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Abstract

Identification and characterization of cancer subtypes are important areas of research that are 

based on the integrated analysis of multiple heterogeneous genomics datasets. Since there are no 

tools supporting this process, much of this work is done using ad-hoc scripts and static plots, 

which is inefficient and limits visual exploration of the data. To address this, we have developed 

StratomeX, an integrative visualization tool that allows investigators to explore the relationships of 

candidate subtypes across multiple genomic data types such as gene expression, DNA 

methylation, or copy number data. StratomeX represents datasets as columns and subtypes as 

bricks in these columns. Ribbons between the columns connect bricks to show subtype 

relationships across datasets. Drill-down features enable detailed exploration. StratomeX provides 

insights into the functional and clinical implications of candidate subtypes by employing small 

multiples, which allow investigators to assess the effect of subtypes on molecular pathways or 

outcomes such as patient survival. As the configuration of viewing parameters in such a multi-

dataset, multi-view scenario is complex, we propose a meta visualization and configuration 

interface for dataset dependencies and data-view relationships. StratomeX is developed in close 

collaboration with domain experts. We describe case studies that illustrate how investigators used 

the tool to explore subtypes in large datasets and demonstrate how they efficiently replicated 

findings from the literature and gained new insights into the data.

1. Introduction

The discovery, refinement, and characterization of cancer subtypes are the basis for targeted 

treatment and have implications for patient outcomes and patient well-being. Lately, much 

of the research on cancer subtypes is being performed with data from large-scale projects 

such as The Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov), which are 

generating comprehensive genomic and clinical datasets for thousands of patients. Recent 

studies [VHP*10, NWD*10] have shown that an integrated analysis of different molecular 

data types generated by the TCGA project can indeed be used to discover subtypes and 

suggest molecular alterations relevant for therapeutic approaches.
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Interactive visualization tools are crucial to fully exploit the potential of these large and 

heterogeneous datasets for cancer subtype characterization. Such tools can greatly increase 

the efficiency of investigators, who currently are relying mainly on ad-hoc scripts and static 

plots, making the process of exploring the data and checking hypothesis a tedious task. From 

a visualization research perspective, the conceptual and technical hurdles to provide 

seamless data visualization across the boundaries of individual heterogeneous datasets are 

not yet overcome, although they have been discussed for over a decade [UAB*98]. It stands 

to reason that there will be no all-encompassing heterogeneous data visualization concept 

available anytime soon, but investigators urgently need solutions for integrated visual 

analysis to make progress in their specific domains.

In this paper, we present an integrated solution for the visual exploration needs arising 

during the classification of cancer subtypes in large-scale, heterogeneous genomics data. 

Besides a task analysis elicited in semi-structured interviews with investigators, we 

contribute two novel visual encodings supporting these tasks. The first is StratomeX, which 

employs a column-based layout to represent datasets, with bricks in those columns encoding 

potential subtypes or stratifications (partitionings into homogeneous subsets) of the data. 

Bricks can embed different visualizations and StratomeX enables investigators to 

interactively refine these bricks. Contextual information from other data sources, such as 

biological pathways and clinical variables, are seamlessly integrated as dependent columns 
and provide information critical for interpretation. Another challenge that arises when 

working with large numbers of complex datasets is the coordination of the datasets and 

stratifications, as well as their assignment to views. This is addressed by another 

contribution, the Data-View Integrator, a meta visualization that shows relationships 

between datasets and allows investigator to interactively assign stratifications and datasets to 

views.

Our approach is validated in case studies with investigators who are domain experts. We 

report on findings, in which data from TCGA for glioblastoma multiforme (GBM) [The08] 

was used to characterize subtypes. Investigators were able to quickly reproduce known 

results from the literature and to gain further insights into the data.

2. Biological Background and Data

Cancer is a family of complex diseases that are caused by the accumulation of molecular 

alterations that are either genomic and affect the DNA sequence or epigenomic and affect 

other inheritable characteristics, such as methylation patterns of the DNA. These alterations 

can lead to abnormal cell growth, which results in tumor formation, invasion of nearby 

tissue, and often in growth of metastases in distant parts of the body.

