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Abstract

The systematic identification of effective drug combinations has been hindered by the 

unavailability of methods that can explore the large combinatorial search space of drug 

interactions. Here we present a multiplex screening method named MuSIC (Multiplex Screening 

for Interacting Compounds), which expedites the comprehensive assessment of pair-wise 

compound interactions. We examined ~500,000 drug pairs from 1000 FDA-approved or clinically 

tested drugs and identified drugs that synergize to inhibit HIV replication. Our analysis reveals an 

enrichment of anti-inflammatory drugs in drug combinations that synergize against HIV, 

indicating HIV benefits from inflammation that accompanies its infection. Multiple drug pairs 

identified in this study, including glucocorticoid and nitazoxanide, synergize by targeting different 

steps of the HIV life cycle. As inflammation accompanies HIV infection, our findings indicate that 

inhibiting inflammation could curb HIV propagation. MuSIC can be applied to a wide variety of 

disease-relevant screens to facilitate efficient identification of compound combinations.
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Introduction

HIV has plagued humans for 30 years, infecting 60 million people and causing over 25 

million deaths. AIDS patients can be effectively treated with Highly Active Antiretroviral 

Therapy (HAART), which usually comprises a combination of three anti-HIV drugs1. 
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However, the cost of current HAART therapy is prohibitive in developing countries. In 

addition, long-term HAART therapy can have serious side effects such as lipodystrophy, 

hyperglycemia, pancreatitis and liver toxicity2. New therapies are needed to expand the 

current HAART repertoire, to provide hope for a cure and to reduce the cost of treatment 

and side-effects3,4.

Combination therapies are also widely used to treat other infections including hepatitis C 

virus, malaria and bacterial infections such as pneumonia, in addition to non-infectious 

diseases such as cancer and asthma5. Major benefits of combination therapy include a 

substantially reduced chance of evolving drug resistance, improved efficacy and reduced 

side-effects6. The large combinatorial space of existing drugs provides a largely untapped 

resource for developing new treatments. Exploiting this resource could accelerate the drug 

development process since drugs in current or past use have favorable pharmacological 

properties. However, the large number of possible combinations from even a modest number 

of drugs makes a systematic search difficult without an efficient method. For example, for 

10 drugs, there are 45 pair-wise combinations; for 100 drugs, 4950; and for 1000 drugs, 

499,500.

Systematic searches for synergistic drug combinations have been performed previously in 

industrial settings using exhaustive combinations7, 8, but the high cost of this method 

prevents wide adoption. Pooled screening methods have been explored to identify enzyme 

inhibitors9 and to look for synergistic anti-inflammatory compound pairs10 although the 

latter study did not yield novel synergistic compound pairs. Here we develop a pooled 

screening method named MuSIC (Multiplex Screen for Interacting Compounds) to screen a 

large collection of diverse FDA-approved or clinically-tested compounds. The MuSIC 

screening library was designed to contain 10 compounds in each well of a 384-well plate 

and cover all the possible pair-wise combinations among these compounds using less than 

3% of the number of wells needed in a standard pair-wise screen. For pools that contain 

potentially synergistic interactions, we deconvolute each pool into 45 drug pairs to identify 

efficacious drug pairs. Subsequently, we perform dose titration of the drug pairs to verify 

whether drugs act in synergy (Fig. 1A). We validate our method using cell-based models of 

the HIV life cycle and show that it is effective at identifying pair-wise combinations that 

have anti-HIV activity.

Results

Design, Construction and Screening of the MuSIC library

We assembled 1000 compounds from two commercially available drug libraries and the 

NIH Clinical Collection of compounds that have been tested clinically (Table S1). We 

performed a preliminary drug screen on our cell line to eliminate potentially toxic 

chemicals. We also eliminated compounds that are: 1) mainly used topically; 2) cytotoxic 

compounds; 3) redundant compounds that are structurally related to compounds already 

selected; 4) existing HAART compounds and other antivirals that might dominate a pool. 

