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SUMMARY tion sequencing technology (TCGA, 2011, 2012a, 2012b,

2012c). Here, we report the efforts of the TCGA GBM Analysis
We describe the landscape of somatic genomic
alterations based on multidimensional and compre-
hensive characterization of more than 500 glio-
blastoma tumors (GBMs). We identify several novel
mutated genes as well as complex rearrangements
of signature receptors, includingEGFR andPDGFRA.
TERTpromotermutations are shown tocorrelatewith
elevated mRNA expression, supporting a role in telo-
merase reactivation. Correlative analyses confirm
that the survival advantage of the proneural subtype
is conferred by the G-CIMP phenotype, and MGMT
DNA methylation may be a predictive biomarker for
treatment response only in classical subtype GBM.
Integrative analysis of genomic and proteomic pro-
files challenges the notion of therapeutic inhibition
of a pathway as an alternative to inhibition of the
target itself. These data will facilitate the discovery
of therapeutic and diagnostic target candidates, the
validation of research and clinical observations and
the generation of unanticipated hypotheses that can
advance our molecular understanding of this lethal
cancer.

INTRODUCTION

Glioblastoma (GBM) was the first cancer type to be systemati-

cally studied by The Cancer Genome Atlas Research Network

(TCGA). The initial publication (TCGA, 2008) presented the re-

sults of genomic and transcriptomic analysis of 206 GBMs,

including mutation sequencing of 600 genes in 91 of the sam-

ples. The observations provided a proof-of-concept demonstra-

tion that systematic genomic analyses in a statistically powered

cohort can define core biological pathways, substantiate anec-

dotal observations, and generate unanticipated insights.

The initial publication reported biologically relevant alterations

in three core pathways, namely p53, Rb, and receptor tyrosine

kinase (RTK)/Ras/phosphoinositide 3-kinase (PI3K) signaling

(TCGA, 2008). Efforts to link the alterations found in these path-

ways to the distinct molecular and epigenetic subtypes of glio-

blastoma revealed that coordinated combinationswere enriched

in different molecular subtypes, which may affect clinical

outcome and the sensitivity of individual tumors to therapy

(Noushmehr et al., 2010; Verhaak et al., 2010).

Above and beyond these observations, it has become evident

that GBM growth is driven by a signaling network with functional

redundancy that permits adaptation in response to targeted mo-

lecular treatments. Thus, a comprehensive catalog of molecular

alterations in GBM, based on multidimensional high-resolution

data sets, will be a critical resource for future investigative efforts

to understand its pathogenesis mechanisms, inform tumor

biology and ultimately develop effective therapies against this

deadly cancer.

Toward those ends, TCGA has expanded the scope and depth

of molecular data on GBM, including adoption of next-genera-
Working Group (AWG) to further our understanding of GBM

pathobiology by constructing a detailed somatic landscape of

GBM through a series of comprehensive genomic, epigenomic,

transcriptomic, and proteomic analysis.

RESULTS

Samples and Clinical Data
As summarized in Table 1, the data set contains molecular and

clinical data for a total of 543 patients. Note that different subsets

of patients were assayed on each technology platform. Themost

significant additions to the GBM data set include sequencing of

GBM whole-genomes, coding exomes, transcriptomes, as well

as profiling of expanded DNAmethylomes and a targeted prote-

ome. In particular, 291 pairs of germline-tumor native DNAs (e.g.,

without whole-genome amplification) were characterized by

hybrid-capture whole-exome sequencing (WES) and of these,

42 pairs underwent deep coverage whole-genome sequencing

(WGS). The transcriptomes of 164 RNA samples were profiled

by RNA-sequencing (RNA-seq). Protein expression profiles

were generated from 214 patient samples using reverse

phase protein arrays (RPPA). The data package associated

with this report was frozen on July 15, 2013 and is avail-

able at the Data Portal (https://tcga-data.nci.nih.gov/docs/

publications/gbm_2013/).

TCGA sample collection spanned 17 contributing sites (Table

S1). Tier 1 clinical data elements (including age, pathology, and

survival) are available on 539 of 543 patients (99.6%) and tier 2

data including treatment information on 525 patients (96.7%)

(Figure S1, available online, see Data Portal). Clinical character-

istics of this patient cohort are similar to our previous report in

2008 (TCGA, 2008) with a median age of 59.6 years and a male

to female ratio of 1.6 (333:209). Median overall survival was

13.9 months with 2 year survival of 22.5% and 5 year survival

of 5.3%. Due to TCGA selection of primary GBM, IDH1mutation

is infrequent in the TCGA cohort compared to other published

series. Of the 423 patients with adequate sequencing coverage

(by either whole-exome next-generation sequencing or previ-

ously reported Sanger-based sequencing), 28 (6%) had the

IDH1-R132H mutation, whereas one individual had an R132G

and one had anR132Cmutation. No IDH2mutations were found.

The associated G-CIMP methylation pattern was present in all

cases of IDH1 mutation (R132H/G/C), whereas seven G-CIMP

cases lacked IDH1mutations. Overall, G-CIMP pattern was pre-

sent in 42 out of 532 cases (7.9%). Clinically relevantMGMTDNA

methylation status was estimated from CpG islands as previ-

ously described (Bady et al., 2012). Conventional positive prog-

nostic factors were confirmed by univariate analysis: age < 50

(OS 21.9 versus 12.3 months, p = 2.4 3 10�11), MGMT DNA

methylation (16.9 versus 12.7, p = 0.0018), IDH1 mutation (35.4

versus 13.3, p = 1.55 3 10�5) and G-CIMP DNA methylation

(38.3 versus 12.7, p = 8.3 3 10�9). Age, MGMT, and IDH1/

G-CIMP status were independently significant in multivariate

analysis (Table S1).

Patients in this TCGA cohort were diagnosed between 1989

and 2011, with 414 patients (76%) receiving their diagnosis in
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Table 1. Characterization Platforms and Data Availability

Data Type Platforms

Cases

in 2008

Cases

in 2013

DNA sequence of

exome

Illumina on native DNA 0 291

Sanger on native DNA 91 148

Illumina on whole genome

amplified DNA

0 163

DNA sequence of

whole genome

Illumina on native DNA 0 42

DNA copy number/

genotype

Affymetrix SNP6 206 578

Agilent 224K/415K 206 413

mRNA expression

profiling

Affymetrix U133A 206 544

Affymetrix Exon 201 417

mRNA sequencing Illlumina on native cDNA 0 164

CpG DNA methylation Illumina GoldenGate 242 242

Illumina 27K 0 285

Illumina 450K 0 113

miRNA expression

profiling

Agilent 205 491

Protein expression

profiling

Reverse phase protein

arrays

0 214

Clinical characteristics Tier 1/Tier 2 206 543
or after 2002 when the use of concurrent temozolomide (TMZ)

with adjuvant radiation became widely adopted. Combined

TMZ chemotherapy and radiation treatment is documented for

40% of all patients (217/543), and for 50.2% of the 414 patients

diagnosed in or after 2002. Summaries of treatment classifica-

tion classes are provided in Supplemental Information.

