing the effect of induced deletion of the cohesin
loading factor Nibpl on chromosome organization in
adult mouse hepatocytes [33]. We obtained Hi-C contact
data and binned it at multiple resolutions starting at
1 kb for wild-type (WT) and ΔNipbl primary hepato-
cytes (Additional file 1: Supplementary methods). We
loaded both samples as separate views (Fig. 4, top) and
linked them via location and zoom level. With the two
linked views, we could navigate to regions clearly show-
ing the disappearance of features in the ΔNipbl condi-
tion. We also added views of genomic positions and
locations of individual genes that move in sync with
Hi-C maps, allowing examination of changes in Hi-C
data in different genic contexts. For example, in the
gene-poor region from chr14:80 Mb to chr14:100 Mb of
mm9, we observe a robust loss of near-diagonal contact
enrichment patterns. We identify the contact patterns
that disappeared as TADs in a strict sense because they
do not show the long-range associative “checkerboard”
pattern of A/B compartmentalization, a feature that re-
mains intact in the ΔNipbl condition [34]. In contrast, in
the relatively gene-rich region upstream of chr14:80 Mb,
we see an enhancement of the checkered pattern and
the emergence of a finer division of A/B regions in the
ΔNipbl condition. To explore this region more closely,
we created two additional linked views for WT and
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ΔNipbl and navigated to the region between chr14:50 Mb
and chr14:70 Mb (Fig. 4, bottom). Adding H3K4me3 and
H3K27ac ChIP-seq signal tracks revealed that these marks,
while similar between conditions, correlate more strongly
with the compartmentalization pattern in ΔNipbl. Finally,
we used a viewport projection to mark the position of the
bottom views relative to the top, resulting in the complete
view composition shown in Fig. 4. This interactive visual re-
capitulation of key results from Schwarzer et al [33]. illus-
trates how synchronized navigation across loci and
resolutions by linking views between multiple conditions fa-
cilitates the exploration of the complex effects of global per-
turbations on chromosome organization at multiple scales.
Using the same view composition we noticed the

appearance of a new feature, small dark patches
(“blotches”) away from the diagonal in the ΔNipbl

condition. To investigate these patches we created a new
composition containing an overview and two zoom- and
location-linked detail views (Fig. 5). By using the over-
view to find patches and comparing them using the de-
tail views, we established that they are more enriched in
the mutant condition than in the wild type, that they
represent strengthened interactions between pairs of
short active regions (type A compartment), and that they
tend to be aligned with annotations of long multi-exonic
genes. Including RNA-seq and ChIP-seq tracks let us see
that the genes which align with these patches are virtu-
ally always transcriptionally active. These observations
are reminiscent of a recent ultra-high-resolution Hi-C
study in mouse embryonic stem and neural cells, where
the long-range contact enrichment between pairs of
expressed genes was found to correlate with both
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Fig. 1 Different ways that views can be linked. Multiple views of the same (b) or different datasets (a, c) can be composed and linked to facilitate
data exploration and comparison. Two independent views of different samples provide free and independent exploration of each sample (a).
Linking by zoom and location enforces the same scale and location in both samples (b). Zoom linking maintains the same scale while allowing
free independent manipulation of the location (d). By linking location and leaving zooming free, one set of views can show an overview of a
high resolution region (c). Displaying the extent of one view in another is referred to as a viewport projection in this manuscript and shows
where a detail view is located in an overview (c, d). The process of linking views is illustrated in Fig. 6
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expression level and the number of exons, and agrees
with similar strengthened patterns observed after deg-
radation of cohesin in a human cell line [35, 36]. Not
only do composable linked views provide convincing
support that the absence of cohesin loading leads to
strengthening of global genome compartmentalization,
but they also hint that, at finer scales, long range and
inter-chromosomal contact enrichment and its response
to cohesin loss are influenced by transcriptional parame-
ters such as expression output and splicing activity.