Traditionally, cancers have been classified and named after the tissue or cell type where they 

originate, such as “breast ductal carcinoma” or “lung squamous cell carcinoma”. However, 

cancers that originate from the same tissue or cell type are often not homogeneous with 

respect to their histology or the underlying genomic and epigenomic alterations, which gives 

rise to the notion of cancer subtypes. Cancer subtypes are highly relevant for patient 

treatment and prognosis, since the efficacy of cancer drugs can vary greatly between cancer 
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subtypes, and patients with different subtypes often have very different survival chances. In 

recent years, the identification and characterization of subtypes has focused increasingly on 

genome-wide molecular data, which is now becoming available also for large numbers of 

patients through the work of consortia such as The Cancer Genome Atlas project. Our 

collaborators are analyzing data from TCGA, which is a large-scale study designed to 

identify and catalog the molecular changes that are recurrent in large cohorts of cancer 

patients and therefore implied to drive tumor formation. TCGA aims to collect samples from 

at least 500 patients for each of over 20 different cancer types for a total of more than 10,000 

patients. Several dozens of clinical parameters are collected for each patient, and all samples 

are subjected to extensive molecular profiling. The data generated for each sample includes 

genome-wide gene mutation status, copy number alterations, mRNA gene expression levels, 

DNA methylation levels, and microRNA expression levels.

Gene mutations are mutations in the genomic DNA of a cell in the region of the gene that 

determines the sequence of the protein encoded by the gene. Such mutations can lead to 

changes in the structure or function of the protein, which can have serious effects, for 

instance, if they affect tumor suppressor genes. Copy number alterations are another 

category of genomic mutations that can occur, for instance, if the genomic DNA of a cell is 

copied incorrectly during cell division. Whereas gene mutations only affect single or a very 

small number of consecutive positions in the genome, these alterations may affect hundreds 

to tens of thousands of positions and even whole chromosomes. Regions of the genome may 

be either amplified, resulting in an increased number of copies of the genes in that region, or 

lost, resulting in a decreased number of copies of genes. Since normal cells carry only two 

copies of each gene, they can either lose one copy – a “heterozygous deletion” – or both 

copies, resulting in a “homozygous deletion”. On the other hand, there is no theoretical limit 

to the number of times a gene can be amplified.

Gene expression is the process in which a gene is transcribed from the genomic DNA into 

an mRNA molecule, which can subsequently be translated into a protein. By measuring the 

abundance of such mRNA molecules – the “gene expression level” – the activity of a gene 

can be determined. For genome-wide studies the gene expression level is typically used as 

an indicator for the amount of protein that is being produced for the corresponding gene. 

Gene expression levels are controlled by various regulatory mechanisms. For instance, DNA 
methylation, an epigenomic modification, is known to suppress transcription if present in 

the regulatory region of a gene. In cancer, gene expression levels are also often affected by 

copy number alterations. An increased number of copies of a gene, for instance, often leads 

to increased gene expression levels and vice versa. Another part of the gene regulatory 

machinery are microRNAs, which are short RNA molecules that unlike mRNA are not 

translated into proteins, but regulate the translation of mRNAs into proteins by binding to 

mRNA molecules.

TCGA data generation centers are using either microarray or next-generation sequencing 

technologies to generate aforementioned data types. The consortium maintains Firehose 
(http://gdac.broadinstitute.org), a data analysis pipeline that is used to automatically 

preprocess the data and to perform a range of bioinformatics analyses. The analyses are 

performed jointly for all samples from patients with a particular cancer type and include 
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clustering algorithms for mRNA, microRNA, and methylation data, as well as identification 

of mutated genes and copy number changes.

Investigators who are working on cancer subtype identification and characterization use 

three types of results from the analysis pipeline: (1) Quantitative data matrices, such as gene 

expression matrices with measurements for all genes in all patient samples. (2) Clusterings 

on these matrices that stratify patients into mutually exclusive subsets. (3) Categorical data 

matrices, containing information such as the copy number status (ordinal) – homozygously 

or heterozygously deleted, normal, lowly, or highly amplified – or mutation status (nominal) 

– mutated or not mutated – for each gene in each patient. Entries for individual genes in 

these matrices can be used to stratify the patients.

