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Summary

The Cancer Genome Atlas (TCGA) project has analyzed mRNA expression, miRNA expression,
promoter methylation, and DNA copy number in 489 high-grade serous ovarian adenocarcinomas
(HGS-OvCa) and the DNA sequences of exons from coding genes in 316 of these tumors. These
results show that HGS-OvCa is characterized by TP53 mutations in almost all tumors (96%); low
prevalence but statistically recurrent somatic mutations in 9 additional genes including NF1,
BRCAL, BRCA2, RB1, and CDK12; 113 significant focal DNA copy number aberrations; and
promoter methylation events involving 168 genes. Analyses delineated four ovarian cancer
transcriptional subtypes, three miRNA subtypes, four promoter methylation subtypes, a
transcriptional signature associated with survival duration and shed new light on the impact on
survival of tumors with BRCA1/2 and CCNEL1 aberrations. Pathway analyses suggested that
homologous recombination is defective in about half of tumors, and that Notch and FOXM1
signaling are involved in serous ovarian cancer pathophysiology.

Background

Ovarian cancer is the fifth leading cause of cancer death among women in the U.S., with
21,880 new cases and 13,850 deaths predicted for 20101. Most deaths are of patients
presenting with advanced stage, high grade serous ovarian cancer (HGS-OvCa)22 (~70%).

The standard of care is aggressive surgery followed by platinum/taxane chemotherapy. After
therapy, platinum resistant cancer recurs in approximately 25% of patients within 6 months?

and overall 5-year survival is 31%°. Approximately 13% of HGS-OvCa is attributable to

germline mutations in BRCA1 or BRCA25:7, while a smaller percentage can be accounted for

by other germline mutations. However, most ovarian cancer can be attributed to a growing
number of somatic aberrations®.

The lack of successful treatment strategies led TCGA to comprehensively measure genomic

and epigenomic abnormalities on clinically annotated HGS-OvCa samples in order to
identify molecular abnormalities that influence pathophysiology, affect outcome, and
constitute therapeutic targets. Microarray analyses produced high resolution measurements
of mRNA expression, microRNA expression, DNA copy number, and DNA promoter
region methylation for 489 HGS-OvCa while massively parallel sequencing coupled with
hybrid affinity capture® 10 provided whole exome DNA sequence information for 316 of
these samples.
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corresponding normal DNA (Methods S1, Table S1.1). Patients reflected the age at
diagnosis, stage, tumor grade, and surgical outcome of individuals diagnosed with HGS-
OvCa. Clinical data were current as of August 25, 2010. HGS-OvCa specimens were
surgically resected before systemic treatment but all patients received a platinum agent and
94% received a taxane. The median progression-free and overall survival of the cohort is
similar to previously published trials11:12, Twenty five percent of the patients remained free
of disease and 45% were alive at the time of last follow-up, while 31% progressed within 6
months after completing platinum-based therapy. Median follow up was 30 months (range 0
to 179). Samples for TCGA analysis were selected to have > 70% tumor cell nuclei and <
20% necrosis.

Coordinated molecular analyses using multiple molecular assays at independent sites were
carried out as listed in Table 1. Data are available at http://tcga.cancer.gov/dataportal in two
tiers. Tier one datasets are openly available, while tier two datasets include clinical or
genomic information that could identify an individual hence require qualification as
described at http://tcga.cancer.gov/dataportal/data/access/closed!/.

Mutation analysis

Exome capture and sequencing was performed on DNA isolated from 316 HGS-OvCa
samples and matched normal samples for each individual (Methods S2). Capture reagents
targeted ~180,000 exons from ~18,500 genes totaling ~33 megabases of non-redundant
sequence. Massively parallel sequencing on the Illumina GAIlIx platform (236 sample pairs)
or ABI SOLID 3 platform (80 sample pairs) yielded ~14 gigabases per sample (~9x10°
bases total). On average, 76% of coding bases were covered in sufficient depth in both the
tumor and matched normal samples to allow confident mutation detection (Methods S2,
Figure S2.1). 19,356 somatic mutations (~61 per tumor) were annotated and classified in
Table S2.1. Mutations that may be important in HGS-OvCa pathophysiology were identified
by (a) searching for non-synonymous or splice site mutations present at significantly
increased frequencies relative to background, (b) comparing mutations in this study to those
in COSMIC and OMIM and (c) predicting impact on protein function.