We aimed to use a minimal number of wells to efficiently assess all the possible pairs 

among the 1000 compounds. We chose the pool size of 10 due to the tradeoff between the 

number of pools required and the amount of deconvolution. Since it is not possible to 
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construct pools of 10 drugs such that every pair in the 1,000-compound library occurs in 

exactly one pool, we developed a heuristic which guarantees that each drug pair occurs in at 

least one pool and aims to minimize the number of redundant pairs (Fig. 1A and 

Supplementary Fig. S1). This heuristic produced 13,106 pools, which is 2.6% of the number 

of wells needed for testing all pairwise interactions separately and only 18% larger than the 

theoretical lower bound of 11,100 pools..The arrayed library consists of forty-five 384-well 

plates in which each compound is present at a concentration of 0.1–0.2 mg/ml in DMSO 

(Supplementary Fig. S2).

We used HeLa-based MAGI cells that express the CD4 receptor11, and the IIIB strain of 

HIV for our screening assay. Our screen utilizes a two-part assay modified from our 

previously reported siRNA screen (Fig. 1B)12. The part one assay consists of incubating 

cells for 18 h with drugs followed by viral infection. After 48 h, HIV infectivity is measured 

by detection of the HIV p24 antigen using immunostaining and automated fluorescence 

imaging. Nuclear staining and imaging are also carried out on the same plates to assess cell 

proliferation and cytotoxicity of the drugs. The part one assay measures the viral infection 

steps from entry to protein translation.

In the part two assay the supernatant from part one is transferred to fresh cells and, 48 h 

later, those cells are stained for p24 and nuclei. This quantifies the number of new viral 

particles produced in the part one assay and both reinforces the results of the part one assay 

and complements it by detecting later stages of the HIV life cycle including viral assembly, 

budding and infectivity. This two-part screening strategy was optimized using the known 

anti-HIV drugs AZT and nevirapine as positive controls and DMSO as the negative control 

(Fig. 1C and Supplementary Fig. S3).

MuSIC screening identifies synergistic anti-HIV drug pairs

From the primary screen of the pooled library using the two-part assay performed in 

triplicate (Supplementary Table S2), we selected 288 pools for deconvolution based on their 

low infection rate and low cytotoxicity, resulting in 12,904 unique drug pairs. We 

constructed a secondary library to deconvolute the 288 pools and identify potent drug pairs. 

We used another heuristic to design the layout of the plates of the secondary library to 

account for the high variability in drug representation in the secondary library and the limit 

on available drug volume (Supplementary Fig. S2). This secondary library was screened in 

triplicate using the same two-part assay (secondary screen) (Supplementary Table S3). We 

validated the results of the secondary screen by selecting the top 116 pairs that reduced the 

infection rate of either the part one or the part two assay by at least 50% and carrying out 

concentration titration experiments. Of the 116 pairs, 104 (90%) reduced HIV infection rate 

by ≥50% in the part two assay in at least one concentration combination used in the titration. 

(Supplementary Table S4).

To measure synergy between drugs,, we used two popular models, Bliss independence and 

Higher Single Activity (HSA)7. The Bliss model is based on probability theory and assumes 

that when two drugs are independent, their combinatorial effect should be the multiplication 

of their individual effects. The HSA model defines synergy as a combinatorial effect that is 

larger than any of the individual drug's effects at the same concentrations as present in the 
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mixture. To increase the stringency of our criteria, we require that at least three dose 

combinations produce a ≥10% reduction of normalized HIV infection over that predicted by 

the synergy models. According to the Bliss model, 66 of the 116 pairs (57%) showed 

synergy using these criteria. For the HSA model, 77 pairs (66%) are synergistic. 41 pairs 

(35%) are synergistic using both models (Supplementary Table S5). Notably, a top pool 

(producing among the largest reduction in HIV infection rates) identified in the primary 

screen (Fig. 2A) produced a top-ranked pair in the secondary screen, comprising the 

glucocorticoid drug betamethasone and an anti-protozoal drug nitazoxanide (Fig. 2B, C), 

indicating the effectiveness of this primary and secondary screening strategy. We also 

observed that multiple drugs in the top pairs from the part one screen belong to a small set of 

functional groups including glucocorticoids, non-steroidal anti-inflammatory drugs 

(NSAIDs) and anti-cholinergic drugs (Fig. 4A, also discussed below). The four 

glucocorticoids present in our library appeared most frequently among the top pairs.

