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SUMMARY

Aneuploidy has been recognized as a hallmark of
cancer for more than 100 years, yet no general the-
ory to explain the recurring patterns of aneuploidy
in cancer has emerged. Here, we develop Tumor
Suppressor and Oncogene (TUSON) Explorer, a
computational method that analyzes the patterns
of mutational signatures in tumors and predicts
the likelihood that any individual gene functions
as a tumor suppressor (TSG) or oncogene (OG).
By analyzing >8,200 tumor-normal pairs, we pro-
vide statistical evidence suggesting that many
more genes possess cancer driver properties than
anticipated, forming a continuum of oncogenic
potential. Integrating our driver predictions with
information on somatic copy number alterations,
we find that the distribution and potency of TSGs
(STOP genes), OGs, and essential genes (GO
genes) on chromosomes can predict the complex
patterns of aneuploidy and copy number varia-
tion characteristic of cancer genomes. We pro-
pose that the cancer genome is shaped through
a process of cumulative haploinsufficiency and
triplosensitivity.

INTRODUCTION

A key goal of cancer research is to identify genes whose muta-

tion promotes the oncogenic state. Research over the last 40

years has identified numerous potent drivers of the cancer

phenotype (Meyerson et al., 2010; Stratton et al., 2009; Vogel-

stein et al., 2013). Perhaps the most striking characteristics of

cancer genomes are their frequent somatic copy number alter-

ations (SCNAs) and extensive aneuploidies. Deletions and ampli-

fications of whole chromosomes, chromosome arms, or focal

regions are rampant in cancer, as are other rearrangements
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such as translocations and chromothripsis. Understanding

how these events drive tumorigenesis is a major unmet need in

cancer research.

Though ostensibly random, these alterations follow a

nonrandom pattern that suggests that they are under selection

and are likely to be cancer drivers rather than passengers.

If so, we should be able to explain how they drive tumori-

genesis. A recent clue as to how this might work came from

the integration of a genome-wide RNAi proliferation screen

with focal SCNA information (Solimini et al., 2012). The screen

identified STOP and GO genes that are negative and positive

regulators of cell proliferation, respectively. Hemizygous

recurring focal deletions were enriched for STOP genes

and depleted of GO genes, suggesting that the deletions

maximize their protumorigenic phenotype through cumula-

tive haploinsufficiency of STOP and GO genes. Haploin-

sufficiency describes a genetic relationship in a diploid

organism in which loss of one copy of a gene causes a pheno-

type. The converse is triplosensitivity, in which an additional

copy of a gene produces a phenotype. However, the distribu-

tions of STOP and GO genes were not able to predict

aneuploidy or chromosome arm SCNA frequencies, perhaps

because they represent only one aspect of tumorigenesis

(proliferation) or are too diluted by nonhaploinsufficient genes.

We hypothesized that the drivers of sporadic tumorigenesis

might provide a more representative and potent set of STOP

and GO genes with which to explore this phenomenon.

Furthermore, this gene set may possess a higher frequency

of haploinsufficiency.

In this study, we developed methods to identify tumor sup-

pressor genes (TGSs) and oncogenes (OGs) from tumor DNA

sequences. We implicate many new drivers in cancer causation

and find many more cancer drivers than expected that exist in

a continuum of decreasing phenotypic potential. Furthermore,

we found that the distribution and potency of TSGs, OGs, and

essential genes on chromosomes can explain copy number

alterations of whole chromosomes and chromosome arms

during cancer evolution through a process of cumulative hap-

loinsufficiency and triplosensitivity.
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Figure 1. Prediction of TSGs and OGs

Based on Their Mutational Profile

(A) Schematic representation of ourmethod for the

detection of cancer driver genes based on the

assessment of the overall mutational profile of

each gene. The somatic mutations in each gene

from all tumor samples are combined and classi-

fied based on their predicted functional impact.

The main classes of mutations (silent, missense,

and LOF) are depicted.

(B) Schematic depicting the most important

features of the distributions of mutation types

expected for a typical TSG, OG, and neutral

gene. Compared to ‘‘neutral’’ genes, TSGs are

expected to display a higher number of in-

activating mutations relative to their background

mutation rate (benign mutations), and OGs are

expected to display a higher number of acti-

vating missense mutations and a characteristic

pattern of recurrent missense mutations in spe-

cific residues.

(C) A flowchart delineating the main steps in our

method for identifying TSGs and OGs, from the

classification of the mutations based on their

functional impact to the identification of the best

parameters through Lasso and their use for the

prediction of TSGs and OGs by TUSON Explorer

(or the Lasso method).

(D) Schematic related to (C) depicting the pa-

rameters selected by Lasso employed by TUSON

Explorer for the prediction of TSGs and OGs (HiFI, high functional impact). For TSGs, the parameters are the LOF/Benign ratio, the HiFI/Benign

ratio, and the Splicing/Benign ratio, whereas for OGs the parameters are the Entropy score and the HiFI/Benign ratio.

Also see Figure S1 and Table S1.
RESULTS

Cancer driver genes have been described as mountains and hills

(Wood et al., 2007). Mountains are driver genes that are very

frequently mutated in cancer, whereas hills represent less

frequently mutated driver genes. It has become clear from recent

international sequencing efforts that most potent drivers (moun-

tains) have been discovered. A key issue is how to determine the

identity of the significant but less frequently mutated drivers, the

hills. A recent analysis searching for very high confidence cancer

drivers in a database of�400,000mutations estimated that there

were 71 TSGs and 54OGs (Vogelstein et al., 2013). It is likely that

there also exist additional functionally significant cancer drivers

with weaker phenotypes and lower probabilities that are

selected less frequently. A central question is how to identify

these genes. In principle, with more samples analyzed, greater

statistical significance can be placed on the outliers, allowing

discovery of lower penetrance drivers. However, it is likely that

there is more information present in the current data that may

allow these lower frequency events to be detected.

To approach this question, we sought to devise a method to

predict TSGs and OGs in cancer based on the properties of

gene mutation signatures of these two distinct classes of driver

genes.We hypothesized that the proportion of the different types

of mutations with different functional impact would be informa-

tive in predicting these two types of drivers (Figure 1A). Each

gene has a background mutation rate that is dependent on tran-

scription, replication timing, and possibly other unknown param-
eters, and this rate can be estimated by the number of mutations

that are unlikely to affect its function (such as silent or func-

tionally benign mutations), whose observed frequency is not

dependent on selective pressure during cancer evolution. The

proportion of functionally relevantmutations of particular classes

compared to this backgroundmutation rate will be dependent on

the degree of selection and will predict the likelihood that a gene

will act as a cancer driver. TSGs and OGs can be distinguished

among the cancer driver genes based on the characteristic

pattern of the different types of mutations (i.e., loss of function

[LOF], missense, silent) that are typically observed for those

two classes of drivers relative to neutral genes, as illustrated in

Figure 1B.

