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Abstract

Human cancer cells typically harbor multiple chromosomal aberrations, nucleotide substitutions 

and epigenetic modifications that drive malignant transformation. The Cancer Genome Atlas 

(TCGA) pilot project aims to assess the value of large-scale multidimensional analysis of these 

molecular characteristics in human cancer and to provide the data rapidly to the research 

community. Here, we report the interim integrative analysis of DNA copy number, gene 

expression and DNA methylation aberrations in 206 glioblastomas (GBM), the most common type 

of adult brain cancer, and nucleotide sequence aberrations in 91 of the 206 GBMs. This analysis 

provides new insights into the roles of ERBB2, NF1 and TP53, uncovers frequent mutations of the 

PI3 kinase regulatory subunit gene PIK3R1, and provides a network view of the pathways altered 

in the development of GBM. Furthermore, integration of mutation, DNA methylation and clinical 

treatment data reveals a link between MGMT promoter methylation and a hypermutator phenotype 

consequent to mismatch repair deficiency in treated glioblastomas, an observation with potential 

clinical implications. Together, these findings establish the feasibility and power of TCGA, 

demonstrating that it can rapidly expand knowledge of the molecular basis of cancer.

Cancer is a disease of genome alterations: DNA sequence changes, copy number 

aberrations, chromosomal rearrangements, and modification in DNA methylation together 
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drive the development and progression of human malignancies. With the complete 

sequencing of the human genome and continuing improvement of high-throughput genomic 

technologies, it is now feasible to contemplate comprehensive surveys of human cancer 

genomes. The Cancer Genome Atlas (TCGA) aims to catalogue and discover major cancer-

causing genome alterations in large cohorts of human tumors through integrated multi-

dimensional analyses.

The first cancer studied by TCGA is glioblastoma (GBM), the most common primary brain 

tumor in adults 1. Primary GBM, which comprises more than 90% of biopsied or resected 

cases, arises de novo without antecedent history of low grade disease, whereas secondary 

GBM progresses from previously diagnosed low-grade gliomas 1. Patients with newly 

diagnosed GBM have a median survival of approximately one year with generally poor 

responses to all therapeutic modalities 2. Two decades of molecular studies have identified 

important genetic events in human GBMs, including (i) dysregulation of growth factor 

signaling via amplification and mutational activation of receptor tyrosine kinase (RTK) 

genes; (ii) activation of the phosphatidyl inositol 3-kinase (PI3K) pathway; and (iii) 

inactivation of the p53 and retinoblastoma tumor suppressor pathways 1. Recent genome-

wide profiling studies have also shown remarkable genomic heterogeneity among GBM and 

the existence of molecular subclasses within GBM that may, when fully defined, allow 

stratification of treatment 3–8. Albeit fragmentary, such baseline knowledge of GBM 

genetics sets the stage to explore whether novel insights can be gained from a more 

systematic examination of the GBM genome.

Results

As a public resource, all TCGA data are deposited at the Data Coordinating Center (DCC) 

for public access (http://cancergenome.nih.gov/). TCGA data are classified by data type (e.g. 

clinical, mutations, gene expression) and data level to allow structured access to this 

resource with appropriate patient privacy protection. An overview of the data organization is 

provided in Methods, and a detailed description is available in the TCGA Data Primer 

(http://tcga-data.nci.nih.gov/docs/TCGA_Data_Primer.pdf).

Biospecimen collection

Retrospective biospecimen repositories were screened for newly diagnosed GBM based on 

surgical pathology reports and clinical records (Fig. S1). Samples were further selected for 

having matched peripheral blood as well as associated demographic, clinical and 

pathological data (Table S1). Corresponding frozen tissues were reviewed at the 

Biospecimen Core Resource (BCR) to ensure a minimum of 80% tumor nuclei and a 

maximum of 50% necrosis (Fig. S1). DNA and RNA extracted from qualified biospecimens 

were subjected to additional quality control measurements (Methods) prior to distribution to 

TCGA centers for analyses (Fig. S2).