Two different algorithms (Methods S2) identified 9 genes (Table 2) for which the number of
non-synonymous or splice site mutations was significantly above that expected based on
mutation distribution models. Consistent with published results3, TP53 was mutated in 303
of 316 samples (283 by automated methods and 20 after manual review), BRCA1 and
BRCAZ2 had germline mutations in 9% and 8% of cases, respectively, and both showed
somatic mutations in an additional 3% of cases. Six other statistically recurrently mutated
genes were identified; RB1, NF1, FAT3,CSMD3, GABRAG, and CDK12. CDK12 is involved
in RNA splicing regulation4 and was previously implicated in lung and large intestine
tumors®16, Five of the nine CDK12 mutations were either nonsense or indel, suggesting
potential loss of function, while the four missense mutations (R882L, Y901C, K975E, and
L996F) were clustered in its protein kinase domain. GABRAG and FAT3 both appeared as
significantly mutated but did not appear to be expressed in HGS-OvCa (Supplemental
Figure S2.1) or fallopian tube tissue so it is less likely that mutation of these genes plays a
significant role in HGS-OvCa.
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Mutations from this study were compared to mutations in the COSMICY” and OMIM18
databases to identify additional HGS-OvCa genes that are less commonly mutated. This
yielded 477 and 211 matches respectively (Table S2.4) including mutations in BRAF
(N581S), PIK3CA (E545K and H1047R), KRAS (G12D), and NRAS (Q61R). These
mutations have been shown to exhibit transforming activity so we believe that these
mutations are rare but important drivers in HGS-OvCa.

We combined evolutionary information from sequence alignments of protein families and
whole vertebrate genomes, predicted local protein structure and selected human SwissProt
protein features (Methods S3) to identify putative driver mutations using CHASM19.20 after
training on mutations in known oncogenes and tumor suppressors. CHASM identified 122
mis-sense mutations predicted to be oncogenic (Table S3.1). Mutation-driven changes in
protein function were deduced from evolutionary information for all confirmed somatic
missense mutations by comparing protein family sequence alignments and residue
placement in known or homology-based three-dimensional protein structures using Mutation
Assessor (Methods S4). Twenty-seven percent of missense mutations were predicted to
impact protein function (Table S2.1).

Copy number analysis

Somatic copy number alterations (SCNAS) present in the 489 HGS-OvCa genomes were
identified and compared with glioblastome multiforme data in Figure 1a. SCNAs were
divided into regional aberrations that affected extended chromosome regions and smaller
focal aberrations (Methods S5). A statistical analysis of regional aberrations (Methods S5)21
identified 8 recurrent gains and 22 losses, all of which have been reported previously?2
(Figure 1b and Table S5.1). Five of the gains and 18 of the losses occurred in more than
50% of tumors.

GISTIC?1.23 (Methods S5) was used to identify recurrent focal SCNAs. This yielded 63
regions of focal amplification (Figure 1c, Methods S5, Table S5.2) including 26 that
encoded 8 or fewer genes. The most common focal amplifications encoded CCNE1, MYC,
and MECOM (Figure 1c, Methods S5, Table S5.2) each highly amplified in greater than
20% of tumors. New tightly-localized amplification peaks in HGS-OvCa encoded the
receptor for activated C-kinase, ZMYNDS8; the p53 target gene, IRF2BP2; the DNA-binding
protein inhibitor, 1D4; the embryonic development gene, PAX8; and the telomerase catalytic
subunit, TERT. Three data sources: http://www.ingenuity.com/, http://clinicaltrials.gov and
http://www.drugbank.ca were used to identify possible therapeutic inhibitors of amplified,
over-expressed genes. This search identified 22 genes that are therapeutic targets including
MECOM, MAPK1, CCNE1 and KRASamplified in at least 10% of the cases (Table S5.3).