In addition to the output from the data analysis pipeline, investigators include quantitative 

clinical parameters, such as “time until death”, in their analyses. They may also include 

patient stratifications in their analyses that were computed outside the main data analysis 

pipeline. Furthermore, pathways, models of biological processes, are used to investigate the 

role gene products play in molecular interactions.

3. Tasks

To understand the requirements of our collaborators for subtype analysis, we conducted a 

series of semi-structured interviews and evaluated recent publications that report findings of 

subtype analyses on TCGA data, for example, [VHP*10] and [NWD*10], to complement 

the requirements elicited from the interviews. We also presented an abstract on StratomeX at 

a TCGA-internal workshop [LPG11] to gather feedback.

Our working definition of a (candidate) subtype is a subset of patients obtained from one or 

more stratifications and we use the terms subset and subtype interchangeably.

The exploratory analysis can be roughly divided into two phases. In Phase 1, the 

investigators try to find stratifications of patients that are derived from multiple data types, 

for example, an mRNA gene expression clustering that correlates with the mutation status of 

a particular gene. In Phase 2, they evaluate these subsets with respect to their functional and 

clinical implications. Tasks from Phase 1 and Phase 2 are addressed in an iterative fashion. 

More specifically, in Phase 1, investigators need to:

• Select combinations of stratifications and data matrices from different data 

types for visualization.

• Evaluate how well two or more stratifications support each other.

• View and explore mRNA and microRNA expression or DNA methylation 

matrices as stratified by candidate subtypes. If different patient subsets 

exhibit distinct patterns, this is an indicator that there might be supporting 

evidence for these subtypes.

• Refine stratifications by combining information from two data types, for 

instance by splitting a gene expression cluster based on the mutation status 

of a gene.
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In Phase 2, investigators focus on the following tasks:

• Review the effect of a stratification on clinical outcomes, such as patient 

survival or tumor recurrence. If there are notable differences between 

subtypes, there might be clinical relevance.

• Determine if the subtypes have a functional impact by viewing stratified 

molecular profiling data in the context of biological pathways. As an 

example, investigators are interested in pathways that are generally 

activated but deactivated in some subtypes.

In addition, investigators will also perform quality control tasks, for example, by comparing 

different clusterings (same algorithm but different parameters; different algorithms) for a 

particular data type to evaluate how stable the clusters are.

4. Related Work on Comparative Subset Visualization

The common element of the tasks listed above is their comparative nature. This is a direct 

implication of our application, as by comparing different stratifications, it is not only 

possible to pinpoint the most sensible subset across different datasets as a “candidate 

subtype”, but also to investigate the functional effects of these possible subtypes within 

pathway visualizations, as well as their effect on clinical parameters. Since subset 

membership can be treated like an additional categorical variable, visualization methods for 

comparing categorical data would be suitable representations for this case. The literature 

describes two principle approaches to categorical data visualization: conversion of the 

categorical visualization problem to a quantitative problem in data space, as well as 

categorical representation approaches in view space. A recent study suggests that both 

variants have their place in visual data analysis, as each of them is suited best for specific 

visual analysis tasks [JFJ11]. The following will briefly describe the related work for both 

approaches.

Categorical data can be either ordinal or nominal. In the ordinal case, the categories are 

inherently ordered, while in the nominal case, an order of the categories can be determined, 

e.g., by Correspondence Analysis [Gre07, RRB*04] or clustering-based approaches [MH99, 

BPM01]. The reasoning behind most of these approaches follows Friendly's mantra of Effect 
Ordering: “Sort the data by the effects to be observed” [FK03]. A second step then computes 

a spacing between the categories to convey the degree of similarity between the categories. 

An established method to achieve this is the Optimal Scaling approach [RRB*04], which is 

able to use the output of a correspondence analysis for deriving a spacing. After this 

transformation, a visualization using commonly available techniques for quantitative data 

can be used. Parallel coordinates, for example, have been proposed to compare different 

clusters [HSPW06].