After exclusion based on insufficient tumor content (n=234) and suboptimal nucleic acid 

quality or quantity (n=147), 206 of the 587 biospecimens screened (35%) were qualified for 

copy number, expression, and DNA methylation analyses. Of these, 143 cases had matched 

normal peripheral blood DNAs and were therefore appropriate for re-sequencing. This 
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cohort also included 21 post-treatment GBM cases used for exploratory comparisons (Table 

S1). While it is possible that a small number of progressive secondary GBMs were among 

the remaining 185 cases of newly diagnosed glioblastomas, this cohort represents 

predominantly primary GBM. Indeed, when compared with published cohorts, overall 

survival of the newly diagnosed glioblastoma cases in TCGA is similar to that reported in 

the literature (Fig. S3, p=0.2)9–12.

Genomic and transcriptional aberrations

Genomic copy number alterations (CNAs) were measured on three microarray platforms 

(Methods) and analyzed with multiple analytical algorithms13–15 (Fig. S4; Tables S2–S4). 

Besides the well-known alterations3,13,14, we detected significantly recurrent focal 

alterations not previously reported in GBMs, such as homozygous deletions involving NF1 

and PARK2 and amplifications of AKT3 (Fig. 1a; Tables S2–S4). Search for informative but 

infrequent CNAs also uncovered rare focal events, such as amplifications of FGFR2 and 

IRS2 and deletion of PTPRD (Table S4). Abundances of protein-coding genes and non-

coding microRNA were also measured by transcript-specific and exon-specific probes on 

multiple platforms (Methods, and manuscript in preparation). The resulting integrated gene 

expression data set showed that ~76% of genes within recurrent CNAs have expression 

patterns that correlate with copy number (Table S2). In addition, SNP-based analyses also 

catalogued copy-neutral loss of heterozygosity (LOH), with the most significant region 

being 17p, which contains TP53 (Methods).

Patterns of somatic nucleotide alterations in GBM

91 matched tumor-normal pairs (72 untreated and 19 treated cases) were selected from the 

143 cases for detection of somatic mutations in 601 selected genes (Table S5). The resulting 

sequences, totaling 97 million base pairs (1.1±0.1 million bases per sample), uncovered 453 

validated non-silent somatic mutations(Table S6; http://tcga-data.nci.nih.gov/docs/

somatic_mutations/tcga_mutations.htm). The background mutation rates differed drastically 

between untreated and treated GBMs, averaging 1.4 versus 5.8 somatic silent mutations per 

sample (98 among 72 untreated vs 111 among 19 treated, p<10−21), respectively. This 

difference was predominantly driven by seven hypermutated samples, as determined by 

frequencies of both silent and non-silent mutations (Fig. 1b,c). Four of the 7 hypermutated 

tumors were from patients previously treated with temozolomide and 3 from patients treated 

with CCNU alone or in combination (Table S1b). A hypermutator phenotype in GBM has 

been described in 3 GBM specimens with MSH6 mutations 16,17, prompting us to perform 

a systematic analysis of the genes involved in mismatch repair (MMR). Indeed, 6 of the 7 

hypermutated samples harbored mutations in at least one of the mismatch repair genes 

MLH1, MSH2, MSH6, or PMS2, as compared with only one sample among the 84 non-

hypermutated samples (p = 7×10−8), suggesting a role of decreased DNA repair competency 

in these highly mutated samples derived from treated patients.

By applying a statistical analysis of mutation significance 18, we identified eight genes as 

significantly mutated (false discovery rate (FDR) <10−3) (Fig. 2d, Table S6). Interestingly, 

27 TP53 mutations were detected in the 72 untreated GBMs (37.5%) and 11 mutations in the 

19 treated samples (58%). All of those mutations clustered in the DNA binding domain, a 
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well-known hotspot for p53 mutations in human cancers (Fig. S5; Table S6). Given the 

predominance of primary GBM among this newly diagnosed collection, that result 

unequivocally proves that p53 mutation is a common event in primary GBM.