GISTIC also identified 50 focal deletions (Figure 1d). The known tumor suppressor genes
PTEN, RB1, and NF1 were in regions of homozygous deletions in at least 2% of tumors.
Importantly, RB1 and NF1 also were among the significantly mutated genes. One deletion
contained only three genes, including the essential cell cycle control gene, CREBBP, which
has 5 non-synonymous and 2 frameshift mutations.
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MRNA and miRNA expression and DNA methylation analysis

Expression measurements for 11,864 genes from three different platforms (Agilent,
Affymetrix HUEx, Affymetrix U133A) were combined for subtype identification and
outcome prediction. Individual platform measurements suffered from limited, but
statistically significant batch effects, whereas the combined data set did not (Methods S11,
Figure S11.1). Analysis of the combined dataset identified ~1,500 intrinsically variable
genes?* (Methods S6) that were used for NMF consensus clustering. This analysis yielded
four clusters (Methods S6, Figure 2a). Thesame analysis approach applied to a publicly
available dataset from Tothill et al. 25, also yielded four clusters. Comparison of the Tothill
and TCGA clusters showed a clear correlation (Methods S6, Figure S6.3). We therefore
conclude that at least four robust expression subtypes exist in HGS-OvCa.

We termed the four HGS-OvCa subtypes Immunoreactive, Differentiated, Proliferative and
Mesenchymal based on gene content in the clusters (Methods S6) and on previous
observations2°. T-cell chemokine ligands, CXCL11 and CXCL10, and the receptor, CXCR3,
characterized the Immunoreactive subtype. High expression of transcription factors such as
HMGA2 and SOX11, low expression of ovarian tumor markers (MUC1, MUC16) and high
expression of proliferation markers such as MCM2 and PCNA defined the Proliferative
subtype. The Differentiated subtype was associated with high expression of MUC16 and
MUC1 and with expression of the secretory fallopian tube maker SLPI, suggesting a more
mature stage of development. High expression of HOX genes and markers suggestive of
increased stromal components such as for myofibroblasts (FAP) and microvascular pericytes
(ANGPTL2, ANGPTL1) characterized the Mesenchymal subtype.

Elevated DNA methylation and reduced tumor expression implicated 168 genes as
epigenetically silenced in HGS-OvCa compared to fallopian tube controls26. DNA
methylation was correlated with reduced gene expression across all samples (Methods S7).
AMT, CCL21 and SPARCL1 were noteworthy because they showed promoter
hypermethylation in the vast majority of the tumors. Curiously, RAB25, previously reported
to be amplified and over-expressed in ovarian cancer?’, also appeared to be epigenetically
silenced in a subset of tumors. The BRCAL promoter was hypermethylated and silenced in
56 of 489 (11.5%) tumors as previously reported (Figure S7.1) 28. Consensus clustering of
variable DNA methylation across tumors identified four subtypes (Methods S7, Figure S7.2)
that were significantly associated with differences in age, BRCA inactivation events, and
survival (Methods S7). However, the clusters demonstrated only modest stability.

Survival duration did not differ significantly for transcriptional subtypes in the TCGA
dataset. The Proliferative group showed a decrease in the rate of MYC amplification and
RB1 deletion, whereas the Immunoreactive subtype showed an increased frequency of
3026.2 (MECOM) amplification (Table S6.2, Figure S6.4). A moderate, but significant
overlap between the DNA methylation clusters and gene expression subtypes was noted
(p<2.2*10716, Chi-square test, Adjusted Rand Index = 0.07, Methods S7, Table S7.6).

A 193 gene transcriptional signature predictive of overall survival was defined using the
integrated expression data set from 215 samples. After univariate Cox regression analysis,
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108 genes were correlated with poor survival, and 85 were correlated with good survival (p-
value cutoff of 0.01, Methods S6, Table S6.4). The predictive power was validated on an
independent set of 255 TCGA samples as well as three independent expression data
sets?2:29.30, Each of the validation samples was assigned a prognostic gene score, reflecting
the similarity between its expression profile and the prognostic gene signature3! (Methods
S6, Figure 2c). Kaplan-Meier survival analysis of this signature showed statistically
significant association with survival in all validation data sets (Methods S6, Figure 2d).