Identification of Parameters Predicting TSGs and OGs
We set out to determine the most reliable parameters for the

prediction of TSGs and OGs in an unbiased way (Figure 1C).

We used sequence data from >8,200 tumors from the COSMIC

(Forbes et al., 2010) and TCGA (http://cancergenome.nih.gov/)

databases and a recently published database (Alexandrov

et al., 2013) comprising >1,000,000 mutations (Figure S1 and

Table S1 available online). We defined a list of 22 parameters pri-

marily based on the different classes of mutations and used the

classification method Lasso and three training sets of known

TSGs and OGs (from the Cancer Gene Census, Futreal et al.,

2004) (Table S2A) and neutral genes to identify those parameters

that best predict the two classes of driver genes (see Experi-

mental Procedures). We employed PolyPhen2 to predict the
Cell 155, 948–962, November 7, 2013 ª2013 Elsevier Inc. 949
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functional impact of missensemutations in order to classify them

into those with potentially high (HiFI) or low (LoFI) functional

impact (Adzhubei et al., 2010). LoFI mutations are typically

conservative amino acid changes or changes in poorly

conserved residues. We defined the combination of silent and

LoFI missense as ‘‘Benign’’ mutations to provide a larger, more

reliable value for estimating background mutation rates. We

also defined the LOF mutations as the combination of nonsense

and frameshift mutations. As a majority of known OGs show an

atypical distribution of recurrent mutations in one or a few key

residues, we utilized entropy, a well-defined concept in physics

and information theory (Shannon andWeaver, 1949), to measure

the degree of reoccurring mutations within a gene. The Entropy

score represents the weighted sum of the probabilities, across

a gene, that a site is mutated (see Experimental Procedures).

The best parameters found by Lasso for the prediction of

TSGs andOGs are described below and are visualized in Figures

1D and 2.

Tumor Suppressors versus Neutral Genes

Themost predictive parameters for TSGs are: (1) the ratio of LOF

mutations to Benign (p = 2.51 3 10�28, Wilcoxon, one-tailed

test); (2) the ratio of Splicing to Benign mutations (p = 4.6 3

10�13); (3) the ratio of HiFI missense to Benign mutations (p =

3.2 3 10�14); and (4) high-level deletion frequency (p = 1.46 3

10�8). A 20-fold cross-validation shows a high prediction accu-

racy of 93.2% on these training sets (Figure 2A and Table S2B).

Oncogenes versus Neutral Genes

The most predictive parameters for OGs are: (1) the entropy for

missense mutations (p = 2.2 3 10�14); (2) the ratio of HiFI

missense mutations to Benign mutations (p = 1.2 3 10�9); and

(3) high-level amplification frequency (p = 1.4 3 10�6). The

20-fold cross-validation accuracy is 85.2% (Figure 2B and

Table S2B).

Tumor Suppressor Genes versus Oncogenes

One important aim of our prediction method is the discrimination

between TSGs and OGs. The most predictive parameters be-

tween these two sets are: (1) the ratio of LOF to Benignmutations

(p = 2.5 3 10�16); (2) high-level amplification frequency (p =

1.3 3 10�9); (3) high-level deletion frequency (p = 7.6 3 10�6);

and (4) the ratio of Splicing to Benign mutations (p = 9.9 3

10�7). The 20-fold cross-validation accuracy is 91.9%. Overall,

Lasso identified parameters that make intuitive sense for these

classes of genes and clearly delineated TSGs and OGs from

each other and from neutral genes. In sum, we identified

independent parameters that strongly predict and distinguish

between TSGs and OGs (Figures 2C and 2D and Table S2B).

Identifying OGs and TSGs
Having identified the most predictive parameters, we developed

a method we call Tumor Suppressor and Oncogene Explorer

(TUSON Explorer) that combined selected parameters to derive

an overall significance and ranking for each gene as a potential

TSG or OG (Figure 1D). First, we derived a p value for each

gene for the ratios of LOF/Benign, Splicing/Benign, HiFI/Benign,

and Missense Entropy based on the comparison to the neutral

gene set (see Experimental Procedures). For the LOF/Benign

parameter, we applied a correction to normalize for the nonuni-

form codon usage among genes for the occurrence of nonsense
950 Cell 155, 948–962, November 7, 2013 ª2013 Elsevier Inc.
mutations (see Experimental Procedures). Finally, we used an

extension of Liptak’s method to provide a combined p value

for the selected parameters for each gene. For TSGs, the com-

bined p values (and q values) were derived from individual values

from the LOF/Benign, Splicing/Benign, and HiFI/Benign param-

eters. For OGs, the combined values were derived from the

Missense Entropy and the HiFI/Benign parameters (Figure 1D).

The LOF/Benign parameter for discrimination between TSGs

and OGs was subsequently utilized to define a final list of OGs

and TSGs (see Experimental Procedures). TUSON Explorer

does not take into account SCNA information, and this allows

us to perform a rigorous analysis of our cancer driver genes for

their abilities to predict the frequency of deletion and amplifica-

tion (see below).

As a second strategy to predict the probability of a given gene

being a TSG or OG, we employed the Lasso model, which also

takes into account SCNAs (see Experimental Procedures). The

ranked lists of predicted TSGs and OGs by both Lasso and

TUSON Explorer are contained in Tables S3A and S3B. This

list provides a facile look-up table that can be easily sorted for

different parameters for all those who are interested in the muta-

tional behavior of a given gene in this data set.

Both ranking strategies performed similarly and eliminated the

problems of inappropriately including giant genes and genes in

highly mutable regions (Dees et al., 2012), without the need to

consider expression level or replication timing (Lawrence et al.,

2013). Importantly, both of our strategies distinguish between

TSGs and OGs, which are predicted to have functionally oppo-

site roles in the control of cell growth and have different implica-

tions for potential cancer therapeutics.

Estimates of the Numbers of TSGs and OGs
A ranking of this nature consists of truly significant genes mixed

with false-positive genes that obtain low p values by chance un-

der the null hypothesis. Thus, we sought to get an estimate of the

minimum number of TSGs and OGs by analyzing the distribution

of the combined p values for each class of cancer driver genes.

To achieve this, we utilized a histogram-based method (Mosig

et al., 2001) to estimate the number of rejected hypotheses

from the distributions of the combined p values calculated for

each gene. With our data set, this method estimated �320

TSGs and �250 OGs (Extended Experimental Procedures).

This long list of TSGs and OGs suggests that there are many

more drivers than anticipated and that they exist in a continuum

of decreasing potency (Discussion and Figure 7A). For the

analyses described below, we considered the top 300 TSGs

(q value < 0.18) and 250 OGs (q value < 0.22) as our working lists.