If categorical data is not transformed to quantitative data, there exist two general ways of 

visualizing it. The first is by utilizing relative positions. For example, slice and dice 

subdivisions of the drawing area are used to create Mosaic Plots [Hof00], where each region 

occupies an area with a size relative to the number of data records that fall into the category 

it represents. Other techniques use different positional arrangements, such as the Mosaic Plot 
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Matrix [Fri99], which, instead of using a single multivariate plot, puts multiple bivariate 

Mosaic Plots in an arrangement similar to scatter plot matrices. This makes for a simpler 

reading of the plots and also prevents unfavorable aspect ratios of mosaic tiles from affecting 

the reading on lower levels. While Mosaic Plots are not often used for cluster comparison, 

there exist examples of their use for comparing a clustering of records across different 

categories [Hof08].

The second visualization option is explicitly drawn, ribbon-like links between the categories 

in the sense that links split up in width proportional to the amount of records shared with 

other categories. This basic idea has been adapted, among others, to parallel coordinates, 

yielding Parallel Sets [KBH06, Kos10]. Given a clean edge routing, ribbons make the 

distribution of records across different categories easy to follow and analyze. These 

techniques have been used extensively for subset comparison – for example, in CComViz 
[ZKG09], Matchmaker [LSP*10], VisBricks [LSS*11], and others [TPRH11].

Only few studies have been reported on visualizations of categories from multiple, 

heterogeneous data sources. One of them is the D-Dupe software [KGS*08], which clusters 

multiple datasets and then matches up the results in a visualization to identify duplicates 

between both datasets. In the biological domain, interactive visualization of heterogeneous 

data centers mainly on pathways as the frame of reference in which the different sources of 

data are integrated. A recent example is Pathline [MWS*10], which integrates multiple 

quantitative data sources along a linearized pathway for comparative analysis. Visualization 

resembling the row/column structure of Mosaic Plots can also be found in the biological 

field, as the aforementioned publication on cancer subtype classification shows [VHP*10, 

Fig.3]. Yet, the figure in this paper is only a static, specifically produced representation to 

illustrate the findings.

We found that the state-of-the-art does not provide a technique for interactive visual subset 

comparison across dataset boundaries in the biological domain. Since we intend to combine 

visualization of underlying data with the encoding of categories, data space techniques are 

not suitable for our tasks. We have decided against employing relative positions, since they 

do not easily integrate with embedded visualization due to unfavorable aspect ratios for 

smaller categories. Hence, we decided for a ribbon-based technique, which scales better in 

this regard.

5. Data-View Integrator

Dealing with many different datasets, each with several stratifications that can be displayed 

in several views is challenging. Consequently, it is common to show the relationships 

between the datasets. Examples are relational database schemas. North et al. extend this idea 

to views, as they envision DataFaces, interactive connections of visualization and data 

schemas, as future work [NCS02]. This approach was recently realized in Stack'n'flip 
[SSL*11] as well as in HIVE [RKS11]. We take up this idea and extend it to accommodate 

multiple stratifications.
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The Data-View Integrator is a meta visualization that serves two purposes. First, it orients 

the user by providing an overview of the datasets and the relationships among them. Second, 

it allows the user to dynamically configure combinations of stratifications and assign them to 

the views in which they can be analyzed. By default, the Data-View Integrator shows a 

representation of the data model as a graph where the nodes correspond to the individual 

datasets and the edges represent the shared identifiers between the datasets. A unique patient 

ID serves as the primary key for referencing patients across all datasets. In addition, datasets 

such as mRNA and methylation data both contain patient IDs as rows and genes as columns 

and are therefore linked twice in the model. The nodes representing the datasets can be 

visualized in two modes. The compact overview mode shows only a caption for the dataset. 

The detail mode, shown in Figure 1 (a), also shows the associated stratifications. In this 

example, multiple clustering results are loaded for both patient samples and genes, in 

addition to an external patient stratification. As stratifications themselves are one-

dimensional, views can only show combinations of patient stratifications with record lists, 

for example, gene clusterings. Possible combinations are shown in a matrix in the detail 

mode. By selecting a matrix cell, the user can indicate that he is interested in this 

combination, which is then highlighted and shown in an additional column.

In addition to datasets, views are represented in the graph. The user can directly assign 

which stratification combination he wants to explore in a view by using drag-and-drop. 