NMF consensus clustering of miRNA expression data identified three subtypes (Figure
S6.5). Interestingly, miRNA subtype 1 overlapped the mRNA Proliferative subtype and
miRNA subtype 2 overlaped the mMRNAMesenchymal subtype (Figure 2d). Survival duration
differed significantly between iRNA subtypes with patients in miRNA subtype 1 tumors
surviving significantly longer (Figure 2e).

influencing disease

Several analyses integrated data from the 316 fully analyzed cases to identify biology that
contributes to HGS-OvCa. Analysis of the frequency with which known cancer-associated
pathways harbored one or more mutations, copy number changes, or changes in gene
expression showed that the RB1 and PI3K/RAS pathways were deregulated in 67% and 45%
of cases, respectively (Figure 3A, Methods S8). A search for altered subnetworks in a large
protein-protein interaction network32 using HotNet33 identified several known pathways
(Methods S9) including the Notch signaling pathway, which was altered in 23% of HGS-
OvCa samples (Figure 3B)34.

Published studies have shown that cells with mutated or methylated BRCA1 or mutated
BRCAZ2 have defective homologous recombination (HR) and are highly responsive to PARP
inhibitors33-37. Figure 3C shows that 20% of HGS-OvCa have germline or somatic
mutations in BRCA1/2, that 11% have lost BRCA1 expression through DNA
hypermethylation and that epigenetic silencing of BRCAL is mutually exclusive of BRCAL/2
mutations (P = 4.4x1074, Fisher’s exact test). Univariate survival analysis of BRCA status
(Figure 3C) showed better overall survival (OS) for BRCA mutated cases than BRCA wild-
type cases. Interestingly, epigenetically silenced BRCAL cases exhibited survival similar to
BRCAL/2 WT HGS-OvCa (median OS 41.5 v. 41.9 months, P = 0.69, log-rank test,
Methods S8, Figure S8.13B). This suggests that BRCAL is inactivated by mutually exclusive
genomic and epigenomic mechanisms and that patient survival depends on the mechanism
of inactivation. Genomic alterations in other HR genes that might render cells sensitive to
PARP inhibitors3® (Methods S8, Figure $8.12) discovered in this study include
amplification or mutation of EMSY (8%), focal deletion or mutation of PTEN (7%);
hypermethylation of RAD51C (3%), mutation of ATM/ATR (2%), and mutation of Fanconi
Anemia genes (5%). Overall, HR defects may be present in approximately half of HGS-
OvCa, providing a rationale for clinical trials of PARP inhibitors targeting tumors these HR-
related aberrations.

Comparison of the complete set of BRCA inactivation events to all recurrently altered copy
number peaks revealed an unexpectedly low frequency of CCNE1 amplification in cases
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with BRCA inactivation (8% of BRCA altered cases had CCNE1 amplification v. 26% of
BRCA wild type cases, FDR adjusted P = 0.0048). As previously reported3?, overall
survival tended to be shorter for patients with CCNE1 amplification compared to all other
cases (P = 0.072, log-rank test, Methods, S8 Figure S8.14A). However, no survival
disadvantage for CCNE1-amplified cases (P = 0.24, log-rank test, Methods S8, Figure
$8.14B) was apparent when looking only at BRCA wild-type cases, suggesting that the
previously reported CCNEL survival difference can be explained by the better survival of
BRCA-mutated cases.

Finally, a probabilistic graphical model (PARADIGMA) searched for altered pathways in
the NCI Pathway Interaction Database*! identifying the FOXM1 transcription factor
network (Figure 3d) as significantly altered in 87% of cases, Methods S10, Figures S10.1-3).
FOXML1 and its proliferation-related target genes; AURB, CCNB1, BIRC5, CDC25, and
PLK1, were consistently over-expressed but not altered by DNA copy number changes,
indicative of transcriptional regulation. TP53 represses FOXM1 following DNA damage*?,
suggesting that the high rate of TP53 mutation in HGS-OvCa contributes to FOXM1
overexpression. In other datasets, the FOXM1 pathway is significantly activated in tumors
relative to adjacent epithelial tissue*3-4® (Methods S10, Figure $10.4) and is associated with
HGS-OvCa (Methods S10, Figure S10.5)%2.