A separate screen validates the MuSIC strategy

To systematically validate the MuSIC method, we performed a separate screen to directly 

look for drugs that synergize with the glucocorticoid prednisolone (PDN) since 

glucocorticoids were highly represented in the top pairs. This screen was done using the part 

one assay with each well containing PDN and one of the 1000 drugs in the MuSIC library. 

We found that nitazoxanide consistently displays the highest synergy with PDN (Fig. 2C). In 

addition, among the top 15 hits from this direct screen (Z score < −1.5) seven were also 

scored as hits in the MuSIC screen (Z score < −1.5), a discovery rate of 46.7% (p value < 

10−13, binomial test) (Supplementary Tables S3 and S6). These findings clearly demonstrate 

that the MuSIC strategy can effectively identify strongly synergistic drug pairs.

Validation of the synergy of glucocorticoid and nitazoxanide

Glucocorticoids are widely used anti-inflammatory drugs and their inhibition of HIV has 

been primarily attributed to reduction of HIV-LTR driven transcription13, 14. In clinical 

trials glucocorticoid has been shown to be protective against CD4+ T cell loss due to HIV 

infection15, 16. Nitazoxanide (NTZ) was approved for treating cryptosporidiosis in 2004 and 

later found to have activities against the hepatitis C17, hepatitis B17 and influenza A 

viruses18 in cellular assays but its anti-HIV activity has not been previously reported. The 

synergy between these two drugs was confirmed by two distinct methods to quantify drug 

synergy: the Bliss independence model19 and the Combination Index method based on the 

additivity model (CI)20. By contrast, the Loewe additivity model assumes that the 

combination should have the same effect as one of the single agents, but at a higher 

concentration corresponding to the addition of equally effective doses6. The combinatorial 

effects of glucocorticoid and NTZ are substantially larger at multiple doses than those 

predicted by the Bliss model (Fig. 2D). Combination Indices calculated at three activity 

levels and two dose ratios all indicate strong (CI < 0.3) or very strong synergy (CI < 0.1) 

between the glucocorticoid prednisolone (PDN) and NTZ (Fig. 2G). This synergy is 

achieved with no cytotoxicity as measured by cell proliferation in the three-day assay. We 

confirmed the synergy between glucocorticoid and NTZ in a T-cell line (Jurkat cells) using a 

reporter assay (Supplementary Fig. S7). We also tested the anti-HIV effect of PDN and 

tizoxanide (TIZ, the metabolic product and active form of NTZ) in primary peripheral blood 
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mononuclear cells (PBMCs). In the PBMC assay, p24 ELISA was used to quantitfy HIV 

replication seven days post infection. The synergy of PDN and TIZ in anti-viral activity is 

very significant, for example, 2 μM TIZ reduces infection by 10%, 2 μM PDN has a 51% 

reduction, but combined, they reduce infection by 79% (Fig. 2H). The toxicity in this 

stringent seven-day assay due to PDN is mild, for example, at 10 μM, the reduction of 

viability measured by CellTiter Glo assay is about 27%. Importantly, there is no additional 

toxicity caused by combining TIZ with PDN (Supplementary Fig. S8).

Glucocorticoid and Nitazoxanide target different steps of the HIV life cycle

We next tested combinations of PDN or NTZ with known anti-HIV drugs for synergy. 