Whole-Exome Sequencing Identifies Significantly
Mutated Genes in Glioblastomas
Solution-phase hybrid capture and whole-exome sequencing

were performed on paired tumor and normal native genomic

DNA obtained from 291 patients. Overall, 138-fold mean target

coverage was achieved, with 92% of bases covered at least

14-fold in the tumor and 8-fold in the normal—the threshold

which offers 80% power to detect mutations with an allelic frac-

tion of 0.3 (Carter et al., 2012) (see Extended Experimental Pro-

cedures). Overall, of the 291 tumor exomes sequenced, 21,540

somatic mutations were identified, with amedian rate of 2.2 cod-

ing mutations per megabase (lower-upper quartile range, 1.8–

2.3). Among the somatic mutations were 20,448 single-nucleo-

tide variants (SNVs), 39 dinucleotide mutations, and 1,153 small

insertions and deletions (indels). The SNVs mutations included

5,379 silent, 3,901 missense, 831 nonsense, 360 splice-site

and 760 mutations resulting in a frame shift.

Mutations were evaluated across samples to distinguish

genes which appear targeted by driver rather than passenger

mutations using both MutSig (TCGA, 2008, 2011, 2012a,

2012b, 2012c) and InVEx algorithms (Hodis et al., 2012). MutSig

assesses mutation significance as a function of gene size, trinu-

cleotide context, gene structure, and background mutation
464 Cell 155, 462–477, October 10, 2013 ª2013 Elsevier Inc.
rates. InVEx compares the ratio of nonsilent exonic mutations

to synonymous and intronic/UTR nucleotide variants, an algo-

rithm that is particularly effective for genomes with elevated

mutation rates such as melanoma and lung adenocarcinoma.

When both InVEx and MutSig algorithms were run on the same

data set, a total of 71 genes were identified as significantly

mutated genes (SMG). To validate mutation calls, all 757 SNVs

and indels detected by exome sequencing in these 71 SMGs

were subject to orthogonal validation by targeted resequencing

in 259 tumor/normal pairs. At sites with adequate coverage to

detect the mutant alleles, 98% of SNVs, 84% of insertions, and

82% of deletions were validated (see Extended Experimental

Procedures).

As summarized in Figure 1A, both InVEx and MutSig algo-

rithms identified previously reported genes as significantly

mutated in GBM, namely PTEN, TP53, EGFR, PIK3CA,

PIK3R1, NF1, RB1, IDH1, and PDGFRA (Figure 1A). In addition,

both algorithms identified the leucine-zipper-like transcriptional

regulator 1 (LZTR1), mutated in ten samples, as a novel signifi-

cantly mutated gene in GBM (Table S2, Figure S2). LZTR1, a

putative transcriptional regulator associated with the DiGeorge

congenital developmental syndrome (Kurahashi et al., 1995),

has not previously been implicated in cancer. It is located at

chromosome 22q, and in five of six samples with available

copy-number data it was simultaneously targeted by hemizy-

gous deletion.

MutSig additionally identified 61 additional genes (71 overall)

with mutation frequency above background with a q-value

of < 0.1 (Table S2). These included spectrin alpha 1 (SPTA1,

mutated in 9%), which encodes a cell motility protein that inter-

acts with the ABL oncogene and is related to various hereditary

red blood cell disorders; ATRX (6%), a member of the SWI/SNF

family of chromatin remodelers recently implicated in pediatric

and adult high-grade gliomas (Kannan et al., 2012; Liu et al.,

2012; Schwartzentruber et al., 2012); GABRA6 (4%), an inhibi-

tory neurotransmitter in the mammalian brain; and KEL (5%),

which codes for a transmembrane polymorphic antigen glyco-

protein (Figure S2). Albeit at low frequency, several hotspot

mutations were found to be significant in this cohort of GBM,

most notably the IDH1 R132H mutation. The BRAF V600E

sequence variant, which confers sensitivity to vemurafenib in

melanoma (Chapman et al., 2011a), was detected in five of 291

GBMs (1.7%). Mutation of H3.3 histones, reported in pediatric

gliomas (Schwartzentruber et al., 2012), were not observed in

this cohort of primary GBM.

To facilitate exploration of mutation data by noncomputational

biologists, we developed a patient-centric table (PCT) that cate-

gorizes each gene in each sample by the type of mutation (silent,

missense, InDel, etc.) observed, and describes the confidence of

each call based on the coverage in normal and tumor samples

(see Data Portal, Extended Experimental Procedures). To illus-

trate one potential use of this table, we interrogated the mutation

pattern of 161 genes functionally linked to chromatin organiza-

tion (hereafter referred to as CMG or ‘‘chromatin modification

genes,’’ see Extended Experimental Procedures) using this

PCT. In total, 135 samples or 46%of the sample cohort harbored

at least one nonsynonymousmutation in this CMG gene set (Fig-

ure 1B). Importantly, CMG mutations were found to be mutually



Figure 1. Somatic Genomic Alterations in Glioblastoma

(A) Summary of significantly mutated genes from 291 exomes. Specific mutations for LZTR1, SPTA1, KEL, and TCHH are shown in Figure S2. a: Number of

mutations per sample (substitutions and indels). b, rate of mutations per gene and percentage of samples affected. Central heat map: Distribution of significant

mutations across sequenced samples, color coded bymutation type. c: Overall count and significance level of mutations as determined by log(10) transformation

of the MutSig q-value. Red line indicates a q-value of 0.05. d: Summary of focal amplifications (red) and deletion (blue) determined from DNA copy-number

platforms (asterisk denotes inclusion in statistically significant recurrent CNA by GISTIC). e: Average fraction of tumor reads versus total number of reads per

sample. f: top, rates of nonsilent mutationswithin categories indicated by legend; bottom,mutation spectrum of somatic substitutions of samples in each column.

(B) Mutations in 38 genes related to specific epigenetic function categories (out of 161 genes linked to chromatin modification) across 98 GBMs (out of 292 GBM).

IDH1 mutation status is included to illustrate its co-occurrence with ATRX mutation. An additional 37 GBMs harbored mutations in one of the remaining

129 CMGs.

(C) Recurrent sites of DNA copy-number aberration determined from 543 samples by the GISTIC algorithm. Statistically significant, focally amplified (red) and

deleted (blue) regions are plotted along the genome. Significant regions (FDR < 0.25) are annotated with the number of genes spanned by the peak in paren-

theses. For peaks that contain a putative oncogene or tumor suppressor, the gene is noted.
exclusive overall by MEMo analysis (p = 0.0008) (Ciriello et al.,

2012), suggesting potential biological relevance of chromatin

modification in GBM.