Given the fact that the deviation of the mutation signatures from

the normal pattern is a function of the degree of selection and the

frequency of mutation, increasing the number of tumor samples

will detect even more cancer drivers of progressively weaker

selective pressure. To determine the potential number of TSGs

upon additional sequencing, we applied TUSON and estimated

the number of TSGs (using Mosig’s method) on random subsets

of the data set with increasing numbers of samples and

observed that the number of predicted TSGs continues to

increase with additional samples. We observed that the rate of

increase in the predicted number of TSGs decreases slightly at
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Figure 2. Best Parameters Selected by Lasso for the Prediction of TSGs and OGs

(A–C) Box plot representations of the distribution of the values for the indicated parameters in the neutral genes (gray), TSG (red), and OG training set (green). The

median, first quartile, third quartile, and outliers in the distribution are shown. The p value for the difference between the two indicated distributions is shown as

derived by the Wilcoxon test.

(A) Box plots showing the distribution of LOF/Benign, HiFI missense/Benign, and Splicing/Benign ratios and the high-level frequency of focal deletion among the

neutral gene set and the TSG set.

(B) Box plots showing the distribution of Missense Entropy, HiFI missense/Benign, mean of PolyPhen2 score, and the high-level frequency of focal amplification

among the neutral gene set and the OG set.

(C) Box plots showing the distribution of LOF/Benign and Splicing/Benign ratios, high-level frequency of deletion and amplification among the TSG and OG sets.

(D) Plot of the LOF/Benign ratio and Missense Entropy for each gene, the best parameters for discriminating between TSGs and OGs. Specific genes with high

levels of LOF/Benign or Missense Entropy are shown along with their p values for being a TSG or an OG (TUSON Explorer).

Also see Figure S2 and Tables S2 and S3.
the highest number of samples examined (Figure S2), indicating

a possible plateau at very large number of samples.

PAN-Cancer Mutational Analysis
Gene Ontology (GO) term and pathway analysis of our list of po-

tential TSGs showed enrichment for functions that are highly
relevant to tumorigenesis, including cell-cycle control, embry-

onic development, promotion of differentiation, apoptosis, and

blood vessel development (Table S3C and Figure 3). In addition,

there was a strong enrichment for transcriptional regulation (q =

6.19 3 10�11) and chromatin modification (q = 5.7 3 10�12).

Furthermore, we noticed an enrichment for genes involved in
Cell 155, 948–962, November 7, 2013 ª2013 Elsevier Inc. 951
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Figure 3. Representation of Predicted TSGs and OGs within Their Cellular Pathways

Placement of predicted cancer drivers within specific cellular pathways. TSGs and OGs were predicted by TUSON Explorer. The predicted TSGs and OGs

belonging to many known cellular pathways or complexes are shown, along with how they generally correspond to the hallmarks of cancer. TSGs are shown in

red, whereas OGs are shown in green; color intensity is proportional to the combined p value as indicated. For some pathways, additional genes absent from the

predicted TSGs andOGs were added andmarked in gray for clarity of the pathway representation. Although several genes are known to affect multiple pathways

and hallmarks, only one function is presented for the sake of limiting the complexity of the diagram. An external black box outside of the colored gene box

highlights genes previously less well characterized for their roles in tumorigenesis.

See also Figure S3 and Table S3.
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Figure 4. Representation of Mutation

Patterns in Representative Predicted TSGs

and OGs

(A–F) The mutational patterns of selected TSGs

and OGs are depicted. For TSGs (A–D), the loca-

tions of LOF (red) and silent (white) mutations

within the coding regions are shown. For OGs

(E and F), the location of recurrent missense mu-

tations (orange) and of LOF mutations (red) within

the coding regions are shown. USP28, TP53BP1,

and RASA1 are previously less well-characterized

candidate TSGs in the TUSON PAN-Cancer anal-

ysis. SPOP and PPP2R1A are previously less well-

characterized candidate OGs.

See also Table S3.
the immune system (q = 5.8 3 10�3), particularly in antigen pro-

cessing and presentation represented by the MHC class I sys-

tem. Two major HLA genes (HLA-A and HLA-B) were in the top

90 candidate TSGs (q < 0.0002), and the b2 microglobulin

(B2M) gene, which is an obligatory complex component of

both HLA proteins, ranked 43rd (q = 9.2 3 10�9) on our TSG

list, underscoring that escaping from immunosurveillance is a

significant selective force in tumorigenesis (Hanahan and Wein-

berg, 2011) (Figures 3 and 4B). Furthermore, IL32, which stimu-

lates the immune responses of NK cells and CD8+ T cells that

monitor MHC status (Conti et al., 2007), is also in the top

50 TSGs. Unexpectedly, negative regulation of cell adhesion

(q = 4.32 3 10�4) was enriched, indicating that increase of cell

adhesionmay confer a selective advantage to tumor cells. Tradi-

tionally it has been thought that reducing adhesion promotes

tumorigenesis; however, recent findings suggest a potentially

different role for cell-to-cell-adhesion. First, it has been shown

that circulating tumor cells exist in clusters in the blood (Hou

et al., 2011). Second, PVRL4, which ranked well in our Lasso

OG list, was shown to promote transformation through cell adhe-

sion, as do several other oncogenes likeMYC, KRAS, PI3K, and

loss of PTEN (Pavlova et al., 2013). Thus, promotion of adhesion

may be a driving force in tumorigenesis.
Cell 155, 948–962,
New Potential Cancer Drivers
New components of pathways previously

linked to tumorigenesis have also been

detected (Figure 4). For example, the

DNA damage response pathway is cen-

tral to the maintenance of genomic

stability, and both members of a key

DDR complex, the TP53BP1/USP28

complex (Zhang et al., 2006), which are

substrates of the ATM kinase (Matsuoka

et al., 2007), were identified within the

top 110 TSGs (q < 0.15, Figures 3 and

4A–4C). Two components that regulate

ATM-dependent chromatin remodeling,

UBR5 and TRIP12 (Gudjonsson et al.,

2012), are also high on the TSG list (q <

0.25). RBMX, which controls ATR and

BRCA2 expression (Adamson et al.,

2012), ranked 76th on the list (q = 1.1 3
10�4). There are several candidate OGswith enzymatic functions

that could serve as drug targets (Figure 4E and Tables S3B and

S7B), including three phosphatases (PPP6C, PTPN11, PTPRF)

and regulators such as PPP2R1A, as well as several kinases

(MAPK1, MAPK8, BRSK1 among others). There are many other

new potential TSGs and OGs on these lists that cannot be dis-

cussed here due to limitations of space, but several of these

are presented in Figure 3.

Consistent with the enrichment of cell-cycle and apoptosis GO

terms, integration of the PAN-Cancer analysis with functional

gene sets revealed that essential genes are significantly

depleted for deleterious mutations (see below). An exception

to that finding was the presence of RPL22, RPL5, and RPL18

large ribosomal subunit genes in the top 210 TSGs (q < 0.07;

Figure 3). Interestingly, heterozygous mutations in ribosomal

genes promote tumorigenesis in zebrafish (Lai et al., 2009).