Discussion

This TCGA study provides the first large scale integrative view of the aberrations in HGS-
OvCa. Overall, the mutational spectrum was surprisingly simple. Mutations in TP53
predominated, occurring in at least 96% of HGS-OvCa while BRCAL/2 were mutated in
22% of tumors due to a combination of germline and somatic mutations. Seven other
significantly mutated genes were identified, but only in 2-6% of HGS-OvCa. In contrast,
HGS-OvCa demonstrates a remarkable degree of genomic disarray. The frequent SCNAs
are in striking contrast to previous TCGA findings with glioblastoma®® where there were
more recurrently mutated genes with far fewer chromosome arm-level or focal SCNAS
(Figure 1A). A high prevalence of mutations and promoter methylation in putative DNA
repair genes including HR components may explain the high prevalence of SCNAs. The
mutation spectrum marks HGS-OvCa as completely distinct from other OvCa histological
subtypes. For example, clear-cell OvCa have few TP53 mutations but have recurrent
ARID1A and PIK3CA*"-49 mutations; endometrioid OvCa have frequent CTTNB1, ARID1A,
and PIK3CA mutations and a lower rate of TP53%849 while mucinous OvCa have prevalent
KRAS mutations®0. These differences between ovarian cancer subtypes likely reflect a
combination of etiologic and lineage effects, and represent an opportunity to improve
ovarian cancer outcomes through subtype-stratified care.

Identification of new therapeutic approaches is a central goal of the TCGA. The ~50% of
HGS-OvCa with HR defects may benefit from PARP inhibitors. Beyond this, the commonly
deregulated pathways, RB, RAS/PI3K, FOXM1, and NOTCH, provide opportunities for
therapeutic attack. Finally, inhibitors already exist for 22 genes in regions of recurrent
amplification (Methods S5, Table S5.3), warranting assessment in HGS-OvCa where the
target genes are amplified. Overall, these discoveries set the stage for approaches to
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treatment of HGS-OvCa in which aberrant genes or networks are detected and targeted with
therapies selected to be effective against these specific aberrations.

Methods Summary

All patient specimens were obtained under appropriate IRB consent. DNA and RNA were
collected from samples using the Allprep kit (Qiagen). We used commercial technology for
capture and sequencing of exomes from whole genome amplified tumor and normal DNAs.
DNA sequences were aligned to Human NCBI build 36; duplicate reads were excluded from
mutation calling. Validation of mutations occurred on a separate whole genome
amplification of DNA from the same tumor. Data is submitted to dbGaP under accession
number PHS000178. Significantly mutated genes were identified by comparing to
expectation models based on the exact measured rates of specific sequence lesions.
CHASM 20 and MutationAssessor (Methods S4) were used to identify functional mutations.
GISTIC analysis of the CBS segmented Agilent 1M feature copy number data was used to
identify recurrent peaks comparing to the results from the other platforms to identify likely
platform specific artifacts. Consensus clustering approaches were used to analyze mRNA,
miRNA, and methylation subtypes as well as predictors of outcome using previous
approaches®®. HotNet 33 was used to identify portions of the protein-protein interaction
network that have more events than expected by chance. Networks that had a significant
probability of being valid were evaluated for increased fraction of known annotations.
PARADIGMA was used to estimate integrated pathway activity to identify portions of the
network models differentially active in HGS-OvCa.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genome copy number abnormalities
(a) Copy-number profiles of 489 HGS-OvCa, compared to profiles of 197 glioblastoma

multiforme (GBM) tumors*6, Copy number increases (red) and decreases (blue) are plotted
as a function of distance along the normal genome. (b) Significant, focally amplified (red)
and deleted (blue) regions are plotted along the gnome. Annotations include the 20 most
significant amplified and deleted regions, well-localized regions with 8 or fewer genes, and
regions with known cancer genes or genes identified by genome-wide loss-of-function
screens. The number of genes included in each region is given in brackets. (c) Significantly
amplified (red) and deleted (blue) chromosome arms.
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Figure 2. Gene and miRNA expression patter ns of molecular subtype and outcome prediction in
HGS-OvCa