Genomic Gains and Losses in GBM
We expanded our previously reported DNA copy-number anal-

ysis from 206 GBMs (TCGA, 2008) to 543 samples. The larger

data set, coupled with improvement of the analytical algorithm

GISTIC (Mermel et al., 2011), resulted in a significant refinement
of previously defined amplification and deletion peaks, thus

allowing improved nomination of candidate gene targets for

several recurrent somatic copy-number aberrations (SCNA) (Fig-

ure 1C). Themost common amplification events on chromosome

7 (EGFR/MET/CDK6), chromosome 12 (CDK4 and MDM2), and

chromosome 4 (PDGFRA) were found at higher frequencies

than previously reported (Table S3), and often contained only a

single gene in the common overlapping region. Additionally,

frequent gains of genes such as SOX2, MYCN, CCND1, and
Cell 155, 462–477, October 10, 2013 ª2013 Elsevier Inc. 465



CCNE2 were precisely established. Except for the highly recur-

rent homozygous deletions in CDKN2A/B, all statistically signif-

icant DNA losses were hemizygous. Losses were more frequent

than amplifications, as has been reported as a general pattern in

cancer (Beroukhim et al., 2010). We were able to pinpoint single

genes as deletion targets in some cases, most notably in recur-

rent deletion of 6q26. Although the 6q26 deletion has previously

been associatedwith other candidates such asPARK2, our anal-

ysis unequivocally defined QKI as the sole gene within the mini-

mal common region and the target of homozygous deletion in

nine cases. TheQKI gene was also mutated in five cases without

evidence of deletion (two frame-shift, two missense, and one

splice-site mutation). This is consistent with a recent publication

demonstrating thatQKI functions as a tumor suppressor in GBM

by acting as a p53-responsive regulator of mature miR-20a sta-

bility to regulate TGFbR2 expression and TGFb network

signaling (Chen et al., 2012). Other single gene deletion targets

include LRP1B, NPAS3, LSAMP, and SMYD3. Similar to the

mutation data, we have also algorithmically generated a pa-

tient-centric table summarizing DNA copy-number aberration

and DNA methylation status for each gene and miRNA for each

of the cases in the cohort (see Data Portal).

Recurrent Structural Rearrangements Defined by
Genomic and Transcriptomic Sequencing
To explore genomic and transcriptomal structural rearrange-

ments, we performed whole-genome paired-end sequencing

with deep coverage on 42 pairs of tumor and matched germline

DNA samples as well as RNA sequencing (RNA-seq) of 164

GBM transcriptomes (Table S4). We detected genomic rear-

rangements using BreakDancer and BamBam (Sanborn et al.,

2013) (see Extended Experimental Procedures), in addition to

expressed RNA fusions using PRADA (http://sourceforge.net/

projects/prada/). In total, we identified 238 high-confidence

candidate somatic rearrangements, including 49 interchromo-

somal, 125 intrachromosomal, and 64 intragenic structural

variants (Figures 2A and 2B; Table S4). The number of events

per sample ranged from 0 to 32 (median: 2), with one sample

containing a distinctively high number of rearrangements in

the context of local chromothripsis involving a 7.5 Mb region

on chromosome 1. No rearrangements were detected in eight

samples. Overall, the number of rearrangements generally

appeared lower than what has been previously reported for

prostate cancer (Sanborn et al., 2013), lung adenocarcinoma

(Imielinski et al., 2012), and melanoma (Berger et al., 2012).

Recurrent intragenic events were detected in seven genes:

EGFR (n = 12), CPM (n = 3), PRIM2 (n = 3), FAM65B (n = 2),

PPM1H (n = 2), RBM25 (n = 2), and HOMER2 (n = 2). Because

unbalanced structural rearrangements in DNA can be detected

as breakpoints in DNA copy-number profiles, we investigated

whether CNA breakpoints could indicate potential sites of

recurrent structural rearrangement using all 492 samples with

aCGH data (n = 492). Of note, 41 of 129 high-confidence

rearrangement events from whole-genome sequencing (WGS)

involved genes identified as significant targets of recurrent

intragenic copy-number breakpoints (iCNA) in the larger

cohort of GBM based on DNA copy-number profiles (Table

S4, Data Portal).
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RNA seq analysis identified 48 interchromosomal and 180 in-

trachromosomal mRNA fusion transcripts in 106 of 164 samples

(Figure 2C; Table S4). Approximately 37%of thesewere in-frame

transcripts, 35% were out-of-frame, and the remaining 29%

were involved a 30 or 50 untranslated region (Figure S3A). A sub-

stantial portion (44%) of the intrachromosomal events resulted

from recombination of genomic loci located less than 1Mb apart.

A notable example is the recently reported oncogenic FGFR3-

TACC3 inversion (Singh et al., 2012), which was detected in

two cases. Interestingly, the FGFR3/TACC3 locus was focally

amplified in both samples, suggesting that CNA could serve as

a marker of FGFR3-TACC3 rearrangement. Overall, focal ampli-

fications involving FGFR3 or TACC3 were detected in 14 of 537

GBM copy-number profiles (2.6%).

Ten of the 42 GBMs with WGS analyses demonstrated rear-

rangements between EGFR and adjacent genes such as BRIP

(n =2) andVOPP1 (n = 2), or structural variants of genes surround-

ing the EGFR locus, such as LANCL2 and PLEXHA (n = 2) (Table

S4). Both types of 7p11 rearrangements were detected in six

samples. This pattern was confirmed in the RNA-seq data

where eighteen samples of 164 samples showed evidence of

transcribed fusion transcripts, such as EGFR-SEPT14 (n = 6),

SEC61G-EGFR (n = 4), LANCL2-SEPT14 (n = 1), and COBL-

SEPT14 (n = 1) (Table S4). These fusions tended to be part of a

focal gain, suggesting a complex rearrangement (Figure S3B).

Genomic rearrangements pertaining to chromosome arm 12q

were identified in 11 of 42 whole genomes and 12q-associated

fusion transcripts were found expressed in 25 of 164 transcrip-

tomes. A variety of different genomic and transcriptomic variants

were found on 12q though none were recurrent (Table S4). The

majority of 12q lesions occurred in tandem, i.e., as adjacent

events in the same GBM. As an illustration, a single sample

showed a pattern in which 15 nonadjacent segments (14 from

chromosome 12 and one fragment from chromosome 7) were

highly amplified (>40 copies) with eight 12q rearrangement

events, including the MDM2, CDK4, and EGFR oncogenes (Fig-

ure S3C). WGS analysis reconstructed two independent circular

paths that accounted for all of the amplified segments (Fig-

ure S3C). Each circle contained at least one oncogene, with

one circle (0152-DM-A) containing one copy of CDK4 and two

copies of MDM2 and the other circle (0152-DM-B) containing

one copy of EGFR. These reconstructed circles are most consis-

tent with extrachromosomal double minute chromosomes (Kut-

tler and Mai, 2007). Recently, the same data set was used to

identify enrichment of genomic breakpoints relating to chromo-

some 12q14-15, a locus harboring the MDM2 and CDK4 onco-

genes, associated with less favorable outcome (Zheng et al.,

2013), and the reconstruction of doubleminutes confirmed using

orthogonal methods (Sanborn et al., 2013).