Furthermore, familial mutations in ribosomal proteins have

been associated with Diamond-Blackfan anemia, which is asso-

ciated with an increased risk of leukemia (Willig et al., 2000).

Analysis of Individual Tumor Types
Identification of cancer drivers using the PAN-Cancer analysis

favors discovery of genes whose functions contribute to many
November 7, 2013 ª2013 Elsevier Inc. 953
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Figure 5. Behavior of Functional Gene Sets Relative to TSG Parameters

(A and B) Box plot representation of the distribution of the values for the indicated parameters in the neutral genes compared with the essential genes and STOP

genes. The median, first quartile, third quartile, and outliers in the distribution are shown. The p value for the difference between the two indicated distributions is

shown as derived by the Wilcoxon test.

(A) Box plots showing the distribution (orange) of LOF/Silent, Splicing/Benign, and HiFI missense/Benign ratios (gray) and the high-level frequency of focal

deletion among the neutral gene and STOP gene sets.

(B) Box plots showing the distribution of LOF/Silent, LOF/Kb, HiFI missense/Benign ratios and the high frequency of focal deletion among the neutral gene set

(gray) and the essential gene set (light blue).

See also Tables S3A, S5A, and S5B.
different types of cancer. Certain cancer drivers may miss the

cutoff for significance in the PAN-Cancer analysis because

they are primarily involved in controlling tissue-specific differen-

tiation networks or because they are rate limiting for a particular

function in only certain tissues. Thus, we anticipate that new

drivers can be discovered through analysis of mutation signa-

tures in individual tumor types despite their lower numbers. We

performed the same analysis as above for each of 20 tumor

types (Tables S1, S4A, and S4B). This analysis found many

TSGs that are specific for one tissue type such as CDH1 and

GATA3 in breast adenocarcinoma, VHL and PBMR1 in kidney

clear renal cell carcinoma, and ID3 and NPM1 in hematological

malignances (Table S4A). Genes whose FDRs for the different

subtypes were below 0.25 were all already relatively highly

ranked in the PAN-Cancer analysis. This indicates that the ma-

jority of tissue-specific drivers were detected in the PAN-Cancer

analysis.

We wanted to determine how many new TSGs might be

expected from the analysis of a new cancer subtype. For this,

we calculated the number of TSGs in the whole data set lacking

an individual tumor type (Tables S4C) and compared this list to

the TSGs in that tumor type, which averaged 14 genes.We found

that the average new cancer type added about five TSGs to the

PAN-Cancer list. Thus, on average,�70% of the TSGs detected

in a single tumor type were already detected in the PAN-Cancer

analysis performed after excluding the mutations in that type of

tumor. This suggests that most cancer genes selected during

tumor evolution act in cellular pathwayswhose role in tumorigen-

esis is widespread among different tumor types.
954 Cell 155, 948–962, November 7, 2013 ª2013 Elsevier Inc.
Analysis of TSGs and OGs
Behavior of Functional Gene Sets

The PAN-Cancer mutation data set allows us to interrogate the

behavior of functional gene sets derived through experimental

approaches. We previously showed that STOP genes are over-

represented in regionsof deletion (Solimini et al., 2012). Examina-

tion of their abundance in the set of candidate TSGs showed that

STOP genes are significantly enriched in the TSG set (p = 0.0031,

Fisher’s exact test) comprising �10% of the top 300 TSGs (68%

more than expected). The STOP gene set showed a 50%

higher ratio LOF/Silent than the average for the neutral gene set

(p = 2.0 3 10�18; Figure 5A). Furthermore, the STOP genes

showed a significant increase in the Splicing/Benign and HiFI/

Benign ratios, two of the most potent parameters for the predic-

tion of TSGs (Figure 5A). This analysis further underscores the

fundamental connection between cell proliferation and cancer.

We next investigated a high-confidence set of 145 genes

predicted to be essential at the cellular level based on their

housekeeping cellular functions and their high evolutionary

conservation (Table S5A and Experimental Procedures). This

set was depleted from regions of recurring deletions (Beroukhim

et al., 2010) by 43% (p = 0.0198, Fisher’s exact test), and a larger

set of 332 essential genes was depleted by 25% (p = 0.014).

Examination of the LOF/Silent ratio showed that, for the set of

145 genes, the frequency of LOF /silent was 27% lower than

the rate for the neutral gene set (p = 5.8 3 10�5; Figures 5B

and S5B). Additionally, the LOF/kb and HiFI/Benign ratios were

also significantly decreased in the essential gene set. Given

that the vast majority of the mutations and deletions in question



are heterozygous, the reduced LOF mutation and deletion fre-

quency of the essential genes as a group argues that between

25% and 45% are haploinsufficient. Interestingly, our TSGs

were enriched in recurring focal deletions (68%, p = 0.000281)

and were depleted from recurring amplifications (28%, p =

0.015), whereas the OGs were enriched in amplifications (25%,

p = 0.046) and depleted from focal deletions (23%), indicating

that amplifications are also likely to be Cancer Gene Islands.

General Properties of Cancer Drivers
High Interactivity

To search for unique properties of TSGs and OGs, we examined

the degree to which these drivers participate in protein com-

plexes using the CORUM database of experimentally validated

human protein complexes (Ruepp et al., 2010). We found that

both TSGs andOGswere significantly more likely to be in protein

complexes than a typical protein. The 13.4%of all proteins found

in CORUM are in a complex. However, 36.7% of the predicted

TSGswere in complexes (p = 3.13 10�24), and 26.4%of the pre-

dicted OGs were in complexes (p = 3.5 10�8; Figure S3A).

High Betweenness

A second property of complexes is the degree to which they are

connected to other proteins and complexes. We explored this

by assessing a property called ‘‘betweenness,’’ which is propor-

tional to the number of times the protein is part of the shortest

paths between all pairs of proteins in a network. High between-

ness indicates a greater connectivity. The TSG and OG candi-

date gene lists were mapped onto the most current BioGRID

human protein-protein interaction network (Stark et al., 2006).

Both the predicted TSGs and OGs show a high degree of

betweenness (TSG p = 6.16 3 10�32, OG p = 1.68 3 10�6; Fig-

ure S3B), indicating that they are optimally positioned to impact

information flow through networks.

Greater Length

Proteins with greater interactivity often have more domains.

Thus, we examined gene length. Cancer drivers are significantly

longer than the average gene (1,700 nt), with the mean for TSGs

at 3,234 nt (p = 23 10�21) and OGs at 2,107 nt (p = 9.7 3 10�6).

Importantly, this observation is also characteristic of the genes in

our training sets (TSGs, 4,133 nt, p = 6.73 10�10; OGs, 2,260 nt,

p = 0.0016).