NF1 is a human glioblastoma suppressor gene—Although somatic mutations in 

NF1 have been reported in a small series of human GBM tumors 21, their role remains 

controversial 22, despite strong genetic data in mouse model systems 19,20. Here, 19 NF1 

somatic mutations were identified in 13 samples (14% of 91), including six nonsense 

mutations, four splice site mutations, five missense changes, and four frameshift indels (Fig. 

2a). Five of these mutations—R1391S (23), R1513* (24), e25 −1 and e29 +1 (25), and 

Q1966* (26)—have been reported as germline alterations in neurofibromatosis patients, thus 

are likely inactivating. In addition, 30 heterozygous deletions in NF1 were observed among 

the entire interim sample set of 206 cases, 6 of which also harbor point mutation (Tables S8 

and S9). Some samples also exhibited loss of expression without evidence of genomic 

alteration (Fig. 2b). Overall, at least 47 of these 206 patient samples (23%) harbored somatic 

NF1 inactivating mutations or deletions, definitively address NF1’s relevance to sporadic 

human GBM.

Prevalence of EGFR family activation—EGFR is frequently activated in primary 

GBMs. Variant III deletion of the extracellular domain (so-called “vIII mutant”)27 has been 

the most commonly described event, in addition to extracellular domain point mutations and 

cytoplasmic domain deletions 28.29. Here, high resolution genomic and exon-specific 

transcriptomic profiling readily detected vIII and C-terminal deletions with correspondingly 

altered transcripts (Fig. 2c). Among the 91 GBM cases with somatic mutation data, 22 

harbored focal amplification of wild type EGFR with no point mutation, 16 had point 

mutations in addition to focal amplification, and three had EGFR point mutations but no 

amplification (Fig. S6; Table S9). Collectively, EGFR alterations were observed in 41 of the 

91 sequenced samples.

ERBB2 mutation has previously been reported in only one GBM tumor 30. In the TCGA 

cohort, 11 somatic ERBB2 mutations in 7 of 91 samples were validated, including 3 in the 

kinase domain and two involving V777A, a site of recurrent missense and in-frame insertion 

mutations in lung, gastric, and colon cancers 31. The remaining eight mutations (including 

seven missense and one splice-site mutation) occurred in the extracellular domain of the 

protein, similar to somatic EGFR substitutions in GBM (Fig. 2d). Unlike in breast cancers, 

focal amplifications of ERBB2 were not observed in GBMs.

Somatic mutations of the PI3K complex in human glioblastoma—The PI3 kinase 

complex is comprised of a catalytically active protein, p110α, encoded by PIK3CA, and a 

regulatory protein, p85α, encoded by PIK3R1. Frequent activating missense mutations of 

PIK3CA have been reported in multiple tumor types, including GBM32,33. These mutations 

occur primarily in the adaptor binding domain (ABD) as well as the C2 helical and kinase 

domains 34–36. Indeed, PIK3CA somatic nucleotide substitutions were detected in six of the 

91 sequenced samples (Table S6). Besides the 4 matching events already reported in the 

COSMIC database (http://www.sanger.ac.uk/genetics/CGP/cosmic/), two novel in-frame 
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deletions were detected in the ABD of PIK3CA (“L10del” and “P17del”). Those deletions 

may disrupt interactions between p110α and its regulatory subunit, p85α 37.