EGFR Is Frequently Targeted by Multiple Alterations of
DNA and RNA
As anticipated, EGFR was among the most frequently mutated

genes and RNA-seq detected a diversity of altered transcripts

(Figure 3A). EGFR mutations were accompanied by regional

DNA amplification in the majority of cases, leading to a wide

range of mutation allelic frequencies. Comparing the allelic fre-

quencies of point mutations in DNA- and RNA-seq data revealed

http://sourceforge.net/projects/prada/
http://sourceforge.net/projects/prada/


Figure 2. Structural Rearrangements and Transcript Variants in GBM

(A) Circos plots of structural DNA and RNA rearrangements in six GBMs, selected from 28 cases with available whole-genome and RNA sequencing based on

their rearrangement frequency. Outer ring indicates chromosomes. Copy-number levels are displayed along the chromosomemap in red (copy-number gain) and

blue (copy-number loss). Each line in the center maps a single structural variant to the site of origin for both genes (see Figure S3 for additional analysis of fusion

transcripts derived from RNA sequencing).

(B) The chromosome arm of origin of both ends of each rearrangement detected in whole-genome sequencing data from 42GBMwere counted and compared to

chromosome arm length.

(C) The chromosome arm of both partners in fusion transcripts detected from RNA sequencing data from 164 GBMwere counted and compared to chromosome

arm length.
a high degree of concordance between the type and prevalence

of mutations at the DNA level and the composition of expressed

mRNA transcripts (Figure S4A).
RNA-seq also provided a complete picture of aberrant exon

junctions and a semiquantitative assessment of their expres-

sion levels. Transcript allelic fraction (TAF) was calculated
Cell 155, 462–477, October 10, 2013 ª2013 Elsevier Inc. 467



Figure 3. Somatic Alterations of the EGFR Locus

(A) EGFR protein domain structure with somatic mutations summarized from 291 GBMs with exome sequencing and transcript alterations identified across

164 GBMs with RNA sequencing.

(B) EGFR alterations are summarized by transcript prevalence in 164 GBMswith RNA sequencing. Red, top: focal amplification or regional gain inferred fromDNA

copy number. Blue, Prevalence of sequencing reads with EGFR point mutation. Green, prevalence of reads with aberrant exon-exon junctions (e.g., 1E-8S is a

junction spanning from the end of exon 1 to the start of exon 8, consistent with EGFRvIII mutation). Black, EGFR fusion transcript detected (see rearrangements).

Purple: C-terminal deletion inferred from relative under expression of C-terminus exons 27-29 vs. kinase domain exons by >3 or >6 SD. See related Figure S4 for

comparison of EGFR mutations in DNA and RNA and for a summary of EGFR rearrangements.
as the ratio of each aberrant exon junction to the sum of

aberrant and wild-type junctions at the 30 junction end, cor-

rected for read depth (80% confidence, binomial confidence

interval). TAFs for recurrent point mutations and junctions

are summarized in Table S5. In 11% of tumors, the aberrant

exon 1–8 junction characteristic of EGFRvIII was highly ex-
468 Cell 155, 462–477, October 10, 2013 ª2013 Elsevier Inc.
pressed (R10% TAF), whereas 19% showed at least a low

level expression (R1%). The results were concordant with an

independent assessment of EGFRvIII by digital mRNA assay

using barcoded probes (nCounter, Nanostring Technologies

and by real-time PCR; see Data Portal). Although the biological

or clinical relevance of low-level EGFRvIII expression remains



to be demonstrated, EGFRvIII expression in a minor population

of GBM cells has been shown to confer a more aggressive tu-

mor phenotype through paracrine mechanisms (Inda et al.,

2010).

A variety of other recurrent noncanonical EGFR transcript

forms were detected in the RNA-seq data (Figures 3A and

S4B). Three different C-terminal rearrangements targeting the

cytoplasmic domain of the EGFR were detected at R 10%

TAF in 3.7% of cases and atR 1% TAF in another 9%. Compar-

ison with WGS data confirmed the presence of C-terminal

deletions in nine cases where sequence data were available.

C-terminal deletion variants have previously been associated

with gliomagenesis in experimental rodent systems in vivo

(Cho et al., 2011). The prevalence of EGFR C-terminal deletion

reported here is likely an underestimate since complete loss of

the C terminus may yield aberrant terminal junctions not mappa-

ble by transcriptome sequencing. Relative underexpression of C

terminus exons 27–29 (<3 SD) was readily apparent in another

7.3% of cases without detectable aberrant junctions (Figure 3B).

We identified two relatively uncharacterized recurrent EGFR

variants, namely deletions of exons 12–13 (D12–13) in 28.7%

and exons 14–15 (D14–15) in 3%. EGFR D12–13 has been previ-

ously identified by RT-PCR analysis of glioma (Callaghan et al.,

1993). Both D12–13 and D14–15 appear to be expressed in

minor allelic fractions (<10%), raising the question of whether

they result from splicing aberration or genomic deletion. Among

tumors expressing D12–13mRNA, analysis of aberrant junctions

in WGS data (BamBam) failed to identify concordant DNA dele-

tion in 14/15 cases where data were available. One case showed

a concordant breakpoint as a minor component of a highly rear-

ranged locus. By comparison, EGFRvIII-expressing tumors had

concordant deletion spanning exons 2–7 in all seven cases

where WGS data were available (Table S5).

In total, 38.4%of cases harboredanEGFRgenomic rearrange-

ment or a point mutation expressed in at least 10% of transcripts

(Figure 3B; Table S5). Overall, 57% of GBM showed evidence of

mutation, rearrangement, alteredsplicing, and/or focal amplifica-

tion of EGFR. Whereas PDGFRA showed no recurrent gene

fusions, intragenic deletion of exons 8 and 9 (PDGFRA D8,9)

was highly expressed (R10% TAF) in 1 of the 164 samples with

RNA sequencing data. Low-level expression of PDGFRA D8,9

was far more prevalent in the RNA-seq data (n = 29 of 163) and

could represent a splice variant. This result is concordant with

previously reported estimates of D8,9 expression (Ozawa et al.,

2010). A novel PDGFRA variant with deletion of exons 2–7 was

found highly expressed in a single case (TCGA-28-5216).

The Landscape of Somatic Alterations in Glioblastoma
The addition of whole-exome and transcriptomal sequencing

data have extended the palette of somatic alterations affecting

major cancer pathways in GBM. Figure 4 presents a landscape

view of the canonical signal transduction and tumor suppressor

pathways in GBM based on whole-exome sequencing data of

291 patients. Unsupervised analysis of 251 GBMs with both

copy number and WES mutation data identified genes sets

(modules) in which somatic alterations were significantly

mutually exclusive (MEMo; Ciriello et al., 2012). This analysis

confirmed mutual exclusivity among alterations affecting the
p53 pathway (MDM2, MDM4, and TP53), the Rb pathway

(CDK4,CDK6,CCND2,CDKN2A/B, and RB1), and various com-

ponents influencing the PI3K pathway (PIK3CA, PIK3R1, PTEN,

EGFR, PDGFRA, and NF1) (Table S6).