An Unusually High Concentration of TSGs on the X
Chromosome
While examining the distribution of TSGs across chromosomes,

we found that the X is unusually enriched for TSGs (p = 0.0042,

exact binomial test) relative to autosomes. Examining the top

300 TSGs, we find that, although only 3.9% of all genes are on

the X, it contains 7.3% of all predicted TSGs (86%more than ex-

pected) and was the only chromosome with a significant enrich-

ment of TSGs (Table S5C). Given the fact that the X is functionally

haploid in both males and females, this observation has certain

implications for evolutionary selection of cancer drivers during

tumorigenesis and haploinsufficiency of TSGs (see Discussion).

Interestingly, in the top 400 TSGs, we found two potential

TSGs on the Y, ZFY and UTY (q < 0.22). Both have homologs

on the X that escape X inactivation, each of which also displays

tumor suppressor properties: ZFX (p = 0.019) and UTX/KDM6A
(p = 3.3 3 10�46). This could explain the observation that

frequent Y nullisomy is observed in prostate, renal cell, head

and neck, Barret’s esophageal adenocarcinoma, bladder,

pancreatic adenocarcinoma, and other cancers at frequencies

of 30%–80% (Bianchi, 2009; Kowalski et al., 2007).

Furthermore, we analyzed the silent mutation rates along

entire chromosomes and found an enhanced mutation rate

on the X chromosome relative to autosomes in males (30%

increase, p = 1.1 3 10�9). This increase is even greater in

females (77.5%, p = 1.63 10�11) (Table S5D). Possible explana-

tions for this phenomenon are detailed in the discussion.

Distribution and Potency of Cancer Drivers on
Chromosomes Predict Arm and Chromosome SCNA
Frequencies
In addition to focal SCNAs, a less frequent but significant chro-

mosomal alteration is whole-arm loss or gain. We hypothesized

that the distribution and potency of TSGs and OGs on chromo-

somes might explain the average frequency of chromosomal

whole-arm SCNAs seen in cancer. To this end, we generated a

chromosome arm score, Charm, that provides an assessment

of each arm based on the density of TSGs and OGs and their

potency (weights of TSGs and OGs are based on their rank on

their respective lists and serve as a metric for their potency).

The Charm score represents ameasure of the amount of positive

or negative growth and survival potential that wild-type OGs or

TSGs might normally impart to a given arm and therefore how

SCNAs might impact cancer evolution by altering this balance

during tumorigenesis. Importantly, for Charm calculations, we

employed the parameters from TUSON Explorer, which does

not include copy number information. To lessen the diluting

impact of false positives for this analysis, we applied stringency

cutoffs of a q value of 0.25 for TSGs and 0.35 for OGs and a min-

imum of 10missensemutations for OGs and 8 LOFmutations for

TSGs to get a stringent list of 264 TSGs and 219 OGs (see Exper-

imental Procedures). The analysis of the CharmTSG score versus

frequency of chromosomal arm deletion revealed a strong posi-

tive correlation (r = 0.578, p = 5.8 3 10�5, Pearson correlation;

Figure 6A and Table S6A). Interestingly, the CharmTSG score

also showed a strong negative correlation with arm amplification

frequency, and thus a high CharmTSG score indicates a signifi-

cantly reduced tendency for a chromosome arm to be amplified

(r = �0.59, p = 2.8 3 10�5; Figure 6B). Simple TSG densities

without weighting by rank also showed correlations with arm

deletions (Figure S4A), but these correlations are improved by

Charm. In contrast to CharmTSG, the CharmOG score showed a

negative correlation with arm deletion frequency (r = 0.52, p =

3.2 3 10�4; Figure 6C). Moreover, the density of OGs positively

correlated with arm amplification frequency (r = 0.45, p = 1.8 3

10�3, Figure 6D) but was not improved by the Charm score

(data not shown).

We reasoned that, like GO genes in focal deletions, the chro-

mosome arms most frequently deleted in cancer would be

depleted of genes that promote the fitness of cancer cells. Using

our in silico list of essential genes, we estimated their fitness

potency by estimating their avoidance of damaging mutations

using the (LOF + HiFI)/Benign ratios. By determining a CharmEss

score for each arm, we found a negative correlation between
Cell 155, 948–962, November 7, 2013 ª2013 Elsevier Inc. 955
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Figure 6. Charm Score, Chrom Score, and Copy Number Alterations: Correlation Analysis

(A–F) The Pearson’s correlation analysis of the Charm scores or Density score for the indicated gene sets (A–D) and/or combinations of these sets (E and F)

relative to the frequency of arm-level deletion or amplification. Ess, essential genes.

(G and H) The correlations of the Chrom scores (ChromTSG-OG-Ess and ChromTSG-OG) relative to the chromosome-level deletion or amplification frequency. The

Charm scores refer to a weighted density of TSGs, OGs, or essential genes present on each chromosome arm, where each TSG or OG is weighted based on its

rank position within the list of predicted TSGs and OGs ranked by TUSON Explorer and each essential gene is weighted based on its (LOF + 1/23 HiFI)/Benign

ratio. The Chrom score is the equivalent of the Charm score for whole chromosomes.

See also Figures 4 and 5 and Table S6.
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CharmEss scores and the frequency of arm-level deletions (r =

0.34, p = 1.6 3 10�2; Figure S4D). No correlation was found

between CharmEss and amplification frequency, as expected.

Because the CharmTSG, CharmOG, and CharmEss scores

correlate with arm-level deletion, we combined them by giving

a positive weight to the CharmTSG score and a negative weight

to the CharmOG and CharmEss scores to derive a cumula-

tive CharmTSG-OG-Ess score. The CharmTSG-OG-Ess score gave

an even stronger positive correlation with arm deletion fre-

quency (r = 0.77, p = 4.7 3 10�9; Figure 6E and Table S6A).

For amplification, we used the CharmTSG-OG score and found a

strong negative correlation with amplification frequency (r =

0.65, p = 3.63 10�6; Figure 6F). We also combined amplification

and deletion frequencies into a single score for copy number

variation on each arm and compared that to the CharmTSG-OG

score. This also gave a strong significant correlation (r = 0.74,

p = 2.7 3 10�8; Figure S5A).

We extended our analysis of cancer driver scores and SCNAs

to whole-chromosome aneuploidy using its Charm equivalent

score that we call Chrom (Figures 6G, 6H, S4E–S4H, S5B,

S5E, and S5F). ChromTSG significantly correlated with chromo-

some deletion frequency (r = 0.66, p = 3.7 3 10�4; Figure S4E)

and anticorrelated with amplification frequency (r = 0.54, p =

4.0 3 10�3; Figure S4F). Impressively, when we combined

all three classes—TSGs, OGs, and essential genes—the

ChromTSG-OG-Ess was strongly predictive of the frequency of

chromosome loss (r = 0.80, p = 3.2 3 10�6; Figure 6G), and

ChromTSG-OG was predictive of chromosome gains (r = 0.64,

p = 5.5 3 10�4; Figure 6H). Very similar results were obtained

using just the TUSON ranking without stringency cutoffs (Figures

S5C–S5F and Table S6B).