Unlike PIK3CA, PIK3R1 has rarely been reported as mutated in cancers. Among the five 

reported PIK3R1 nucleotide substitutions in cancers 38,39, one was in a glioblastoma 39. In 

our TCGA cohort, 9 PIK3R1 somatic mutations were detected among the 91 sequenced 

GBMs. None of them was in samples with PIK3CA mutations. Of the nine mutations, eight 

lay within the intervening SH2 (or iSH2) domain and four are 3-basepair in-frame deletions 

(Fig. 3a and Table S6). In accord with the crystal structure of PI3 kinase, which identifies 

the D560 and N564 amino acid residues in p85α as contact points with the N345 amino acid 

residue in the C2 domain of p110α37, the mutations detected in GBM cluster around those 

three amino acid residues (Fig. 3b), including a N345K mutation in PIK3CA (previously 

reported in colon and breast cancers 40) and two novel D560 mutations in PIK3R1 (D560Y 

and N564K). We also identified an 18-basepair deletion spanning residues D560 to S565 

(DKRMNS) in PIK3R1 (Fig. 3b) in addition to three other novel deletions (R574del, 

T576del, and W583del) in proximity to the 3 key residues. We speculate that spatial 

constraints due to these deletions might prevent inhibitory contact of p85α nSH2 with the 

helical domain of p110α, causing constitutive PI3K activity. Taken together, the pattern of 

clustering of the mutations around key residues defined by the crystal structure of PI3K 

strongly suggest that these novel PIK3R1 point mutations and insertions/deletions disrupt 

the important C2-iSH2 interaction, relieving the inhibitory effect of p85α on p110α.

MGMT methylation and MMR proficiency in post-treatment GBMs

Cancer-specific DNA methylation of CpG dinucleotides located in CpG islands within the 

promoters of 2,305 genes were measured relative to normal brain DNA (Table S7; 

Methods). The promoter methylation status of MGMT, a DNA repair enzyme that removes 

alkyl groups from guanine residues 41, is associated with GBM sensitivity to alkylating 

agents 42,43. Among the 91 sequenced cases, 19 samples were found to contain MGMT 

promoter methylation (including 13 of the 72 untreated and 6 of the 19 treated cases). When 

juxtaposed with somatic mutation data, an intriguing relationship between the hypermutator 

phenotype and MGMT methylation status emerged in the treated samples. Specifically, 

MGMT methylation was associated with a profound shift in the nucleotide substitution 

spectrum of treated GBMs (Fig. 4a). Among the treated samples lacking MGMT methylation 

(n=13), 29% (29/99) of the validated somatic mutations occurred as G:C to A:T transitions 

in CpG dinucleotides (characteristic of spontaneous deamination of methylated cytosines), 

and a comparable 23% (23/99) of all mutations occurred as G:C to A:T transitions in non-

CpG dinucleotides. In contrast, in the treated samples with MGMT methylation (n=6), 81% 

of all mutations (146/181) turned out to be of the G:C to A:T transition type in non-CpG 

dinucleotides whereas only 4% (8/181) of all mutations were G:C to A:T transition 

mutations within CpGs. That pattern is consistent with a failure to repair alkylated guanine 

residues caused by treatment. In other words, MGMT methylation shifted the mutation 

spectrum of treated samples to a preponderance of G:C to A:T transition at non-CpG sites.

Significantly, the mutational spectra in the mismatch repairs (MMR) genes themselves 

reflected MGMT methylation status and treatment consequences. All seven mutations in 
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MMR genes found in six MGMT methylated hypermutated (treated) tumors occurred as G:C 

to A:T mutations at non-CpG sites (Fig. 4b; Table S6), while neither MMR mutations in 

non-methylated hypermutated tumors was of this characteristic. Hence, these data show that 

MMR deficiency and MGMT methylation together, in the context of treatment, exert a 

powerful influence on the overall frequency and pattern of somatic point mutations in GBM 

tumors, an observation of potential clinical importance.

Integrative analyses define core pathways required for GBM pathogenesis

To begin to construct an integrated view of common genetic alterations in the GBM 

genome, we mapped the unequivocal genetic alterations—validated somatic nucleotide 

substitutions, homozygous deletions and focal amplifications—onto major pathways 

implicated in GBM 1. That analysis identified a highly interconnected network of 

aberrations (Figs. S7–S8), including three major pathways: receptor tyrosine kinases (RTKs) 

signaling, and the p53/RB tumor suppressor pathways (Fig. 5).