As shown, at least one RTK was found altered in 67.3% of

GBM overall: EGFR (57.4%), PDGFRA (13.1%), MET (1.6%),

and FGFR2/3 (3.2%). Nearly half of the tumors with focal ampli-

fication and/or mutation of PDGFRA harbored concurrent EGFR

alterations (42.4%, 14/33), as did the majority of MET-altered

tumors (3/4), reflecting a pattern of intratumoral heterogeneity

that has been previously documented by in situ hybridization

(Snuderl et al., 2011; Szerlip et al., 2012).

PI3-kinase mutations were found in 25.1% of GBM (63/251),

with 18.3% affecting p110alpha and/or p85alpha subunits and

6.8% in other PI3K family genes. PI3K mutations were mutually

exclusive of PTEN mutations/deletions (p = 0.0047, Fisher’s

exact), with 59.4% of GBM showing one or the other (149/251).

Considering theRTKgenes, PI3-kinase genes, andPTEN, 89.6%

of GBM had at least one alteration in the PI3K pathway and

39% had two or more. The NF1 gene was deleted or mutated in

10%of cases, and never co-occurredwithBRAFmutations (2%).

Concordant with the previous TCGA GBM report, the p53

pathway was found to be dysregulated in 85.3% of tumors

(214/251), throughmutation/deletion of TP53 (27.9%), amplifica-

tion of MDM1/2/4 (15.1%), and/or deletion of CDKN2A (57.8%).

As expected, TP53 alterations were mutually exclusive with

amplification of MDM family genes (p = 0.0003) and CDKN2A

(p = 1.99 3 10�7). Concurrently, 78.9% of tumors had one

or more alteration affecting Rb function: 7.6% by direct RB1

mutation/deletion, 15.5% by amplification of CDK4/6, and the

remainder via CDKN2A deletion.

As reported for lower grade gliomas (Ichimura et al., 2009), 12

of the 13 GBMs with IDH1 hotspot mutations harbored concur-

rent TP53 mutations. Consistent with recent reports, mutations

in SWI/SNF complex gene ATRX often co-occurred in these

cases (Figure 4B). Mutations in IDH1 and ATRX appear to be

more prevalent in GBM samples without RTK alteration (p = 7.2

3 10�5 and 7.33 10�4, respectively), tumors genotypically more

consistent with secondary GBM (Ohgaki and Kleihues, 2007).

Telomerase reverse transcriptase (TERT) promoter mutations

were recently reported in glioma, mapping to positions 124

(C228T) and 146 bp (C250T) upstream of the TERT ATG start

site (Killela et al., 2013). Of the 42 cases with deep coverage

WGS data, 25 samples had adequate coverage (read count >

10) of the TERT promoter for mutational analysis. We detected

the C228T mutation in 15 of the 25 cases, whereas the C250T

variant was found in another six cases (Figure 4C). TERT pro-

moter mutations at these two hot spots were correlated with

upregulated TERT expression at the RNA level (Figure 4C). Inter-

estingly, the four GBMs with nonmutated TERT promoters all

harbored ATRX mutations and these were concurrent with

IDH1 and TP53 mutations as recently described (Liu et al.,

2012). Finally, in line with the role of ATRX in alternative length-

ening of telomeres (ALT) (Lovejoy et al., 2012), ATRX mutant

GBM tumors do not exhibit elevated TERT RNA expression

compared to tumors with TERT promoter mutations (Figure 4C).

Taken together, these data suggest that maintenance of

the telomere either through reactivation of telomerase by TERT
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Figure 4. Landscape of Pathway Alterations in GBM

Alterations affecting canonical signal transduction and tumor suppressor pathways are summarized for 251 GBM with both exome sequencing and DNA copy-

number data. Rearrangements are underestimated in this summary since RNA-seq data were available for only a subset of cases with exome sequencing data

(153/291, 61%).

(A) Overall alteration rate is summarized for canonical PI3K/MAPK, p53 and Rb regulatory pathways.

(B) Per-sample expansion of alterations summarized in 5A. Mutations (blue), focal amplifications (red), and homozygous deletions are selected from the patient-

centric tables and organized by function. All missense, nonsense and frame-shift mutations are included. EGFRvIII is inferred from RNA data and included as a

(legend continued on next page)
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promoter mutation-induced increased TERT expression or

ALT as a result of ATRX mutation is a requisite step in GBM

pathogenesis.

Although reported median survival for patients with GBM

ranges from 12–18 months, a subset of individuals will survive

for more than 3 years (Dolecek et al., 2012; Dunn et al., 2012).

We cross-referenced our data set to identify any factor(s) asso-

ciated with long-term survival (n = 39 or 7.7% of the cohort).

Although no specific genomic alteration was significantly over-

represented in this subset, amplifications of CDK4 and EGFR

and deletion of CDKN2A were observed at decreased fre-

quencies in these long survivors (see Data Portal). Age at

diagnosis was found to be a major determinant, with 79% of

long-term survivors being diagnosed at younger than 50 years

of age. Despite their relatively favorable prognosis, only one third

of patients with G-CIMP+ GBM survived beyond 3 years, sug-

gesting that other factors yet to be identified are contributing

to overall long-term survival of GBM patients.

Molecular Subclasses Defined by Global mRNA
Expression and DNA Methylation
Widespreaddifferences in gene expression have previously been

reported in GBM, grouping TCGA tumors into proneural, neural,

classical, and mesenchymal transcriptomic subtypes (Phillips

et al., 2006; Verhaak et al., 2010). Samples not included in previ-

ously published analysis (n = 342)were classified into one of clas-

ses using single-sample gene set enrichment analysis (Figure 5A

and Table S7) Similarly, we sought to assign each case in the

TCGAcohort to one of theDNAmethylation subclasses. The pro-

moter DNA methylation array platforms used by TCGA have

evolved with increasing resolution from the Illumina GoldenGate

(n = 238), Infinium HumanMethylation27 (HM27, n = 283) and

Infinium HumanMethylation450 (HM450, n = 76) platforms (Fig-

ure S5A). We reanalyzed a total of 396 GBM samples, comprised

of 305 new GBM samples profiled on the HM27 (n = 192) and

HM450 (n = 113) platforms in addition to 91 cases profiled on

HM27 that were included previously (Noushmehr et al., 2010).