Interestingly, while both PDN and NTZ synergize with the HIV integrase inhibitor 

raltegravir (RAL) (Fig. 3C & 3D), only PDN synergizes with the nucleoside reverse 

transcriptase inhibitor AZT (Fig. 3B). NTZ displays an exact Bliss independence in 

combination with AZT (Fig. 3A). Similar patterns were observed with the non-nucleoside 

reverse transcriptase inhibitor efavirenz (EFV) (Fig. 3E & 3F) and no synergy was detected 

between AZT and efavirenz (Fig. 3G). We also performed Combination Index analysis of 

the data (Supplementary Fig. S9). This model seems to be more lenient than the Bliss model 

for judging synergy as all of the analyzed pairs have CI50 (Combination index at 50% 

efficacy level) below 1, indicating synergy. Nevertheless, we consistently observe that the 

CI50 of NTZ in combinations with other drugs is very similar to those of reverse 

transcription inhibitors (AZT or EFV) in combination with the same drugs, while PDN has a 

significantly lower CI50. We suspect the similarity of synergy patterns of NTZ and reverse 

transcription inhibitors might be due to their overlapping mechanisms of actions, as a 

previous study found a correlation between drug interaction profiles and their mechanism of 

action21. To test this hypothesis, we infected MAGI cells using vesicular stomatitis virus 

envelope glycoprotein (VSV-g) pseudo-typed HIV NL4-3 virus and measured the product of 

HIV reverse transcription (late-RT) and its derivative (2-LTR circles) by quantitative real 

time PCR. NTZ significantly inhibited reverse transcription while PDN had no effect (Fig. 

3H). The same experiment was carried out using the T cell line SupT1 and similar results 

were obtained (Supplementary Fig. S10). We also used a BlaM assay to measure viral 

entry22 and found that NTZ does not affect the entry step (Supplementary Fig. S11), 

therefore NTZ works after viral entry but before, or at, reverse transcription. By contrast, 

glucocorticoid inhibits a step later than reverse transcription, consistent with prior studies 

that showed that glucocorticoid reduces HIV LTR-driven transcription13,14. No inhibition of 

reverse transcription by NTZ was observed using an in vitro reverse transcription enzymatic 

assay (Supplementary Fig. S12), indicating that any inhibition is indirect. We conclude that 

synergy between NTZ and glucocorticoid likely results from targeting different steps in the 

HIV life cycle.

Systematic analysis of synergistic drugs pairs

The MuSIC screen examined almost half a million drug pairs. To extract drug-drug 

interaction information from this screen, we performed a computational analysis of the result 

of the secondary screen of drug pairs. We took advantage of the fact that each drug is 

present in multiple pairs in the secondary library to derive an average effect for each drug 

and to estimate the synergy, additivity or antagonism between drugs. Adapting a previously 
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developed scoring method23, we derived a drug-drug interaction network in terms of anti-

HIV activity and synergy between drugs. Fig. 4 shows the extracted networks of drugs that 

ranked tops in terms of anti-viral activity and degree of synergy with other drugs in the part 

one and two assays (see supplementary text for the scoring method and drug selection 

criteria), which indicates significant anti-HIV activity both in combination and alone. We 

constructed two networks, one for drugs that score in the part one assay, and one for those 

that score only in the part two assay. Drug pairs in the “part one” network significantly 

reduce infection rates in both part one and part two assays, indicating their effects early in 

the assay. For the “part two only” network, we required the pairs to have a strong anti-viral 

activity in the part two assay but not in the part one assay, thus reflecting their functions at 

the later stages of the viral life cycle. We also required the selected drugs to have more than 

one potent synergistic interaction with other drugs, which simplified the network depiction 

and increased the confidence of the network shown. The part one network enriched for drugs 

with previously demonstrated anti-HIV activity (p-value < 10−12, χ2 test)(Fig. 4, 

Supplementary Table S7). In addition, functional annotation analysis shows that several 

drug classes have multiple drugs represented including glucocorticoids, NSAIDs, muscarinic 

cholinergic receptor antagonists and quinolone. Another feature of this network is the 

enrichment for drugs that have anti-inflammatory properties (p-value < 10−4, χ2 test). The 

two widely used anti-inflammatory drug categories are highly enriched with 4 

glucocorticoids and 5 NSAIDs. Other drugs in the network with known anti-inflammatory 

functions include ascorbic acid, rapamycin, a statin drug, a PDE4 inhibitor-rolipram and a β-

adrenoreceptor agonist (Supplementary Table S8). By contrast, the “part two only” network 

comprises very different drug groups. Only one drug in this network has previously been 

shown to have anti-HIV activity, probably because previous drug screens primarily 

examined the early steps of viral infection. This part two assay identified novel targets for 

HIV therapies that inhibit viral assembly and release. The different targets of the drugs in 

the part one and two networks suggest that there may be synergy between these two groups, 

which is indeed the case (Fig. 4 green links between the two networks).