By copy number data alone, 66%, 70% and 59% of the 206 samples harbored somatic 

alterations of the RB, TP53 and RTK pathways, respectively (Table S8). In the 91 samples 

for which there was also sequencing data, the frequencies of somatic alterations increased to 

87%, 78% and 88%, respectively (Table S9). There was a statistical tendency toward mutual 

exclusivity of alterations of components within each pathway (p-values of 9.3×10−10, 

2.5×10−13, and 0.022, respectively for the p53, RB, and RTK pathways; Tables S10), 

consistent with the thesis that deregulation of one component in the pathway relieves the 

selective pressure for additional ones. However, we observed a greater than random chance 

(one-tailed p = 0.0018) that a given sample harbors at least one aberrant gene from each of 

the three pathways (Table S10). In fact, 74% harbored aberrations in all three pathways, a 

pattern suggesting that deregulation of the three pathways is a core requirement for 

glioblastoma pathogenesis.

Besides frequent deletions and mutations of the PTEN lipid phosphatase tumor suppressor 

gene, 86% of the GBM samples harbored at least one genetic event in the core RTK/PI3K 

pathway (Fig. 5a). In addition to EGFR and ERBB, PDGFRA (13%) and MET (4%) showed 

frequent aberrations (Tables S9). 10 of the 91 sequenced samples have amplifications or 

point mutations in at least two of the four RTKs catalogued (EGFR, ERBB2, PDGFRA and 

MET) (Table S9), suggesting genomic activation can be a mechanism for co-activated RTKs 

44.

Inactivation of the p53 pathway occurred in the form of ARF deletions (55%), amplifications 

of MDM2 (11%) and MDM4 (4%), in addition to mutations of p53 itself (Fig. 5b; Table S8). 

Among 91 sequenced samples (Table S9), genetic lesions in TP53 were mutually exclusive 

of those in MDM2 or MDM4 (odds ratios of 0.00 for both; p = 0.02 and 0.068, respectively; 

Tables S10), but not of those in ARF. In fact, 10 of the 32 tumors with TP53 mutations also 

deleted ARF, suggesting that homozygous deletion of the CDKN2A locus (which encodes 

both p16INK4A and ARF) was at least in part driven by p16INK4A.

Among the 77% samples harboring RB pathway aberrations (Fig. 5c), the most common 

event was deletion of the CDKN2A/CDKN2B locus on chromosome 9p21 (55% and 53%), 
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followed by amplification of the CDK4 locus (14%) (Fig. 1a; Table S8 and S9). Although 

copy number alterations in the CDK/RB pathway members can co-occur in the same tumor 

14, all nine samples with RB1 nucleotide substitutions (Table S9) lacked CDKN2A/B 

deletion or other copy number alterations in the pathway, suggesting that inactivation of 

RB1 by nucleotide substitution, in contrast to copy number loss, obviates the genetic 

pressure for activation of upstream cyclin/cyclin-dependent kinases..

Discussion

In establishing this pilot program, TCGA has developed important principles in biospecimen 

banking and collection (manuscript in preparation), and established the infrastructure that 

will serve similar efforts in the future. Although it ensured high quality data, the stringent 

biospecimen selection criteria may have introduced a degree of bias because small samples 

and samples with high levels of necrosis were excluded. Nonetheless, the clinical parameters 

of this cohort are similar to other published cohorts (Table S1; Fig. S3).