Together, these data strongly argue that a selective force in

generating chromosomal arm and whole-chromosome SCNAs

derives from the integration of the relative densities and

potencies of positively and negatively acting cancer drivers on

a particular chromosome. Thus, the SCNAs in cancer genomes

may be selected during tumor evolution through cumulative

haploinsufficiency for deletions (as previously proposed for

STOP genes in focal deletions [Solimini et al., 2012]) and through

cumulative triplosensitivity for amplifications (see Discussion).

DISCUSSION

In this study we analyzed the mutational data from >8,200 spo-

radic cancers to predict cancer driver genes. We determined

the most predictive parameters for identifying TSGs and OGs

and used them to develop an algorithm called TUSON Explorer

to predict the probability that an individual gene functions as a

TSG or an OG in cancer. This unbiased approach demonstrated

that the probability of being a cancer driver can be assessed by

the significance of the distortion of itsmutational pattern from the

pattern expected for a ‘‘neutral’’ gene. Combining data from our

analyses of drivers and copy number changes, the average

tumor in our data set has a mean number of �1 OG mutation,

�3 TSG mutations (LOF and damaging missense), �3 chromo-

somal arm gains, �5 chromosomal arm losses, �2 whole-

chromosome gain, �2 whole-chromosome losses, �12 focal

deletions, and �11 focal amplifications (Zack et al., 2013).
Thus, SCNAs comprise a very large proportion of cancer-driving

events.

A Continuum of Cancer Driver Genes
A central conclusion from this study is that there are likely to be

many more cancer drivers than anticipated. Our estimate of the

number of TSGs based either on the combined significance of

the different parameters or on the single best parameter for the

prediction of TSGs, i.e., the LOF/Benign ratio, predicted �320

TSGs with the current database from 8,200 tumors. Likewise,

we also predict more OGs than anticipated. The view of the can-

cer landscape emerging from our analysis does not contain a

clear cutoff for predicting cancer drivers. Instead, there exists

a continuum of decreasing probability of a given gene being a

driver (either TSG or OG). This probability is revealed by the

degree of selection that the gene experiences during tumor evo-

lution, which should be proportional to the phenotypic effect

caused by its loss or gain. This continuum of decreasing potency

of potential cancer drivers is likely to correspond to a continuum

of increasing numbers of genes with decreasing phenotypic

severity, as illustrated schematically in Figure 7A. In addition,

we hypothesize that events that simultaneously affect multiple

weak drivers can cumulatively have an effect equal to a single

potent driver. Our modeling of the progressively higher number

of driver genes identified as increasing numbers of tumors are

analyzed suggests that this number will continue to climb as

more sequence information becomes available but may be

beginning to plateau. However, the newly identified drivers are

likely to display progressively less potency with lower therapeu-

tic significance. This is analogous to GWAS studies for which

increasing sample sizes allow the identification of progressively

weaker acting variants.

Our analysis provides a probability of each gene being a can-

cer driver, and as such, there will be false positives regardless of

the threshold of minimum probability that we employ. Identifying

bona fide drivers from the regions with significant p values but

higher FDR values, i.e., weaker phenotypic signatures, can be

aided by considering other information such as their involvement

in SCNAs, biochemical connections to known OGs and

TSGs, and functional information gleaned from the literature.

These heuristic methods can be used to increase confidence

and rescue genes onto the likely cancer driver list (Tables S7A

and S7B).

PAN-Cancer and Tissue-Specific Analysis
Analysis of individual tumor types identified distinct sets of

drivers in each tumor type, but the majority of these were

also identified in the PAN-Cancer analysis as lower confidence

candidates (Tables S4A–S4C). Thus, although there is clearly

tissue specificity, there is still significant overlap among

different tumor types and a PAN-Cancer analysis samples a

sufficient number of similar tumors to detect most of the largely

tissue-specific or tissue-biased cancer drivers. Our analysis

suggests that significantly deeper sequencing of individual tu-

mor types is unlikely to uncover many new potent drivers

beyond what we have already identified and further sequencing

is likely to suffer from diminishing returns. This view is consis-

tent with a recent review that argues that nearly all potent
Cell 155, 948–962, November 7, 2013 ª2013 Elsevier Inc. 957
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Figure 7. Cumulative Haploinsufficiency and Triplosensitivity Shape the Cancer Genome

Illustrative schematics of different concepts highlighted in the Discussion.

(A) The phenotypic continuum of cancer drivers.

(B) The cancer gene island model for focal SCNAs.

(C) The cumulative gene dosage balance model for predicting the patterns of aneuploidy. (The panel depicts the concept for arm-level SCNAs.)

(D) Comparison of the predictions of Knudson’s Two-Hit Hypothesis for TSGs compared to the Haploinsufficiency Hypothesis presented in this study.
drivers have been identified (Vogelstein et al., 2013).

Sequencing of more rare and relatively unexplored cancer

types may identify a few novel potent drivers that are specific

to those tumor types, but the vast majority of potent drivers

will already have been seen in other cancers. The major effects

of continued sequencing will likely be to solidify the continuum

by bringing much weaker drivers into the realm of statistical

significance.

Properties of New Potential Cancer Driver Genes
Analysis of the lists enriched for cancer drivers revealed several

general properties that distinguish them from nondriver genes.

The lists of both TSGs and OGs are strongly enriched both for

residence in protein complexes and for a property known as

betweenness, which is a measure of the degree to which a set

of genes is enriched for hubs within an interaction network.

Thus, the driver genes are much more highly connected

than the average protein in the human gene network and
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are longer. Highly connected nodes are better positioned to

control the flow of information, and their removal or hyperactiva-

tion will have the highest impact across a network due to their

centrality.

Unexpected Properties of the X Chromosome
Given the potentially deleterious effects of mutating TSGs, we

anticipated that TSGs would be depleted from the X chro-

mosome by natural selection, as the X is haploid in males and

is functionally haploid in females due to dosage compensation.

However, our analysis revealed just the opposite—namely, that

the X has 86% more TSGs than expected. Oncogenes, on the

other hand, are not overrepresented on the X. The likely explana-

tion is that a deleteriousmutation in a TSG on the X ismore pene-

trant because there is not a WT copy to compensate for its loss.

This further suggests that natural selection has not completely

depleted TSGs from the X, possibly because cancer is largely

a postreproductive disease.



We found a higher mutation rate for the X than for autosomes,

and this is further exaggerated in females. In females, the addi-

tional increase in X mutability is likely due to the presence of

the inactive X, which has very little transcription and, hence,

less transcription-coupled repair and is enriched in late-repli-

cating heterochromatin, which tends to be more mutagenic

(Stamatoyannopoulos et al., 2009). The mechanism underlying

these differences and their biological significance remains to

be determined. However, these differences might indicate that

the mutation rates of whole chromosomes are set by evolution

and that the higher mutability of the X is advantageous over

evolutionary time if it also occurs in the germline.