Figure 1 (b) shows an example where the dataset node is in compact mode. Figure 2 shows a 

more complex scenario with multiple datasets and stratifications, as they would be used for 

cancer subtype analysis.

6. StratomeX - Subtype Visualization

The visual encoding used in StratomeX employs the basic strategies used in Parallel Sets 

[KBH06], Matchmaker [LSP*10], and VisBricks [LSS*11]. As shown in Figures 3 and 4, 

stratifications of datasets are arranged as columns side-by-side. The columns are split up into 

disjoint bricks representing either candidate subtypes, clusters, or categories – depending on 

the data type and stratification loaded. The data inside a brick can be encoded using various 

visualization techniques such as heatmaps, parallel coordinates plots, or histograms, which 

can be switched on demand. When showing heatmaps, the height of a brick encodes the 

number of patients it contains. Ribbons connect bricks of neighboring columns. Their width 

encodes how many patients they share. This is illustrated in Figure 3.

As different data sets can contain disjoint sets of patients, the height of the bricks can not be 

used to compare absolute values. We have chosen relative heights, since investigators are 

primarily interested in the relative relationships. Additionally, relative heights optimally 

utilize the available space. This is valid if the data set constitutes a representative subset of 

the population. As long as two neighboring columns contain the same patients, the outer 

edges of the ribbons connecting them will be parallel. For disjoint sets of patients, however, 

the height at the beginning of a ribbon may not be the same as at its end, as shown between 

the first and second column in Figure 3. In this example, Data Type B contains more patients 

than Data Type A, leaving parts of the sides of the bricks unconnected. StratomeX also 
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supports static sizes for bricks to accommodate embedded visualizations, which only work 

for a specific aspect ratio.

6.1. Column Classes

One aspect that distinguishes StratomeX from previous work is that it can deal with multiple 

heterogeneous datasets. We have identified three classes of columns that are needed for the 

cancer subtype analysis tasks in StratomeX:

Table Columns—In this class we use the stratifications to group tabular, quantitative 

datasets. The bricks in the columns contain a visualization of the underlying data. For the 

subtype identification task, the heatmap representation is best suited and therefore chosen as 

the default. The stratification into subsets is in most cases not fixed, often alternative 

stratifications exist. This can make manual refinement of the stratifications necessary. The 

plausibility of a particular stratification is judged by investigators using the embedded views 

and the relationships to other stratifications in StratomeX. Figure 3 shows a stratification for 

one dataset in the first column, and two stratifications for another dataset in the second and 

third column.

Categorical Columns—Categorical columns represent an unambiguous stratification of 

patients based on a single attribute. An example is the mutation status of one particular gene 

of interest – mutated or not mutated. Categorical columns contain no visualization of the 

underlying data other than a constant color, but have permanently visible labels showing the 

name of the category.

Dependent Columns—In many cases, it is of great interest to explore the effect of a 

stratification of one dataset on another one. StratomeX allows the user to do this by 

introducing dependent columns. The dependent columns use the same stratification of 

patients as their source column, but show the data of the dependent dataset. As a 

consequence the ribbons connecting the source column always connect exactly two bricks. 

An example for a dependent column is shown on the far right in Figure 3. Dependent 

columns are crucial for two tasks in this application context: to explore clinical data and to 

investigate pathways. By using multiple Kaplan-Meier curves [RNP*10] next to candidate 

subtypes, investigators can explore whether the stratification has effects on the clinical status 

of patients. The small multiples of the Kaplan-Meier curves could, for example, show that 

the disease-free survival in one subtype is significantly lower than that of another. In Figure 

4 at (a) for example, we can see that patients with a normal copy number status of the EGFR 
gene appear to have a better chance of living longer than those who have EGFR 
amplifications. Dependent pathway columns can be used to judge whether there is different 

behavior between subtypes in the biological processes that the pathways represent. By 

placing multiple small thumbnails of pathways, one for each subset, next to an mRNA 

expression dataset, and overlaying the average expression of the group onto the gene nodes 

of the pathways [GOB*10], investigators can easily compare the effects of the subtype on 

the pathway. To visually amplify and make them stand out even in the thumbnail-sized small 

multiples, we enlarge the expression overlays. An example of pathway small multiples is 

shown on the right of Figure 7.
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6.2. Visual Encoding Details

Beyond the high-level visual encoding strategy described above, StratomeX contains a series 

of additional encodings that support the analysis tasks. StratomeX is designed to follow the 

visual information seeking mantra – Overview First, Zoom and Filter, Details on Demand 

[Shn96].