The integrated analyses of multi-dimensional genomic data from complementary technology 

platforms have proved informative. In addition to pinpointing deregulation of RB, p53 and 

RTK/RAS/PI3K pathways as obligatory events in most, and perhaps all, GBM tumors, the 

patterns of mutations may also inform future therapeutic decisions. It would be reasonable to 

speculate that patients with deletions or inactivating mutations in CDKN2A or CDKN2C or 

patients with amplifications of CDK4/CDK6 would be candidates for treatment with CDK 

inhibitors, a strategy not likely to be effective in patients with RB1 mutation. Similarly, 

patients with PTEN deletions or activating mutations in PIK3CA or PIK3R might be 

expected to benefit from a PI3 kinase or PDK1 inhibitor, while tumors in which the PI3 

kinase pathway is altered by AKT3 amplification might prove refractory to those modalities. 

The presence of genomic co-amplification reinforces the recent report of multiple 

phosphorylated (activated) RTKs in individual GBM specimens 44, suggesting a way to 

tailor anti-RTK therapeutic cocktails to specific patterns of RTK mutation. In addition, 

combination anti-RTK therapy might synergize with downstream inhibition of PI3K or cell 

cycle mediators. In contrast, GBMs with NF1 mutations might benefit from a RAF or MEK 

inhibitor as part of a combination, as shown for BRAF mutant cancers 45.

One of the most important biomarkers for GBM is the methylation status of MGMT, which 

predicts sensitivity to temozolomide 42,43, an alkylating agent that is the current standard of 

care for GBM patients. Integrative analysis of mutation, DNA methylation and clinical 

(treatment) data, albeit with small sample numbers, suggests a series of inter-related events 

that may impact clinical response and outcome. Newly diagnosed glioblastomas with 

MGMT methylation respond well to treatment with alkylating agents, in part as a 

consequence of unrepaired alkylated guanine residues initiating cycles of futile mismatch 

repair, which can lead to cell death 46–48. Therefore, treatment of MGMT-deficient GBMs 

with alkylating therapy introduces a strong selective pressure to lose mismatch repair 

function 49. That conclusion is consistent with our observation that the mismatch repair 

genes themselves are mutated with characteristic C:G → A:T transitions at non-CpG sites 

resulting from unrepaired alkylated guanine residues. Thus, initial methylation of MGMT, in 

conjunction with treatment, may lead to both a shift in mutation spectrum affecting 
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mutations at mismatch repair genes and selective pressure to lose mismatch repair function. 

In other words, our finding raises the possibility that patients who initially respond to the 

frontline therapy in use today may evolve not only treatment resistance, but also an MMR-

defective hypermutator phenotype. If such a mechanism indeed underlies emergence of 

MMR-defective resistance, one may speculate that selective strategies targeting mismatch-

repair deficiency 50 would represent a rational upfront combination that may prevent or 

minimize emergence of such resistance. Validation of this hypothesis will have immediate 

clinical impact and implication for therapeutic design. For one, it suggests that treatment 

mediated mutator phenotype may lead to pathway mutations that confer resistance to new 

targeted therapies thereby raising the concern that combined or serial treatment with 

alkylating agents and pathway targeted therapies may substantially increase the probability 

of developing resistance to such targeted drugs.

In conclusion, the power of TCGA to produce unprecedented multi-dimensional data sets 

employing statistically robust numbers of samples sets the stage for a new era in the 

discovery of new cancer interventions. The integrative analyses leading to formulation of an 

unanticipated hypothesis on a potential mechanism of resistance highlights precisely the 

value and power of such project design, demonstrating how unbiased and systematic cancer 

genome analyses of large sample cohorts can lead to paradigm-shifting discoveries.