Hierarchical consensus clustering of the DNA methylation pro-

files stratified these 396 GBM cases into six classes, including

G-CIMP (Figures 5B, S5B and S5C, and Table S7). Cluster M1

(35/58, 60%) is enriched for mesenchymal GBMs while cluster

M3 (18/31, 58%) is enriched for classical subtype (Figure 5B,

red and blue, respectively). As expected, the G-CIMP cluster is

enriched for proneural subtype tumors.

To be able to perform more robust exploration of the relation-

ship of G-CIMP phenotype to other genomic alterations, we

incorporated the previously reported G-CIMP status (Noush-

mehr et al., 2010) on 175 additional GBM cases profiled on the

GoldenGate platform. A total of 534 GBM cases were used in

the following integrative analyses. The age of GBM diagnosis

was statistically different (41 year versus 56 year; p value =

0.008) between proneural G-CIMP (n = 28) and proneural non-
mutation if R10% transcribed allelic frequency. Deletions are defined by log2 r

Procedures). Amplifications are defined by log2 ratio > 2 or > 1 and focal.

(C) Left: for a cohort of 25 GBMs for which whole-genome sequencing allowed ge

exclusive fashion. All four TERT promoter wild-type GBM harbored ATRX mutati

associated with elevated expression. Box plots: bar denotes median, central bo
G-CIMP (n = 22) subtypes, reinforcing the notion that the epige-

nomics of these transcriptomically similar patients mark distinct

etiologies and/or disease characteristics. We observed seven

G-CIMP(+) cases lacking IDH1 mutation. These were similar to

G-CIMP cases harboring IDH1 mutations with respect to their

median age at diagnosis (40 year versus 37 year, p value =

0.58) and overall survival (mean 913 days versus 1,248 days,

p value = 0.45). IDH2 mutation was not detected in these seven

G-CIMP+/IDH1 wild-type GBM, suggesting that alternative

pathway(s) responsible for the hypermethylator phenotype.

Next, to identify genomic alterations enriched in each of

the transcriptomic or epigenomic subtypes, we referenced the

patient-centric tables to count DNA mutation and copy-number

aberration events per subtype. This analysis confirmed previous

reports, demonstrating significant associations between

PDGFRA amplification and the non-G-CIMP+ proneural sub-

group, as well asNF1 inactivation and themesenchymal subtype

(Figure 5A). Additionally, the enhanced power of the larger data

set identified an enrichment of ATRX mutations and MYC

amplifications in the G-CIMP+ subtype, CDK4 and SOX2 ampli-

fications in proneural subtype, and broad amplifications of

chromosomes 19 and 20 in the classical subtype (Figure 5A).

In contrast to G-CIMP, cluster M6 was relatively hypomethy-

lated, with a predominance of nonmutated IDH1 cases belong-

ing to the proneural subtype (22/37, 59%) with concurrent

PDGFRA amplification (Figure 5B).

To explore a plausible connection between chromatin dereg-

ulation and DNA methylation, we counted mutations in the 161

CMGs (Figure 1B) per each methylation subclass. In addition

to the association of IDH1 and ATRX mutations and G-CIMP,

mutations of other CMGs were enriched across the M2, M4,

and M6 subclasses (38% of cases in these three subclasses

harbor at least one CMG mutation versus 18% among the other

classes, p = 0.0015). Furthermore, caseswithmissensemutation

or deletion of MLL genes (n = 18) or HDAC family genes (n = 4)

clustered in the M2 DNA methylation subtype (10/21). These

patterns of co-occurrence suggest a functional relationship be-

tween chromatin modification andDNAmethylation that remains

to be elucidated. Recently, Sturm et al. reported that adult and

pediatric GBM with alterations of IDH1, H3F3A, and receptor

tyrosine kinases (RTK)were associatedwith epigenetic subtypes

(Sturm et al., 2012). We compared the Sturm et al. methylation-

based classification with ours using the 74 TCGA cases that

were also classified by those authors. We found that four tumors

classified as ‘‘IDH’’ subtype in Sturm et al. were assigned to

G-CIMP subtype in our classification scheme (Figure S5D). The

‘‘mesenchymal’’ tumors were assigned to M1 and M2 (21/25),

‘‘RTK II ‘classic’’’ tumors were assigned to M3 and M4 (30/34)

and the ‘‘RTK I ‘PDGFRA’’’ tumors were assigned to M6. No

TCGA samples were clustered in the Sturm et al.’s ‘‘G34’’ or

‘‘K27’’ classes, and we found the corresponding histone muta-

tions to be absent across the TCGA sample set.
atios %1 or %0.5 and focally targeting the gene (see Extended Experimental

notyping, TERT promoter C228T and C250T mutations occurred in a mutually

on, and were enriched in G-CIMP group. Right: TERT promoter mutations are

x spans the middle quartiles and whiskers span the full range.
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Figure 5. Molecular Subclasses of GBM and their Genomic Molecular Correlates

(A) Genomic alterations and survival associated with five molecular subtypes of GBM. Expression and DNAmethylation profiles were used to classify 332 GBMs

with available (native DNA and whole-genome amplified DNA) exome sequencing and DNA copy-number levels. Themost significant genomic associations were

identified through Chi-square tests, with p values corrected for multiple testing using the Benjamini-Hochberg method.

(B) Genomic alterations and sample features associated with six GBM methylation clusters. Epigenomic consensus clustering was performed on 396 GBM

samples profiled across two different platforms (Infinium HM27 and Infinium HM450). Six DNA methylation clusters were identified (see related Figure S5),

represented as M1 to M6, where M5 is G-CIMP. These DNA methylation signatures are correlated with 27 selected features composed of clinical, somatic, and

copy-number alterations; DM cluster, G-CIMP status, four TCGA GBM gene expression subclasses, two clinical features (Age at diagnosis/overall survival in

months), somatic mutations (IDH1, TP53, ATRX), and 18 selected copy-number alterations.
Lastly, we explored the relationship of molecular subclasses

with clinical parameters such as treatment response or survival.

In the current larger TCGA cohort, the survival advantage of pro-

neural subtype GBM (Phillips et al., 2006) was definitively shown
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to be conferred by G-CIMP status, with non-G-CIMP proneural

GBMs and not mesenchymal GBM tending to show less favor-

able outcomes in the first 12 months following initial diagnosis

compared to other subtypes (p value 0.07; Figure S6A). Although



most of the samples clustered in theM6 group were classified as

proneural, this methylation subclass was not associated with

adverse survival overall (Figure S6B) (Noushmehr et al.,

2010).This observation reinforces the notion that target genes

affected by the G-CIMP phenotype likely contribute to the

improved prognosis for this subset of proneural GBM.

DNA methylation of the MGMT gene promoter is a known

marker for treatment response (Hegi et al., 2005). We found

that the MGMT locus was methylated in 48.5% of patients in

our cohort (174 of 359 assessed) and that G-CIMP cases

showed an increased likelihood of having MGMT DNA methyl-

ation (79%of G-CIMP versus 46% for non-G-CIMP; Figure S6C).