Haploinsufficiency and Cancer
The clonal expansion theory of tumorigenesis argues that, in

order for an individual mutation to be selected, it must cause

an expansion of the clone derived from that mutant cell by

increasing its relative proliferation and survival (Vogelstein and

Kinzler, 1993). This is intuitive for OGs, as they are dominant,

but it is less so for TSGs. For a hemizygous mutation in a TSG

to be selected in cancer, we have to assume that either the

mutation is dominant negative or the TSG is haploinsufficient.

Our current analysis of the degree to which essential genes are

absent from hemizygous recurring focal deletions, coupled

with the reduced frequency with which essential genes experi-

ence LOF mutations in tumors, conservatively suggests �30%

haploinsufficiency overall among human genes (Experimental

Procedures). A recent analysis of haploinsufficiency by the

mouse knockout consortium (White et al., 2013) found that

42% of genes examined produced a phenotype when heterozy-

gous, similar to our estimates. Evidence suggesting that our

sporadic TSG list is largely haploinsufficient comes from a com-

parison of the enrichment in focal deletions of STOP genes

versus our sporadic TSGs. STOP genes, which are TSG-like,

are enriched by 20% (Solimini et al., 2012). If we assume that

only 30% of this gene set is haploinsufficient and that all of

the selective enrichment comes from haploinsufficient genes,

then a list of purely haploinsufficient STOP genes would be

expected to be enriched by 67%. Perhaps coincidentally, our

list of TSGs is enriched 68% in recurring focal deletions, sug-

gesting that a significant proportion, and possibly all, of sporadic

TSGs are haploinsufficient.

We propose that two classes of TSGs might exist: those that

are haploinsufficient and contribute to sporadic cancer and

those that are haplosufficient and do not significantly contribute

to sporadic cancer through mutation. Circumstances under

which organisms inherit only one functional copy of those haplo-

sufficient TSGs might result in cancer because loss of the sec-

ond allele would produce a selectable phenotype. This situation

occurs with familial TSGs and the classic Two-Hit model of

tumorigenesis. Our hypothesis is consistent with the fact that,

out of a list of 73 familial TSGs culled from the literature, only

32% of them had a combined q value <0.25 in the PAN-Cancer

analysis (Table S3D). Another circumstance with only one func-

tional allele per cell occurs on the X, where we see a �86%

higher density of TSGs than on the autosomes. If the predicted

rate of �30% haploinsufficiency is correct, then one might

expect a �200% increase over autosomes, but negative selec-
tive pressure on the X could have reduced that number. Thus,

it is possible that there are actually similar densities of TSGs

on the X and autosomes (haploinsufficient sporadic TSGs and

haplosufficient potential TSGs), but those on the X realize their

tumorigenic potential at a higher rate than do those on the

autosomes.

The PAN-Cancer Mutational Analysis Predicts
Aneuploidy in Cancer
Aneuploidy is a hallmark of cancer and can have both advanta-

geous and deleterious consequences for cells (Tang and

Amon, 2013; Luo et al., 2009), but there is no general theory

that explains how patterns of aneuploidy emerge. Knowing the

identity and potential potency of cancer drivers has allowed us

to uncover a driving force behind selection of arm- and chromo-

some-level SCNAs. Our analysis using Charm and Chrom as an

integrated assessment of the density and potency of the different

classes of cancer driver genes on chromosomes displayed a

robust ability to predict the patterns of whole-arm amplifications

and deletions and aneuploidy (Figures 6, S4, and S5). The fact

that the Charm score improves the correlations with SCNAs

compared to the simple gene density of the different classes of

genes indicates that the ranking of driver genes by TUSON

Explorer is likely to represent an accurate estimate of the

potency of their phenotypic effect in cancer and further supports

the continuum theory.

DensOG and CharmOG do not predict arm amplification as well

as CharmTSG. This reduced predictive potential is likely to be

because the OGs were selected on the basis of the ability to

be activated by mutation and because simply increasing the

dosage by 50% might not strongly impact the networks they

control. CharmOG, however, does show a strong negative corre-

lation with arm deletion frequency, indicating that, normally, the

WT OGs are acting to promote proliferation and survival and the

cumulative reduction of their levels by 50% is deleterious. In this

respect, the OGs are behaving like the essential genes, and the

inclusion of a high-confidence list of 332 essential genes

together with OGs and TSGs further improves the predictive abil-

ity for armdeletions (Figure 6E). As expected, the essential genes

have no predictive power for amplifications.

CharmTSG strongly predicts whole-arm deletions. Unexpect-

edly, it also strongly predicts arm amplification, providing a

strong negative correlation. This suggests that increasing the

gene dosage of a group of TSGs can have deleterious effects

on tumorigenesis through the process of cumulative triplosensi-

tivity. If TSGs are truly haploinsufficient, their WT protein levels

may be only marginally sufficient to execute their roles. If so,

TSGs may well be more sensitive to increased gene dosage to

further enhance their pathways than typical genes. In other

words, haploinsufficient genes may be more likely to display

triplosensitivity. This property of sporadic TSGs being both

haploinsufficient and triplosensitive, therefore, may make their

cumulative Charm score an even better parameter to explain

SCNAs of chromosome arms and aneuploidy in general. Devel-

oping a combined CharmTSG-OG-Ess and ChromTSG-OG-Ess score

can now predict �80% of the frequency of arm and chromo-

some loss and �65% of the amplifications observed across all

cancers.
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Although the correlation between Charm/Chrom scores and

SCNAs is striking, there are several areas for improvement.

The first area concerns our lack of knowledge of the full comple-

ment of essential genes and which of these are haploinsufficient.

Second, only a subset of OGs will be dosage sensitive, and this

knowledge would improve the correlation. In addition, there are

two classes of OGs. Class I contains classical oncogenes such

as KRAS that are activated by mutation but whose WT copies

are not necessarily oncogenic after overexpression and will not

be predictive of amplification. Class II contains genes such as

cyclin D that can be activated by overexpression but are difficult

to activate by missense mutations and thus lack a mutational

signature. Class II OGs cannot be identified with confidence

through mutational signatures yet are likely to display triplosen-

sitivity and would positively correlate with amplification. Third,

some TSGs can be difficult to distinguish from OGs. These are

TGSs that have low haploinsufficiency but can produce a select-

able phenotype by generation of dominant-negative alleles.

Such genes will lack a strong LOF signature but will show a sig-

nificant number of deleterious missense mutations, which are

likely to predominantly occur in one or a few crucial residues,

thus conferring a significant Entropy score. In addition, early

SCNA events might influence subsequent events, as is the

case when specific aneuploidy co-occurs (Ozery-Flato et al.,

2011), which would confound our analysis to some degree.

Finally, refining these lists of cancer drivers will only improve their

predictive power. The current programs for prediction have their

strengths and weaknesses and are likely to be further improved

in the future. More precise knowledge of these essential and

cancer driver genes should significantly improve SCNA predict-

ability and our understanding of the cancer genome. Finally, the

SCNA frequencies might vary according to tumor type; thus,

comparison of data sets within one tumor type might provide

more predictive power. In addition, we do not know the back-

ground frequency of SCNAs upon which selection acts, so the

observed SCNA frequency cannot be normalized like mutation

rates can, and therefore, the observed SCNA frequency de-

tected might reflect both frequency of the event and its selective

power, which could confound the correlation.