Method Summary

Biospecimens were screened from retrospective banks of Tissue Source Sites under 

appropriate IRB approvals for newly diagnosed GBM with minimal 80% tumor cell 

percentage. RNA and DNA extracted from qualified specimens were distributed to TCGA 

centers for analysis. Whole genome-amplified genomic DNA samples from tumors and 

normals were sequenced by the Sanger method. Mutations were called, verified using a 

second genotyping platform, and systematically analyzed to identify significantly mutated 

genes after correcting for the background mutation rate for nucleotide type and the sequence 

coverage of each gene. DNA copy number analyses were performed using the Agilent 244K, 

Affymetrix SNP6.0, and Illumina 550K DNA copy number platforms. Sample-specific and 

recurrent copy number changes were identified using various algorithms (GISTIC, GTS, 

RAE). mRNA and miRNA expression profiles were generated using Affymetrix U133A, 

Affymetrix Exon 1.0 ST, custom Agilent 244K, and Agilent miRNA array platforms. 

mRNA expression profiles were integrated into a single estimate of relative gene expression 

for each gene in each sample. Methylation at CpG dinucelotides was measured using the 

Illumina GoldenGate assay. All data for DNA sequence alterations, copy number, mRNA 

expression, miRNA expression, and CpG methylation were deposited in standard common 

formats in the TCGA DCC at http://cancergenome.nih.gov/dataportal/. All archives 

submitted to DCC were validated to ensure a common document structure and to ensure 

proper use of identifying information.
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The Cancer Genome Atlas (TCGA) Research Network

Tissue Source Sites

Duke University Medical School—Roger McLendon(6), Allan Friedman(7), Darrell 

Bigner(6), Emory University: Erwin G Van Meir(45,46,47), Daniel J Brat(47,48), Gena 

Marie Mastrogianakis(45), Jeffrey J Olson(45,46,47) Henry Ford Hospital: Tom 

Mikkelsen(8), Norman Lehman(50), MD Anderson Cancer Center: Ken Aldape(10), W.K. 

Alfred Yung(11), Oliver Bogler(12), University of California San Francisco: Scott 

VandenBerg(9), Mitchel Berger(51), Michael Prados(51)

Genome Sequencing Centers

Baylor College of Medicine—Donna Muzny(34), Margaret Morgan(34), Steve 

Scherer(34), Aniko Sabo(34), Lynn Nazareth(34), Lora Lewis(34), Otis Hall(34), Yiming 

Zhu(34), Yanru Ren(34), Omar Alvi(34), Jiqiang Yao(34), Alicia Hawes(34), Shalini 

Jhangiani(34), Gerald Fowler(34), Anthony San Lucas(34), Christie Kovar(34), Andrew 

Cree(34), Huyen Dinh(34), Jireh Santibanez(34), Vandita Joshi(34), Manuel L. Gonzalez-

Garay(34), Christopher A. Miller(34,36), Aleksandar Milosavljevic(34,36,37), Larry 

Donehower(35), David A. Wheeler(34), Richard A. Gibbs(34), Broad Institute of MIT and 
Harvard: Kristian Cibulskis(52), Carrie Sougnez(53), Tim Fennell(54), Scott Mahan(59), 

Jane Wilkinson(55), Liuda Ziaugra(56), Robert Onofrio(56), Toby Bloom(57), Rob 

Nicol(58), Kristin Ardlie(59), Jennifer Baldwin(55), Stacey Gabriel(56), Eric 
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Figure 1. Significant copy number aberrations and pattern of somatic mutations
(a) Frequency and significance of focal high-level copy-number alterations. Known and 

putative target genes are listed for each significant CNA, with “Number of Genes” denoting 

the total number of genes within each focal CNA boundary.

(b–c) Distribution of the number of (b) silent and (c) non-silent mutations across the 91 

GBM samples separated according to their treatment status, showing hypermutation in 7 out 

of the 19 treated samples.

(d) Significantly mutated genes in 91 glioblastomas. The eight genes attaining a false 

discovery rate <0.1 are displayed here. Somatic mutations occurring in untreated samples 

are in dark blue; those found in statistically non-hypermutated and hypermutated samples 

among the treated cohort are in respectively lighter shades of blue.
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Figure 2. Mutations in NF1 tumor suppressor gene and EGFR family members
(a) NF1 somatic mutations in 91 glioblastoma tumors. Both missense mutations and 

truncating nonsense, frameshift, and splice site mutations were observed. Splice positions 

are given in number of bases to the closest exon (e#) numbered according to the NF1 

reference transcript in the Human Gene Mutation Database; positive = 3′ of exon, negative = 

5′ of exon. *: stop codon. fs: frameshift.