Comparing the results of feature callers
Analysis of genomic data usually involves identification
and annotation of various “features” that range from
calling sequence variants to detecting complex patterns
of interactions in Hi-C maps. Often, the first step in
characterizing the quality of a caller is a visual inspection
to verify that the regions it annotates match the expecta-
tions of the human analysts. In the case of ChIP-seq
data, for example, peak callers identify regions where
proteins bind [37] and an analyst would verify that the
regions contain an elevated number of read counts relative
to the surrounding regions. In Hi-C data, topologically as-
sociated domain (TAD) callers identify regions of

increased contact frequency in contiguous loci (e.g., along
the diagonal in a Hi-C map) [3, 4]. In contrast to 1D peak
callers, TAD callers demarcate square regions of interest
in a Hi-C map. This makes comparison more complicated
as the results often need to be placed next to each other,
rather than simply stacked on top of each other. Results
from multiple callers run on multiple replicates further
complicate the task of comparison.
To address the first issue of comparing feature calls on

2D maps, we obtained data for the comparison of seven al-
gorithms that identify TADs from Forcato et al. [14] and
created a view composition consisting of eight different
views (Fig. 2). Seven views show called TADs overlayed on
top of the same Hi-C map, with the eighth map showing
map unobstructed by markers of called TADs. All views
were then synchronized by zoom and location. By ensuring
that each view always showed the same genomic region, we
can compare the results at the same scale and location.
Clearly visible in this comparison is the lack of consensus
between the different available TAD callers. Few regions are
consistently called by more than one caller. The lack of
consensus is also evidenced by the variation in the size of
the called TADs. While this variation in size is demon-
strated empirically by Forcato et al., seeing the calls overlaid
on the raw data can reveal that some are not only on the

Fig. 2 Eight views linked by location and zoom (Additional file 1: Figure S3). Each view shows the calls made by a single TAD caller
overlaid on the matrix on which they were called. There is little consistency between the results of the different callers and large
variation in the size of the TADs. The last view (bottom right) shows a matrix with no overlay. An interactive version of this figure is
available at http://higlass.io/app/?config=IPCHmdOQR4CDY2sqj5VJHQ
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same scale as the larger compartment features, but also
overlap with compartmental transitions (Fig. 2). Down-
stream analysis based on such TAD calls should therefore
consider whether phenomena attributed to TADs can also
be attributed to other features of Hi-C.
In addition to the differences between TAD calls among

different callers, there are differences in the calls produced
by a single TAD caller on different replicates. Such differ-
ences may be attributable to variations in signal-to-noise
(e.g., quality and depths of different sequencing runs and
differences in library complexity between replicates). Fur-
thermore, by looking at the results of seven different TAD
callers among ten experiments we can see that consistency
within a caller does not imply consistency between callers.
Such views also reveal more subtle differences. Some callers,
for example, partition nearly all of the genome into a con-
tiguous sequence of “TADs” (HiCseg [38], insulationScore
[39], and TADbit [40]), while others (Arrowhead [5], TAD-
Tree [41], domainCaller [3], and Armatus [42]) call discon-
tinuous intervals, and some methods allow for overlap and/
or nesting [14]. Such differences raise meaningful questions
about what data patterns are used to define TADs in

different studies, how robustly different algorithms can cap-
ture any given pattern type, and how the findings from one
study can be translated to those of another. These issues are
further underlined by recent experimental perturbations of
chromatin architectural factors, such as the Nipbl deletion
study above, which reveal that segmental annotations based
solely on local contact enrichment cannot all be attributed
to the same organizational process inside the nucleus and
that standard Hi-C maps reflect an interplay of distinct
dynamic processes averaged over a cell population.

Creating interactive snapshots of genome-wide data
In addition to exploration and interpretation, visualization
is an essential tool for the communication of scientific
findings. With the increasing use of high-throughput se-
quencing and genome-wide assays, screenshots of genome
browsers have become common in computational genom-
ics. Such figures convey the relationship between one (in
the case of conventional genomic data) or two (in the case
of chromosome conformation data) loci and some meas-
ure such as read coverage or fold change in coverage. In

Fig. 3 The seven views shown here show tracks in a horizontal configuration at the same location and zoom level (Additional file 1: Figure S4).
Each view shows the output of a particular TAD caller (Arrowhead, HiCseg, InsulationScore, TADBit, TADtree, Domain Caller, and Armatus, from left
to right, top to bottom). Each of the bottom tracks shows the output for a single replicate. The matrix on top contains data from a combination
of all replicates. An interactive version of this figure is available at http://higlass.io/app/?config=JALHH-HzQGeJCaJaU9EwTA. The caller names and
replicate labels were added for clarity