Models of Cancer Evolution
Our work suggests a very important role for cumulative haploin-

sufficiency and triplosensitivity operating during cancer evolu-

tion to drive tumorigenesis. In each genomic region, there are

STOP (TSG) and GO (OG and essential) genes that will exert a

negative or positive phenotypic effect on tumorigenesis. Both

for focal deletions as illustrated by theCancer Gene IslandModel

(Figure 7B) and for chromosomes and chromosomal arm SCNAs

as indicated by the Charm and Chrom analysis (Figure 7C), the

integrated cumulative balance of these positive and negative

tumorigenic effects of individual genes affected in each SCNA

event provides the selective potency to that event and can pre-

dict its frequency across cancers.

For the past 40 years, the tumor suppressor field has been

guided by Knudson’s classical Two-Hit Hypothesis of tumori-

genesis for familial cancers. Though there are certainly bona

fide examples of the Two-Hit Model in sporadic cancer, this

model conflicts with the theory of clonal evolution of sporadic
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cancer in the assumption that the first hit is fully recessive and

a second hit is required to contribute to tumorigenesis. While it

is difficult to measure the frequency with which the Two-Hit

Hypothesis operates in cancers because the role and extent of

methylation inactivation is not yet known in each tumor, analysis

of LOF mutational events suggests that it may be a relatively

infrequent event except in the case of a few genes such as

TP53 (p53) and CDKN2A (p16), both of which are inducible

responders to oncogenic stress, which can increase during

tumorigenesis. In the cases of sporadic cancer, wherein the

two-hit hypothesis does operate, it is still possible and even

probable that the genes involved are haploinsufficient to begin

with. Our results have led us to propose that the vast majority,

if not all, of sporadic TSGs are likely to be haploinsufficient and

that, therefore, sporadic TSGs are most likely to operate through

the Haploinsufficiency Model shown in Figure 7D. It is important

to note that these hypotheses are not mutually exclusive, as loss

of the second allele of a haploinsufficient TSG, the second hit,

will undoubtedly provide a stronger selective pressure than the

first hit. However, a tumor has multiple paths through which to

evolve, and it may not require loss of that second allele as it

obtains growth-promoting power through the accumulation of

other events.

In 1914, Theodor Boveri proposed that specific ‘‘chromosome

constitutions can be produced such that the cells that harbor it

are driven to unrestrained proliferation’’ (Boveri, 1929). Recurring

patterns of aneuploidy exist in tumors, but whether they exist

because of the frequency of occurrence of each individual

SCNA event or because they are selected due to a tumorigenic

phenotypic effect was not known. Here, we propose that the cu-

mulative phenotypic effects of gene dosage alterations of STOP

and GO genes provide the selective pressure that is responsible

for the recurrent patterns of copy number variation observed in

cancer. Our findings support the hypothesis put forward by

Boveri exactly one century ago that aneuploidy is not only a hall-

mark of cancer, but is also a driving force during the evolution of

human cancer.

EXPERIMENTAL PROCEDURES

Somatic Mutation Data Set

The data set of somatic mutations included data from The Cancer Genome

Atlas (TCGA, http://cancergenome.nih.gov/) research network and from the

Catalogue of Somatic Mutations in Cancer (COSMIC, http://cancer.sanger.

ac.uk/cancergenome/projects/cosmic/) and the data set published by Alexan-

drov et al. (2013). The data set contained �1,200,000 mutations from 8,207

tumor samples from >20 tumor types (Table S1) and will be available at

http://elledgelab.med.harvard.edu/. All data related to SCNAs were derived

from the TCGA Genome Data analysis Center at the Broad Institute (Zack

et al., 2013).

TUSON Explorer Predictions

The PolyPhen2 algorithm (Adzhubei et al., 2010) was used to predict the

functional impact of each missense mutation and to classify them as high

functional impact (HiFI) or low functional impact (LoFI). We defined the four

following classes of mutations: (1) Benign mutations: Silent + LoFI Missense;

(2) Loss of Function mutations (LOF): Nonsense and Frameshift mutations; (3)

Splicing mutations: mutations affecting splicing sites; and (4) HiFI missense

mutations. An additional parameter considered was the Entropy score, which

measures the degree of randomness of the distribution of missense

mutations.

http://cancergenome.nih.gov/
http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/
http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/
http://elledgelab.med.harvard.edu/


Among 22 potential parameters, we selected the most predictive ones by

using the Lasso prediction model and three training sets of known TSGs and

OGs (from the Cancer Gene Census, Futreal et al., 2004) and putative neutral

genes. LOF/Benign, Splicing/Benign, and HiFI/Benign ratios were selected by

Lasso for the prediction of TSGs, and the HiFI/Benign ratio and the Entropy

score were selected for the prediction of OGs. TUSON predictions are based

on the calculation of a combined p value (and q value) of the selected param-

eters by using an extended version of the Liptakmethod (Tables S3A and S3B).

Based on the combined p values derived with the TUSON method, we esti-

mated the total number of predicted TSGs and OGs by using a histogram-

based method (Mosig et al., 2001).

Charm and Chrom Score and Correlation with Frequency of SCNAs

For each arm and chromosome, respectively, the Charm andChrom scores for

a certain gene set (TSGs, OGs, or essential genes) represent the density of the

genescontained in that setweightedby their predictedpotency. Thepotencyof

each gene corresponds to its rank position within its gene set list ranked by the

TUSONpvalue or by the (LOF+ 1/23HiFi)/Benign ratio for the essential genes.

For the cumulative CharmTSG-OG-Ess and ChromTSG-OG-Ess score, the scores of

OGs and essential geneswere subtracted from the scores relative to the TSGs.

The correlation analysis was performed using one-sided Pearson’s correlation

test between the Charm or Chrom score and the frequency of deletion and

amplification of each arm or chromosome across all tumors (Table S6).

Analysis of Functional Gene Sets

The STOP gene list was derived from an analysis performed using RNAi gene

enrichment ranking (RIGER) algorithm (Cheung et al., 2011) on a previously

described functional shRNA-based proliferation screen (Solimini et al., 2012;

Table S5A). An in silico list of 332 essential genes was derived by considering

the intersection between the lists of genes predicted to be housekeeping

genes and highly conserved genes (Marcotte et al., 2012; Table S5A). We

used the Fisher’s exact test to examine the significance of the association

between the presence of a gene in recurrent SCNAs (Beroukhim et al., 2010)

and its presence among a certain gene set.

For additional information, see the Extended Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, five

figures, and seven tables and can be found with this article online at http://

dx.doi.org/10.1016/j.cell.2013.10.011.
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