Discussion

We report the development of a drug screening method to identify drug-drug interactions 

among 1000 FDA-approved or clinically tested drugs that collectively represent a significant 

portion of the chemical space of current clinical use. We demonstrate this method is 

effective at selecting drug pairs with strong efficacy and synergy as validated by 

concentration titration experiments and an independent validation screen. Although the 

effects of some pairs are inevitably missed due to the presence of additional drugs in the 

initial pool assay that interfere with synergistic effects, and the inherent variability of large 

scale screens, this method seems to be robust based on a separate validation screen, and has 

an estimated discovery rate of 46.7%. In addition to the detection of drugs with previously 

known activity against HIV, we identified several previously unknown anti-HIV reagents 

that warrant further investigation. This is especially true for the pairs that have effects in the 

late viral life cycle part of the part two assay of the screen. In addition, we demonstrate a 

significant enrichment of anti-inflammatory drugs in the anti-HIV synergistic drug network. 

Importantly, multiple studies have suggested that chronic inflammation is associated with 
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disease progression in AIDS patients24–29. Furthermore, clinical studies of AIDS patients on 

HAART therapies have revealed significant health problems caused by HIV-induced 

chronic inflammation30. While chronic inflammation contributes to infection-associated 

pathology, our results suggest that HIV propagation may be dependent on inflammation 

given the significant enrichment of anti-inflammatory agents in our screen. Importantly, 

studies in primates support the notion that suppression of immune activation may be a major 

protection mechanism that prevents disease progression in the natural hosts of simian 

immunodeficiency virus (SIV)31. Thus, anti-inflammatory therapies for AIDS should be 

investigated not only for relief of virus-associated pathology, but also to inhibit virus 

propagation. The MuSIC screening methodology not only identifies efficacious drug pairs, 

but also provides biological insight by producing drug-drug interaction networks. We 

envision that MuSIC could be used for a wide variety of disease-relevant screens, thereby 

allowing the efficient repositioning of drugs and drug pairs that can be rapidly moved into 

the clinic.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. MuSIC strategy and screening assay
(A). Protocol of the MuSIC screen. a,b: 1000 drugs are constructed into a pooled library with 

10 drugs per well using a heuristic algorithm to ensure that every pair-wise interaction is 

represented; c: primary screen using the pooled drug library; d: hits from primary screen are 

deconvoluted into pairs to construct the secondary library; e: deconvolution screen of the 

secondary library screen; f: hits from secondary library are validated using concentration 

titrations of the two drugs. (B) The screen assay protocol: for the part one assay, cells are 

plated on 384-well plates overnight before drug treatment. HIV is added to the cells 18 

hours after drug treatment to allow the drugs to take effect (MOI = ~0.5). Forty-eight hours 

after adding virus, the cells are immunostained for HIV p24 expression and imaged to 

quantify the percentage of cells with positive staining, indicating the infection rate. The 

supernatant from the part one assay is transferred to new plates with fresh cells to initiate the 

part two assay for quantification of newly generated virus. Forty-eight hours later, the part 

two plates are also stained and imaged. (C) Part one and part two staining images of positive 

control (1μg/ml AZT) and negative control (DMSO) used in the screen. Top row: DAPI 

staining of cell nuclei for the quantitation of cell number and monitoring cytotoxicity. 