Kerpedjiev et al. Genome Biology  (2018) 19:125 Page 5 of 12



publications, the extents of these plots are limited by the
space and resolution available on the printed page. This
compels authors to show one or two loci that most clearly
demonstrate the effect they are describing. The original
data are archived in repositories such as the Gene Expres-
sion Omnibus (GEO). A user who wishes to explore add-
itional examples or view the data using a different visual
representation requires a non-trivial human effort to a) lo-
cate the data in the appropriate repository, b) establish
which files correspond to which figures, and c) prepare,
convert, and load the data into a genome browser or
viewer. This arrangement hinders communication, repro-
ducibility, and further analysis by dissociating the raw
genome-wide data from the publication describing it.
With HiGlass, authors can produce links to interactive

figures that can be shared with collaborators or the public.
These links point to HiGlass view compositions that can
show all of the genome-wide data used to produce a fig-
ure. These compositions are centered on one or more loci

but can be navigated to other locations. Generating a link
to a view composition stores all of the information neces-
sary to reproduce it, including the data sources, track
types, and synchronization links on the hosting server.
This “view config” can also be stored as a file that can be
shared with collaborators. Similar functionality was pio-
neered by the UCSC Genome Browser [43], where users
could create “Track Hubs” hosting their own data and
then share session links to genome browser views incorp-
orating their data. Similarly, HiGlass users can run their
own server locally and share links pointing to local data as
well as data hosted on remote servers.
In contrast to most existing tools, HiGlass stores a de-

clarative JSON representation of the current view config-
uration into its local database rather than the browser
URL, which has a limited character length. HiGlass gener-
ates a link referencing the view configuration when the
user selects to share their view composition. Without the
need to encode every aspect of the visualization in the

Fig. 4 A view composition highlighting the results from Schwarzer et al. [33] with data from WT (left), and mutant (ΔNipbl, right) samples. The
top two views are linked to each other by zoom and location such that they always display the same region at the same resolution. Comparing
the control (left) and mutant (right) condition at this zoom level reveals the bleaching of TADs in the gene-poor region in the lower right hand
part of the maps. The bottom two views, also linked to each other by zoom and location, show a zoomed in perspective where a more fragmented
compartmentalization of the ΔNipbl mutant (right) compared to WT (left) can be seen. The black rectangles in the top views, which are referred to as
viewport projections in HiGlass, show the positions and extent of the bottom views (Additional file 1: Figure S5). The white lines in the bottom left panel
are a result of bins filtered during matrix balancing. An interactive version of this figure is available at http://higlass.io/app/?config=Tf2-ublRTey9hiBKMlgzwg
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space-constrained URL, we can include more metadata
about how the tracks are styled and linked, the data
sources, and the synchronization options. This JSON state
representation can either be saved locally or stored in
HiGlass’s database and shared as a link to an interactive
figure (Figs. 2, 3, 4, and 5). By capturing the current com-
position and storing its complete state on the server, we
create the opportunity to integrate HiGlass with tools for
documenting and exploring the provenance of the com-
position to better understand the steps that the analyst
took to reach their conclusions [44].

Feature overview and comparison with other viewers
The major strengths of HiGlass are smooth navigation,
multi-view comparison, comprehensive selection of track
types, and containerized deployment. Of the existing
browsers, only HiGlass and Genome Contact Map

Explorer (GCME) provide a continuous interface for
panning and zooming across loci and resolutions. Other
tools, such as Juicebox, Juicebox.js [45], the Washington
University Epigenome Browser (WUEB), and the 3D
Genome Browser show data at fixed discrete zoom
levels. To compare data, Juicebox, Juicebox.js, GCME,
and HiGlass offer the opportunity to place heatmaps
side by side and navigate multiple Hi-C maps simultan-
eously. Of these, only HiGlass lets users select which
heatmaps to synchronize or whether to synchronize by
location, zoom, or both. This is critical for the creation
of task-specific view compositions, for example, to sup-
port overview and detail or multiple comparisons. Fur-
thermore, no other tools let users establish connections
between views (viewport projections) so as to display the
location of one view within another (Figs. 4 and 5).
The separation of data retrieval and rendering in