Overview—To facilitate the association between the columns in StratomeX and the dataset 

nodes in the Data-View Integrator, we use a combination of color coding and labels. The 

columns have a halo in a color that corresponds to the color of the dataset node in the Data-

View Integrator. The header brick, shown, for example, at (b) in Figure 4, contains a 

summary view representing the whole dataset. The type of view shown depends on the 

dataset and user preference. For tabular and categorical data the header brick shows a 

histogram by default. Pathway columns show the pathway with the average expression 

encoding of the whole dataset overlaid. Clinical survival data uses a summary Kaplan-Meier 

plot that overlays the survival curves of each subtype.

Zoom and Filter, Interaction—As subtypes are rarely based on only one factor (and 

therefore one data type), it is crucial to be able to refine candidate subtypes by splitting and 

merging bricks. StratomeX supports interactive splitting of bricks based on the ribbons 

connecting them to other columns, as well as merging of multiple bricks of the same 

column. The user can add labels for candidate subtypes, which are then shown at the top of 

the subtype brick. StratomeX allows users to arbitrarily arrange both columns, and bricks 

within the columns. The former facilitates the comparison of multiple columns, the latter can 

be used to minimize crossings of the ribbons.

Details on Demand—While the process of characterizing subtypes is conducted mainly 

by investigating global trends in the overview, it is often also necessary to explore some part 

of the data in detail. If, for example, the small multiples of the pathways show differences in 

the mapping on the genes between the subsets, a details on demand strategy is necessary to 

identify the genes. StratomeX facilitates this by enabling investigators to create focus-

duplicates of arbitrary bricks as illustrated in Figure 7.

7. Implementation

StratomeX and the Data-View Integrator are implemented in Caleydo (http://caleydo.org), a 

visual analytics framework for molecular biology. In addition to the ability to load datasets 

individually, a scripting interface allows creating predefined data-setups, e.g., in the process 

of running analyses in a bioinformatics pipeline such as Firehose. The software is written in 

Java and uses OpenGL for rendering. For the case studies described below, seven datasets 

were loaded. With the exception of the pathways, each contained between 300 and 550 

samples, with 1,500 genes each for the expression datasets, and between 5,000 and 6,000 

each for copy-number and mutation status data, for a total of roughly 6 million data points, 

making it a very effective visualization tool for the visual analysis of large-scale data. The 

embedded views switch automatically from texture-based, static views to a fully interactive 
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visualization if enough space is available. The main limitation in terms of scalability is the 

number of subsets, where about 20 are feasible.

8. Case Studies

StratomeX was designed in collaboration with a group of domain experts. To evaluate our 

approach, we asked two investigators, who were not involved in the design process, to use 

StratomeX to explore data from one of the TCGA cancer types that they are currently 

analyzing. We prepared datasets for glioblastoma multiforme (GBM) and breast invasive 
carcinoma (BRCA) based on the output of the Firehose pipeline and additional, “external” 

stratifications provided by the investigators. The case studies were conducted in two 

hourlong sessions with each investigator and were recorded for later analysis. Here we only 

report case studies from the GBM dataset with 529 patients, as the findings for the BRCA 

dataset are unpublished. The following observations and findings were made during the 

evaluation sessions with our collaborators.