(a) Tumors from TCGA and Tothill et al. separated into four clusters, based on gene
expression. (b) Using a training dataset, a prognostic gene signature was defined and applied
to a test dataset. (¢) Kaplan-Meier analysis of four independent expression profile datasets,
comparing survival for predicted higher risk versus lower risk patients. Univariate Cox p-
value for risk index included. (d) Tumors separated into three clusters, based on miRNA
expression, overlapping with gene-based clusters as indicated. (e) Differences in patient
survival among the three miRNA-based clusters.
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Figure 3. Altered Pathwaysin HGS-OvCa

(a) The RB and PI3K/RAS pathways, identified by curated analysis and (b) NOTCH
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pathway, identified by HotNet analysis, are commonly altered. Alterations are defined by

somatic mutations, DNA copy-number changes, or in some cases by significant up- or

down-regulation compared to expression in diploid tumors. Alteration frequencies are in
percentage of all cases; activated genes are red, inactivated genes are blue. (c) Genes in the
HR pathway are altered in up to 49% of cases. Survival analysis of BRCA status shows
divergent outcome for BRCA mutated cases (exhibiting better overall survival) than BRCA

wild-type, and BRCAL epigenetically silenced cases exhibiting worse survival. (d) The

FOXML1 transcription factor network is activated in 87% of cases. Each gene is depicted as a
multi-ring circle in which its copy number (outer ring) and gene expression (inner ring) are
plotted such that each *“spoke” in the ring represents a single patient sample, with samples
sorted in increasing order of FOXM1 expression. Excitatory (red arrows) and inhibitory
interactions (blue lines) were taken from the NCI Pathway Interaction Database. Dashed
lines indicate transcriptional regulation.
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Characterization platforms used and data produced

Table 1

Data
Data Type Platforms Cases Availability
DNA Sequence of exome Illumina 236 Protected
GAIlIx3P 80 Protected
ABI SOLiD¢
Mutations present in exome 316 Open
DNA copy Agilent 97 Open
number/genotype 244Kde 304 Open
Agilent 415Kd | 539 Open
Agilent 1M¢ 535 Protected
1lumina 514 Protected
1MDUOf
Affymetrix
SNP6?
mRNA expression profiling | Affymetrix 516 Open
U133A2 517 Protected
Affymetrix 540 Open
Exon9
Agilent 244Kh
Integrated mMRNA 489 Open
expression
miRNA expression Agilenth 541 Open
profiling
CpG DNA methylation Illumina 27K | 519 Open
Integrative analysis 489 Open
Integrative analysis w/ 309 Open
mutations
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Production Centers: Broad Institute, Washington University School of Medicine, Baylor College of Medicine, Harvard Medical School, Memorial
Sloan-Kettering Cancer Center, HudsonAlpha Institute for Biotechnology, Lawrence Berkeley National Laboratory, University of North Carolina,
University of Southern California.

Additional data are available for many of these data types at the TCGA DCC.
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Table 2

Significantly mutated genesin HGS-OvCa

Gene
TP53
BRCA1
CSMD3
NF1
CDK12
FAT3
GABRAG
BRCA2
RB1

Number of
Mutations

302
11
19
13

9
19
6
10
6

Validated Unvalidated
294

10

19

13

9

18

6

10

6

o O O B O O O B+, ©o©
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Validated mutations are those that have been confirmed with an independent assay. Most of them are validated using a second independent WGA
sample from the same tumor. Unvalidated mutations have not been independently confirmed but have a high likelihood to be true mutations. An
additional 25 mutations in TP53 were observed by hand curation.
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