HiGlass makes it easy to create new track types. HiGlass

Fig. 5 A view composition containing two views linked by location and zoom (top) and an independent (unlinked) zoomed out overview
(bottom) (Additional file 1: Figure S6). The two views on top show data from chromosome 14 (mm9) in the wild-type and ΔNipbl conditions,
respectively. The bottom view shows data from the mutant condition as well as a projection of the viewport visible in the top views. The patch
visible in the ΔNipbl condition (top left) is notably absent from the control (right). The gene annotations, RNAseq, H3K27me, and H3K4me3 tracks
show the presence and transcription of the Dock5 and Mycbp2 genes on the minus strand as well as the presence and transcription of the Gnrh1
and Cln5 genes on the plus strand. An interactive version of this figure is available at http://higlass.io/app/?config=Q5LdNchQRLSZ_0yKsTEoiw
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already supports horizontal triangular heatmaps (Fig. 5),
vertical triangular heatmaps, and 2D heatmaps (Figs. 3,
4, and 5) for viewing Hi-C data as well as tracks for
showing 2D annotations (Figs. 2 and 3). This is in con-
trast to other viewers such as Juicebox, Juicebox.js, and
GCME, which display only 2D heatmaps, or WUEB and
the 3D Genome Browser, which only display horizontal
triangular heatmaps. Heatmaps in HiGlass are highly
configurable. Color scales can be synchronized, tuned,
and adjusted to display both linearly and logarithmically
scaled data, an option also present only in GCME. Such
features are crucial because the dynamic range of
intra-chromosomal contact frequency spans several or-
ders of magnitude. Genomic signal tracks can be dis-
played using lines, bars, or points. Other track types,
such as gene annotations, rotated 2D annotations (Fig.
5), and generic 1D annotations, are also directly sup-
ported. HiGlass supports selectable synchronized scaling
between values in different tracks as well as the ability
to fix heatmap color scales to a defined data range. It
supports SVG export as well as JSON view config and
link export for sharing (see the “Creating interactive
snapshots of genome-wide data” section).
For deployment, we provide a Docker container for

HiGlass, which can be run locally and populated with pri-
vate or shared data (Fig. 6). This makes it possible for indi-
viduals to view local files or for laboratories to create
instances shared within an internal network. Such instances
can be used to isolate both data and shared interactive fig-
ures from the public. Laboratories can also set up public in-
stances to share data and figures outside of the local
network. The ability to set up public and private instances
is also available for the Washington University Epigenome
Browser but absent from other tools. Because Juicebox and
Juicebox.js can load remote files, similar functionality can
be approximated by controlling data access at its point of
storage. Without a database, however, it is difficult to obtain
lists of available tracks and their associated visual encodings
from within the viewer itself. HiGlass makes it possible to
not only collect sets of tracks locally but also to connect to
and obtain tracks from any number of different remote in-
stances, such as the one at http://higlass.io.

Conclusions
Using HiGlass to create the linked views shown in Figs.
2 and 3 enabled us to interactively explore the data gen-
erated by Schwarzer et al. across different conditions,
zoom levels, and loci [46]. This gave us not only a
clearer understanding of the results but also the ability
to see them in a genic context, and also allowed us to
find unexpected patterns, relate them to histone patterns
and gene expression, and rapidly gather observations to
be used in generating new hypotheses. We used a

different composition of views to show and compare the
results of seven different TAD callers in a single window
[14]. This let us compare the variation among different
TAD callers, and of the same caller, across different rep-
licates (Fig. 3), as well as with the original data that the
calls were generated from (Fig. 2). These figures
highlighted the inconsistency in the results between sep-
arate TAD callers, further emphasizing the algorithmic
challenges and underscoring the need for visual inspec-
tion of these results. Finally, we provide links to fully
navigable, interactive versions of each of these figures.
This gives readers the freedom to explore the full extent
of the data outside of the confines of the printed page.
The multiscale nature of Hi-C data demands visualization