Comparing Clusterings

Even though the TCGA analysis pipeline reports a single “best” clustering for each mRNA, 

microRNA, and DNA methylation data matrix, clusterings with different numbers of clusters 

are also available. Since Verhaak et al. [VHP*10] identified four mRNA gene expression 

subtypes, but the analysis pipeline reported three clusters as the best result for mRNA 

expression data based on one of the implemented clustering algorithms, we were interested 

in how the clustering for three, four, and five clusters compared to an updated classification 

based on the one by Verhaak et al. (see Figure 5). The first observation that we made based 

on the salient ribbon patterns was that one of the subsets from the three-cluster solution was 

split into two clusters in the four-cluster solution, but that almost all patients from these two 

clusters make up a single cluster in the five-cluster solution. This might be a biologically 

meaningful result because of a second observation that we made: said two clusters in the 

four-cluster solution are a mix of the neural and proneural subtypes identified by Verhaak et 

al., whereas the other two clusters almost exactly correspond to the classical and 

mesenchymal subtypes. This indicates that the clustering computed by the analysis pipeline 

is a reasonable and meaningful solution. Verhaak et al. also reported that the tumors in the 

neural and proneural subtypes exhibit similar gene expression patterns, which are not found 

in the other two subtypes. This is one possible explanation for why neural and proneural 

subtypes are hard to separate by clustering mRNA data.

Combining Gene Mutation Status and Methylation Data

Noushmehr et al. [NWD*10] used clustering of DNA methylation profiles to identify three 

GBM subtypes, one of which is based on hypermethylation of certain regions of the genome, 

implicating that gene expression in those regions is repressed. They also found that this 

subtype is associated with mutations of IDH1 and mostly falls within the proneural subtype. 

When in one of our evaluation sessions our collaborator was interested in studying this 

methylation subtype, he realized quickly that it had not been detected in the clustering from 

the analysis pipeline that created three clusters. None of the clusters was strongly associated 

with either IDH1 mutations or the proneural subtype. Using the Data-View Integrator, we 
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easily added the other clusterings to the view. Our collaborator pointed out that one of the 

clusters from the eight clusters case had a distinct methylation pattern and only contained 

patients with an IDH1 mutation. This was also the only cluster with such mutations (see 

Figure 6). We then used this cluster to split the methylation clustering with two clusters into 

three clusters. We hypothesized that the newly created patient subset contained many 

patients with the Noushmehr et al. subtype, both due to its strong association with the IDH1 
mutation and the large overlap with the proneural subtype. Our collaborator suggested to 

confirm this using the survival data, which showed that the newly created patient subset 

indeed seemed to have better survival outcomes than patients in the two other subsets (see 

Figure 6), as reported by Noushmehr et al. This example emphasizes the importance of 

interactive refinements of stratifications that is supported by StratomeX.

Evaluating the functional impact of subtypes

In one of our evaluation sessions we looked into the effect of the Verhaak et al. gene 

expression subtypes on molecular processes that are known to play a role in gliomas, which 

is the family of brain cancers that GBM is part of. We opened the “glioma” pathway from 

KEGG (Kyoto Encyclopedia of Genes and Genomes) [KAG*08] as a dependent column to 

see if there are any differences in the expression levels of these pathways when stratified 

according to the subtypes. The small multiples showed very clearly that the glioma pathway 

indeed has different activation patterns across the four subtypes (see Figure 7). In particular, 

we noted that there was a striking difference between the proneural and the classical subtype 

in the left part of the pathway. With the help of a detailed view of the pathway that 

StratomeX provides as a focus duplicate of the small multiples, we were able to identify the 

genes that are showing the most notable differences between the classical and proneural 

subtypes in the glioma pathway: EGFR and PDGF are upregulated whereas PDGFRA is 

downregulated in classical GBM, and vice versa in the proneural subtype. This observation 

is probably due to a finding that Verhaak et al. reported, namely that increased EGFR copy 

numbers are a hallmark of the classical subtype, whereas copy number amplifications of 

PDGFRA are a characteristic of the proneural subtype. These increases in copy number are 

likely responsible for the increased gene expression levels that we observed here.

In general, our collaborators noted that the brick and ribbon metaphor to visualize patient 

subsets and their relationships across different stratifications feels natural and intuitive. They 

also told us that the combination of small multiples with details on demand is very useful, in 

particular for the pathway maps. A very positive outcome of the evaluation sessions with our 

collaborators was that in all cases they asked us to load further data that they wanted to 

explore with StratomeX. They also made suggestions on how to improve the tool by 

integrating further analyses, for example, to cluster data matrices on the fly or to compute 

statistical significance values for observed differences in patient outcomes.