Bottom row: p24 staining of HIV infected cells.
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Figure 2. MuSIC screen identified synergistic drug combinations
(A) Distribution of Z scores for infection rates in the primary screen, showing drug pools 

that have anti-viral activity in the part one assay (Z score < 0), the × axis indicates the drug 

pools. The pool highlighted in red contains betamethasone and nitazoxanide (NTZ). (B) The 

distribution of Z-scores for infection rates in the secondary screen illustrating drug pairs that 

have anti-viral activity in the part two assay (Z score < 0). The x-axis indicates the drug pair. 

(C) The distribution of Z-scores for infection rates in the glucocorticoid synergizer screen 

illustraiting drugs that have additional anti-viral activity when combined with the 

glucocorticoid prednisolone (PDN). NTZ (highlighted in red) was identified as the top 

compound. (D) Dose response curves for the glucocorticoid, PDN in combination with 2 μM 

NTZ. Blue: expected dose response curve based on the assumption that PDN and NTZ work 

independently and calculated with individual drugs' effects. Red: the observed response 

curve for PDN and NTZ demonstrates a synergistic effect. Infection rates are normalized to 

DMSO treated experiment. (E) Immunstaining images of the validation experiment showing 

the synergistic anti-HIV activity between PDN and NTZ. White numbers are the average 

infection rates and standard deviations of four replicate experiments. (F) Two-way titration 

experiment to calculate the Combination Index (CI). Inset values show normalized 

inhibition of HIV infection rate in the part two assay. (G) Combination Indices (CI) of the 

NTZ-PDN pair combination at EC50 (50% effective concentration), EC75 and EC90 

calculated using the CalcuSyn program (1.6:1 and 10:1). Two mixing concentration ratios 

are used (1.6:1 and 10:1). CI < 1 indicate synergy, CI < 0.3 indicates strong synergy, CI < 

0.1 indicates very strong synergy20. (H) Validation of the PDN-tizoxanide pair in PBMCs 

using an ELISA for p24. Data is representative of PBMCs from three different donors. P-

values were calculated using Student's t-test.
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Figure 3. Interactions with known anti-virals reveal drug mechanism
(A, B): Dose response curves for the reverse transcriptase AZT in combination with 2 μM 

NTZ or 0.1 μM PDN showing synergy between PDN and AZT, but not between NTZ and 

AZT. Blue curve: expected curve based on the assumption that two drugs work 

independently and calculated with individual drugs' effects, red curve: observed cuve of the 

combination. (C, D): Dose response curves for the integrase inhibitor raltegravir (RAL) in 

combination with 2 μM NTZ or 0.1 μM PDN showing that both PDN and NTZ synergize 

with RAL. (E, F, G): Dose response curves of the another reverse transcriptase inhibitor 

efavirenz (EFV) in combination with either 2 μM NTZ. 0.1 μM PDN or 2.5 nM AZT. In this 

case, only PDN shows significant synergy with EFV. (H) Q-RTPCR quantitation of 

pseudotyped HIV NL43 reverse transcription products in MAGI cells: late RT and 2-LTR 

circle. Levels are normalized to mitochondria DNA, * indicates P-value < 0.05 (Student's t-

test).
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Figure 4. Drug synergy network analysis reveals enrichments of drugs with known anti-HIV 
activity and anti-inflammatory functions
The network of drug synergy shows drug pairs that have significant anti-viral activity and 

synergy (see supplemental text for the details on how the drugs were selected). Each drug is 

depicted by a circle with its size correlating with the number of drugs it has synergy with. 

Yellow circles indicates compounds with previously detected anti-HIV activity, red outer 

circles indicate known anti-inflammatory function. The part one network is highly enriched 

for drugs with previously detected anti-HIV activity (p < 10−12) and drugs with known anti-

inflammatory activity (p < 10−4). The number in the circle is the index of the drug with the 

drug name shown in the list below. The line linking two drugs indicates synergy with the 

width of the line correlating with the strength of the synergy, the wider the line, the stronger 

the synergy. The green lines linking the two networks represent synergistic interactions 

between the two networks. The color blocks designate the functional groups that have more 

than one drug represented in each network. The names of the functional groups and the 

number of drugs belonging to each functional group are shown in the two tables below.
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