at a wide range of zoom levels. Its size necessitates piece-
wise loading of small chunks of data. While genome
browsers pioneered multiscale, genome-wide views of 1D
data and other tools extended the notion to Hi-C data, the
methods of comparison have largely been limited to either
a simple vertical tiling of horizontal data tracks or a split-
ting of Hi-C contact maps along the diagonal. With
HiGlass, we have generalized the approach to comparison
and extended it beyond simple stacking or two-way splits.
We have introduced operations for linking views by loca-
tion and/or zoom level and for projecting viewports across
views. The tool that we have developed, while originally de-
signed for Hi-C data, is a data-agnostic multi-dimensional
viewer. Our public demo (http://higlass.io) demonstrates
how HiGlass can be used as a standalone viewer to display
1D genomic data [47] while simultaneously providing the
same view composition operations for comparison across
loci and resolutions.
Having effective tools for comparing genomic data

highlights the challenge of organizing such data so that
it can be easily found and displayed. Projects such as
ENCODE and 4D Nucleome are generating Hi-C data,
annotating it with metadata, and making them available
to the broader public. Efforts like UCSC Genome
Browser’s track hubs paved the way for remote genomic
data hosting, integration, and visualization. However,
there is a need to make it easier for researchers to find
and integrate the data that helps answer their biological
questions. Future goals in that direction include adding
extended metadata to HiGlass data servers and imple-
menting standardized APIs to identify, describe, and
query genomic data sets. With more available data, we
can take advantage of HiGlass’s extensible architecture
to create new ways of exploring, comparing, and inter-
preting multi-scale experimental results.

Methods
HiGlass is designed as a client-server application (Fig. 6).
The client-side user interface is written in JavaScript while
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the server is written in Python. The client is responsible for
arranging tracks and views and requesting data from the ser-
ver. The server loads data from files in small chunks called
“tiles” and sends them back to the client upon request.

Data are organized according to zoom level using an
aggregation or downsampling function
We maintain data at different pre-computed resolutions
and when the user zooms in, HiGlass displays higher
resolution data. This approach is also employed by
web-based map visualization tools such as Google Maps
and Open Street Maps. The UCSC Genome Browser
and the Integrative Genome Viewer pioneered this ap-
proach for genomic data [48, 49]. For contact matrices
which are generated by binning lists of contacts, creating

lower resolution matrices simply requires binning with a
larger bin size. The bin sizes used by HiGlass are typic-
ally multiples of the powers of 2, starting from the high-
est resolution data (e.g., for 1 K data, bin sizes would be
1 K, 2 K, 4 K, …, 16.384 M) but can also be set to
arbitrary multiples of the highest resolution. The lower
zoom level corresponds to the minimum bin size which
can fit 1/256th of the width of the matrix. Lower-resolution
matrices of counts can also be created by downsampling or
“aggregating” higher resolution matrices. In this operation,
adjacent pairs of higher resolution bins are merged by sum-
ming their values.
For quantitative 1D data, such as RNA-seq or ChIP-seq,

the same aggregation procedure can be applied to the 1D
array of base-pair resolution values. Adjacent bins are

Fig. 6 The data flow and user interface of HiGlass. Starting from the bottom-left, single resolution formats used for genomics data are converted
to their multi-resolution counterparts. Files in the bigWig format, which is a native multi-resolution format, are directly converted to the hitile
format compatible with HiGlass. The multi-resolution files are then loaded into the HiGlass server using a command line tool. The HiGlass client
(top half) communicates with the server by issuing “tile requests” for the data that are currently visible in the user’s browser. The server responds
with raw data which the client renders into vertical, horizontal, and 2D tracks. Within the client, users can zoom and pan around the data or
select views with which to synchronize the location, zoom level, or both. View synchronization is initiated from one view and tied to another
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merged by summing their values. In so doing, we maintain
a separate array of counts for the number of missing
values encountered. This allows us to compute average
values when displaying lower resolution data.
For categorical data, downsampling requires discarding

values. Values to be discarded are chosen according to
an “importance value”. This importance value can be ei-
ther user-defined or set randomly. A more intelligent
importance value can consider a relevant property of the
data when deciding which should be visible at lower
resolution. For example, for gene annotation tracks, we
use a custom importance value based on the number of
citations referencing a particular gene. Genes which are
well studied and referenced often in the literature, such
as TP53 and TNF, remain visible as the user zooms out.
More obscure genes appear only when there is enough
space. For 2D annotations, we use the size of the anno-
tation as an importance value so that larger annotations
are visible when zoomed out and smaller annotations
only appear at high resolution.