When correlated with outcome, MGMT status distinguished

responders from nonresponders among samples classified as

classical (n = 96; p = 0.01) but not among samples classified

as proneural (n = 66; p = 0.57), mesenchymal (n = 104; p =

0.62), and neural (n = 55; p = 0.12) (Figures S6D and S6E). In

summary, our data provide evidence forMGMTDNAmethylation

as a predictive biomarker in the GBM Classical subtype of GBM

but not other subtypes.

Regulatory Networks of miRNA and mRNA in
Gliomagenesis
MicroRNAs (miRs) have been found to promote or suppress

oncogenesis through modulation of gene expression via mRNA

degradation or inhibition of translation (Bartel, 2004; Krol et al.,

2010). Recent studies have proposed additional mechanisms

of miR-mRNA regulation, including modulation of competing

endogenous RNA (ceRNA), which are mRNA with competitive

miR binding sites (Sumazin et al., 2011; Tay et al., 2011).

Leveraging the existence of matched mRNA and miR profiling

data on a large number of samples, we sought to define the

salient interactions between specific pairs of miRs and mRNAs

through both of these mechanisms.

We employed a relevance network-based approach to infer

miR:mRNA associations in GBMs with matched miR and mRNA

profiles (n = 482). Putative regulatory targets of individual miRs

were defined as those genes having strong negative correlation

with the miR (%0.3) and prediction support in three commonly

used databases (Miranda, Pictar, TargetScan). One hundred

and thirty-threemiR:mRNAassociationsdefined thefinal putative

miR regulatory network (see Data Portal). The most prevalent as-

sociations related to molecular subtypes. For instance, hsa-mir-

29a (part of the miR29 family, thought to play a role in the TP53

pathway (Park et al., 2009), was predicted to regulate 23 genes.

Seventeen of these 23 genes were expressed at distinctively

high levels in the non-G-CIMP+ proneural tumors only and not

in the G-CIMP+ tumors. Interestingly, three (BCL11A, PCFG3,

and SS18L1) of the 23 genes in this subnetwork are predicted

to have competitive binding with PDGFRA regulatory miRs.

ceRNAs are mRNAs coregulated in trans by a common miR

(Sumazin et al., 2011; Tay et al., 2011). Here, we used a correla-

tion- and NLS-based approach, integrating miRNA and mRNA

expression and copy-number profiles to predict ceRNAs for

four GBM signature genes: PDGFRA, EGFR, NF1, and PTEN.

Interestingly, predicted PDGFRA ceRNAs significantly overlap-

ped with proneural GBM signature genes (p value < 1 3 10�15),

whereas EGFR ceRNAs significantly overlapped with classical
GBM signature genes (p value = 1.2 3 10�14) (see Data Portal).

Predicted ceRNAs of NF1 overlapped with proneural signatures

(p < 1 3 10�15) and PTEN-associated ceRNAs were correlated

with the mesenchymal signature. This provocative finding raises

thepossibility that ceRNA regulationbymiRmaycontribute to the

transcriptomic signature that defines the molecular subtypes in

GBM, although this hypothesis remains to be tested.

Signaling Pathway Activation in Different Molecular
Subtypes of GBM
To assess whether enrichment of genomic alterations in molec-

ular subtypes translates into downstream pathway activation,

we performed targeted proteomic profiling by RPPA. Two hun-

dred and fourteen sample lysates were probed with 171 anti-

bodies targeting phospho- and/or total-protein levels among

signaling pathways as previously described (TCGA, 2012c). After

normalization, coclusters of correlated signaling molecules

within specific signaling pathways were observed (see Extended

Experimental Procedures; Data Portal) and were utilized as

readout of pathway activity status for correlative analyses.

Unsupervised clustering of RPPA data failed to produce a

consistent partitioning of the sample cohort into clearly-defined

subtypes. However, 127 out of the 171 antibodies were found

to correlate significantly with transcriptomal subtype (Kruskal-

Wallis, p < 0.05; Extended Experimental Procedures). As antici-

pated, EGFR amplification/mutation was associated with signifi-

cant elevations in total EGFR expression (p = 3.74 3 10�15) and

phosphorylation (p = 1.44 3 10�12, Figure S7A), both prominent

in classical subtype tumors (Figure S7B). Classical GBMs also

showed relative downregulation of proapoptotic proteins

(including cleaved caspase 7, cleaved caspase 9, Bid, and Bak)

as well as MAP kinase signaling, including its downstream target

p90RSK. Notch1 and Notch3 expression were moderately

increased in classical tumors, consistent with previous reports

linking EGFR and Notch activation in GBM (Brennan et al., 2009).

Mesenchymal subtype tumors exhibited elevated levels of

endothelial markers, such as CD31 and VEGFR-2, consistent

with previous findings (Phillips et al., 2006), as well as markers

of inflammation (e.g., fibronectin and its downstream target

COX-2). Mesenchymal tumors showed moderately increased

activation of the MAPK pathway, as evidenced by higher levels

of phospho-Raf, phospho-MEK, and phospho-ERK (Figure 6).

These tumors also exhibited decreased levels of the mTOR reg-

ulatory protein, tuberin (TSC2 gene product), which is inhibited

by ERK phosphorylation.

In contrast to the mesenchymal subtype, proneural GBMs

showed relatively elevated expression and activation of the

PI3K pathway including the Akt-regulated mTorc1 activation

site (Figure 6). Proneural tumors showed greater inhibition of

the 4EBP1 translation repressor, whereas mesenchymal tumors

display elevated S6 kinase activation (indicative of mTOR

effector pathway activation). Therefore, both subtypes achieve

mTOR pathway activation although the specific patterns of

steady-state protein activation differ.

G-CIMP+ tumors shared characteristics with their proneural

superfamily, but also showed decreased expression of several

proteins, including Cox-2, IGFBP2, and Annexin 1. Among the

171 antibodies tested in the TCGA data set, these three proteins
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Figure 6. Canonical PI3K and MAPK Pathway Activation Determined by Reverse Phase Protein Arrays and Compared between GBM