(b) Correlation of copy number and mutation status at the NF1 locus with level of 

expression (Y axis). Mutation events predicted to result in fewer expressed copies (including 

deletion, nonsense, splice site, and frameshift mutations) generally have lower observed 

expression. HomoDel = homozygous deletion; HemiDel = single-copy loss; Neutral = no 

change in copy number (presumed diploid); Amp = increased copy number. Copy number 

status of the NF1 locus in each sample was determined as described in the Supplementary 

Information.

(c). DNA Copy number and mRNA expression profiles for TCGA samples TCGA-08–0356 

(red), TCGA-02–0064 (blue), and TCGA-02–0529 (green) at the EGFR locus. The upper 

panel shows the segmented DNA copy number (based on Affymetrix SNP6.0 data) versus 

genomic coordinates on chromosome 7. The lower panel shows relative exon expression 

levels across the known EGFR exons from the Affymetrix Exon array ordered by genomic 

position, where relative expression is the median-centered difference in exon intensity and 

gene intensity. The EGFR gene model lies between the two plots. Black lines map the 

genomic positions of exons 2 through 7 and 26 through 28. Note that structural deletions 

cause the relatively lower expression of exons 2–7 in the green and blue samples and exons 

26–28 in the red sample.

(d) ERBB2 somatic mutations in 91 glioblastoma tumors. Mutations cluster in the 

extracellular domain in both genes. Splice site mutation position is given in number of bases 

to the closest exon (e#); positive = 3′ of exon.

Page 19

Nature. Author manuscript; available in PMC 2009 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. PIK3R1 and PIK3CA mutations in GBM
(a). Diamonds above the backbone indicate the locations of mutations found in TCGA 

tumors. ABD: adaptor binding domain; RDB: Ras binding domain; C2: membrane-binding 

domain; iSH2: intervening domain.

(b). Four mutations found in the interaction interface of the p110α; C2 domain with iSH2 of 

p85 α. Two residues of p85 α, D560 and N564, are within hydrogen-bonding distance of the 

C2 residue of p110 α, N345.
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Figure 4. Pattern of somatic mutations, MGMT DNA methylation, and MMR gene mutations in 
treated GBMs
(a). The mean number of validated somatic nucleotide substitutions per tumor for key 

sample groups is indicated on the Y-axis and denoted by the height of the bar histograms. 

Samples are grouped along the X-axis according to treatment status of the patient (− = 

untreated; + = treated), DNA methylation status of MGMT (meth = DNA methylated; − = 

not methylated), and genetic status of MMR genes − = no genes mutated and mut = one or 

more of the MLH1, MSH2, MSH6, or PMS2 genes mutated); the number below each bar 
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indicates the number of samples in the group. Bars are color-coded for types of nucleotide 

substitutions including G-to-A transitions at non-CpG sites (orange), G-to-A transitions at 

CpG sites (blue), and other mutation types (green).

(b). Bar histogram for mutation spectrum in the MMR genes as a function of treatment 

status, and methylation status of MGMT. The color code for substitution types is the same as 

in (a).
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Figure 5. Frequent genetic alterations in three critical signaling pathways
Primary sequence alterations and significant copy number changes for components of the (a) 

RTK/RAS/PI-3K, (b) p53, and (c) RB signaling pathways are shown. Red indicates 

activating genetic alterations, with frequently altered genes showing deeper shades of red. 

Conversely, blue indicates inactivating alterations, with darker shades corresponding to a 

higher percentage of alteration. For each altered component of a particular pathway, the 

nature of the alteration and the percentage of affected tumors affected are indicated. Blue 

boxes contain the final percentages of glioblastomas with alterations in at least one known 

component gene of the designated pathway.
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