Tiles break down large datasets into manageable chunks
that can be sent from the server to the client
A tile, in the context of HiGlass, is the data available
for a given location and zoom level. This is analogous
to the tiles used by online maps to show the portion
of the map that is visible in the current viewport
(Additional file 1: Figure S7). In the case of Hi-C
data, which can be represented as a matrix for any
given resolution, a tile consists of a 256 × 256 slice of
the matrix.
Zoom levels correspond to the different levels of reso-

lution. The highest zoom level, zmax, corresponds to the
highest resolution data. Each lower zoom level (z-1), cor-
responds to data at half the resolution of the previous
level (r/2). The data at zoom level 0 must be at a reso-
lution low enough such that the whole genome can be
fit into one 256 × 256 tile. This yields an expression for
calculating the maximum zoom level for data with a
starting (highest) resolution of r0 and a genome size of g:

zmax ¼ log2 g= 256 � r0ð Þ� �

For quantitative 1D genomic data, such as RNA-seq or
ChIP-seq or any other coverage-based measure, a tile con-
sists of the data from a 1024-base-pair region of the gen-
ome. The concepts behind the resolution and zoom levels
are the same as for 2D data except that instead of a tile
corresponding to a square of the matrix at a resolution, it
corresponds to a segment of the genome at a given reso-
lution. For qualitative data, the server returns all entries
which intersect the length or area of the tile.
In both 1D and 2D data, the lowest resolution is

shown at zoom level 0. Given a zoom level, z, the tile

visible at genome location lg can be calculated by consid-
ering the width of a tile: tw = r0 * 2

z

tp ¼ lg=tw

Genomes, being composed of chromosomes, do not
have absolute positions. To get around this, we impose a
chromosome ordering for every dataset that is viewable
in HiGlass. This must be specified when the data are
preprocessed.

HiGlass stores multi-scale datasets
Due to the limitations of the visible display, a fixed
amount of data can be shown in any given area. For a
window that is 1024 × 1024 pixels in size, the maximum
resolution that the human genome can be shown at is
approximately 3 million base pairs/pixels. Fetching all
the data from the server is wasteful and unnecessary.
We therefore use file formats that store Hi-C and gen-
omic data at multiple resolutions. For Hi-C data, we use
the cooler (http://github.com/mirnylab/cooler) format
and for genomic data we support the widely used big-
Wig format [49]. Both support the basic query format of
resolution/location. When creating multi-resolution
cooler files, we create resolutions that are multiples of
the powers of 2 in order to create a smooth transition as
the user zooms in and out of the data. While this does
increase the size of the data (Additional file 1: Table S1),
multiple resolutions are necessary to limit the amount of
data that needs to be retrieved from the server when
viewing large portions of the contact map.

The HiGlass server fetches data from files and returns it
to the client on demand
The HiGlass server is the interface between the client
and the data (Fig. 6, Additional file 1: Supplementary
methods). It receives requests for data (tiles) from the
client, opens the data files, and returns only the data
requested. This minimizes the amount of data that needs
to be sent across the network and in turn lowers the
time required to load the data for a given location. Of
the 2,770,448 tile requests to our public server at http://
higlass.io between February 2017 and July 2018,
2,677,856 (> 96.7%) were fetched with a latency of less
0.5 s, a limit beyond which the rates of “observation,
generalization and hypothesis significantly decreased” in
a controlled user study [50].
The server also maintains a registry of available data

files. The client can request a list of available files to pro-
vide the user with an overview of data that are available
for display. To view data in HiGlass, it first needs to be
loaded into the server. Loading the data is done through
either a network request or a command line utility.

Kerpedjiev et al. Genome Biology  (2018) 19:125 Page 10 of 12



Availability and requirements
HiGlass is available as a Docker container and can thus
be run on any operating system as long as it supports
the Docker platform. An active internet connection is
required to fetch the Docker container as well as the
Javascript source files. Documentation for how to run
HiGlass can be found at http://docs.higlass.io.

Additional file

Additional file 1: Figures S1.–S7. Table S1. Supplementary material,
and Supplementary references. (PDF 755 kb)
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