9. Conclusion and Future Work

In this paper we presented StratomeX, which was developed to address the visual analysis 

needs of investigators who are performing cancer subtype characterization based on large-
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scale genomics data. In a series of case studies we documented the validity of our approach 

and its potential to generate new insights.

From a visualization research perspective, we contribute a task analysis for subtype 

characterization, as well as a method for comparative subset visualization of heterogeneous 

datasets that share at least one common identifier. We also described the Data-View 

Integrator, a method that supports the configuration of multiple datasets and stratifications as 

part of the exploration process.

In the future we aim for a tighter integration of StratomeX into the overall cancer genome 

analysis workflow by incorporating additional analyses and further data sources suggested 

by our collaborators. We are also planning to integrate information to guide the exploration, 

for example, correlation scores that could suggest stratifications that support each other. We 

also aim to deepen our understanding of the complex analysis process by making the 

software available to a larger group of investigators in TCGA. We intend to conduct 

longitudinal observations on how StratomeX is used in these scenarios. Ultimately, we will 

distribute a public release of StratomeX.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The two modes of the dataset nodes in the Data-View Integrator. (a) In the detail mode, the 

patient stratifications and gene clusterings are displayed as a matrix of possible 

combinations. By selecting one of the gray matrix cells, the user can interactively create a 

combination (cyan). (b) A view node connected to two dataset nodes that are in compact 

mode, listing only the existing combinations.
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Figure 2. 
The Data-View Integrator showing the relationships between datasets as well as their 

association to views for the application scenario. Datasets and stratifications are shown at 

the bottom with the views placed above. Relationships between a selected dataset and all 

others are shown. Note that some views can show only one stratification, while others, like 

StratomeX, can show multiple.
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Figure 3. 
Schematic comparison of five columns. The first three columns show groupings of tabular 

data, where the second and third show the same data only with different stratifications. The 

fourth, orange column represents a categorization. The rightmost column illustrates the 

concept of dependent subsets, where the groups are based on the stratification of another 

column. The ribbons between the subsets indicate how many patients are shared between 

them. For instance, all patients of BI1 are contained in BII1. BII1, however, also contains 

patients from BI2.

Lex et al. Page 17

Comput Graph Forum. Author manuscript; available in PMC 2016 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
StratomeX configured as illustrated in Figure 3. The heatmaps in the bricks allow the 

investigator to judge the homogeneity of the subsets. The header bricks at the top show the 

name of the column and an overview of the data in the column. In the fourth column, a 

stratification based on the categories for copy number variation of EGFR can be seen. The 

rightmost column shows Kaplan-Meier plots for “days to death” as dependent bricks for the 

copy number-based stratification. Note that patients with amplifications of EGFR have far 

worse outcomes compared to patients with two copies.
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Figure 5. 
Clustering comparisons. Columns 1, 2, and 4 show clusterings from the analysis pipeline 

with three, four, and five clusters respectively. Column 3 shows a stratification of the 

patients based on subtypes identified by Verhaak et al. (from top: mesenchymal, proneural, 

neural, classical).
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Figure 6. 
Methylation subtypes. Column 1 shows mRNA gene expression subtypes identified by 

Verhaak et al. Column 2 shows patient survival outcomes (days to death) and was created as 

a dependent column of Column 3, which shows a stratification of methylation data. The 

stratification of Column 3 was created by splitting off a part of the original clusters based on 

the mutation status of IDH1, shown in Column 5, which reveals a characteristic expression 

pattern overlooked by the algorithm. Only in the eight-cluster case, shown in Column 4, the 

clustering algorithm was able to detect this pattern.
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Figure 7. 
Subtypes in the context of pathways. Column 1 shows mRNA gene expression subtypes 

identified by Verhaak et al. (from top: neural, mesenchymal, proneural, classical). The 

dependent Column 2 shows small multiples of the “Glioma” pathway from KEGG overlaid 

with the average gene expression levels for each subtype. The detail view in the center 

shows the same pathway enlarged with the gene expression levels for the classical subtype. 

The arrows indicate a part of the pathway where we observed notable differences in gene 

expression levels between the subtypes. Note that not all genes in the pathway have been 

mapped since the gene expression data matrix only contained a subset of the most variable 

1,500 genes in the dataset.
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