Subclasses

Proneural (P, purple, n = 55) andmesenchymal (M, red, n = 45). Activation/expression levels are plotted for principal signaling nodes of the MAPK (phospho-MEK

and phospho-p90RSK), PI3 kinase (pS473-Akt) andmTOR (TSC1/2, phospho-mTOR, p235/236 S6, phospho-4EBP1 and EIF4E) pathways (p values, two-tailed t

test). Mesenchymal tumors showed increased activation of theMAPK pathway (evidenced by higher levels of phospho-MEK and downstream phospho-p90RSK)

and decreased levels of phospho-ERK inhibitory target TSC2. In contrast, proneural tumors showed relatively elevated expression and activation of members of

the PI(3) kinase pathway including Akt PDK1 target site threonine 308 (p = 0.01, data not shown) and Akt mTORC2 target site (serine 473). Phospho-ERK levels

were not significantly different between these two subtypes. Box plots: bar denotes median, central box spans the middle quartiles and whiskers denote

extremes up to 1.5 time the middle interquartile range.
were the most negatively prognostic (Cox proportional hazard

test, p < 0.0004–0.0013). IGFBP2 andCox-2 have been indepen-

dently reported as poor prognostic markers in diffuse gliomas

(Holmes et al., 2012; Shono et al., 2001), and low IGFBP2

expression has been associated with global DNA hypermethyla-

tion in glioma (Zheng et al., 2011). Members of the annexin family

have been associated with glioma growth and migration, and

annexin-1 is known to be underexpressed in secondary but not

primary GBM (Schittenhelm et al., 2009). Together, the correla-

tions of these proteins with G-CIMP status suggest that their

prognostic significance is not independent. Analysis of DNA

methylation for IGFBP2, COX2, and ANXA1 found no evidence

of hypermethylation in G-CIMP tumors.
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Interestingly, samples with RTK amplification had lower levels

of canonical RTK-target pathway activities as measured by

phospho-AKT, phospho-S6 kinase, and phospho-MAPK coclus-

ter levels (Figure S7C). Whereas PTEN loss and deletion were

each associated with incremental increases in AKT pathway

activity, PI3K mutant samples had lower AKT activity than sam-

ples lacking PI3K mutations, concordant with findings in breast

cancer (TCGA, 2012c). Samples harboring NF1 mutation/dele-

tion showed elevated MAP kinase activity (p-ERK and p-MEK,

p value < 0.001), and trended toward decreased PKC pathway

activity. These examples of nonlinear relationship between pro-

tein signaling and underlying genetic mutations speak to com-

plex and likely dynamic signaling in cancers.



DISCUSSION

In this study, we provided a comprehensive catalog of

somatic alterations associated with glioblastoma, constructed

through whole-genome, exome, and RNA sequencing as well

as copy-number, transcriptomic, epigenomic, and targeted pro-

teomic profiling. With the availability of detailed clinical informa-

tion including treatment and survival outcome for nearly the entire

cohort, this rich data set offers newopportunity to discover geno-

mics-based biomarkers, validate disease-related mechanisms

and generate novel hypotheses.

In addition to alterations in signature oncogenes of GBM, such

as EGFR and PI3K, we found that over 40% of tumors harbor at

least one nonsynonymous mutation among the chromatin-mod-

ifier genes. A role for chromatin organization in GBM pathology,

which has been described for cancer types such as ovarian car-

cinoma (Wiegand et al., 2010) and renal carcinoma (Varela et al.,

2011), is suggested. We also detected mutations in genes for

which targeted therapies have been developed, such as BRAF

(Chapman et al., 2011a), and FGFR1/FGFR2/FGFR3 (Singh

et al., 2012), demonstrating the potential clinical impact of this

TCGA data set.

Structural rearrangements that contributed to the overall

complexity of the genome and transcriptome were detected in

the majority of GBM. A high frequency of structural variants on

the q arm of chromosome 12, involving the MDM2 and CDK4

genes, was observed and associated with the presence of dou-

ble minute, extrachromosomal DNA fragments, which may be

functionally relevant (Zheng et al., 2013). The identification of

complex EGFR fusion and deletion variants in nearly half of

GBM confirm relevance of this category of somatic alterations

to the disease. While the development of a therapeutic strategy

targeting mutated EGFR could have a major impact on survival

and continues to be a topic of great interest (Vivanco et al.,

2012), strategies will need to address the possibility that different

EGFR alterations might exist concurrently in a tumor and yield

differential biological activities and/or responses to any given

targeted inhibitor.

Another level of biological complexity is revealed by targeted

proteomic profile, which showed that the impact of specific

genomic alterations on downstream pathway signaling is not

linear and not always predictably concordant with genotype.

This observation has provocative clinical implication as it directly

challenges the notion that therapeutic inhibition of downstream

signaling components along a pathway would yield similar effi-

cacy of targeting the mutated gene itself. Additionally, this

observation highlights the limitation of TCGA data, namely its

inherent static nature given a single time point analysis, and its

inability tomap specific genetic or protein changes to the individ-

ual cells or cell populations through whole-tumor tissue analysis.

In summary, this report reaffirms the power and value of

TCGA’s comprehensive multidimensional and clinically anno-

tated GBM reference data set in enabling hypothesis genera-

tion based on unanticipated observations and relationships

emerged from unbiased data-driven analyses. We believe that

this public resource will serve to facilitate discovery of new

insights that can advance our molecular understanding of this

disease.
EXPERIMENTAL PROCEDURES

Patient and Sample Characteristics

Specimens were obtained from patients, with appropriate consent from insti-

tutional review boards. Details of sample preparation are described in the

Extended Experimental Procedures.

Data Generation

In total, 599 patients were assayed on at least onemolecular profiling platform,

which platforms included: (1) exome sequencing, (2) DNA copy-number and

single-nucleotide polymorphism arrays, (3) whole-genome sequencing, (4)

gene expression arrays, (5) RNA sequencing, (6) DNA methylation arrays, (7)

reverse phase protein arrays, and (8) miRNA arrays. Details of data generation

are described in the Extended Experimental Procedures.

Whole-Genome and Exome Sequencing Data Analysis

Massively Parallel Sequencing Exome capture was performed by using Agilent

SureSelect Human All Exon 50 Mb according the manufacturer’s instructions.

All exome and whole-genome sequencing was performed on the Illumina

GA2000 and HiSeq platforms. Basic alignment and sequence quality control

were done by using the Picard and Firehose pipelines at the Broad Institute.

Mapped genomes were processed by the Broad Firehose pipeline to perform

additional quality control, variant calling, and mutational significance analysis.

RNA Sequencing Data Analysis

Libraries were generated from total RNA and constructed using the manufac-

turers protocols. Sequencing was done on the Illumina HiSeq platform. Read

mapping and downstream data analysis (expression profiles, fusion tran-

scripts, and structural transcript variants) were performed using the PRADA

pipeline.

Array Data Preprocessing and Analysis

To ensure across-platform comparability, features from all array platforms

were compared to a reference genome as previously described (TCGA,

2008). Both single platform analyses and integrated cross-platform analyses

were performed, as described in detail in the Extended Experimental

Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, six

figures, and seven tables and can be found with this article online at http://

dx.doi.org/10.1016/j.cell.2013.09.034.
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In the above article, we did not indicate a Sequence Read Archive (SRA) accession number for the DNA sequence data obtained to

draw our conclusions. These data are available under the accession number SRP039006 at http://www.ncbi.nlm.nih.gov/sra/.
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of Glioblastoma
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In the above article, we stated that our SNV mutations count included 5,379 silent, 3,901 missense, 831 nonsense, 360 splice-site,

and 760 mutations resulting in a frame shift. One of these figures represents an error; the missense mutation count should read

13,901 and not 3,901. The underlying data as well as the rest of the text and figures reflect the correct mutation count (13,901).
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