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Abstract

Transposable element (TE) mobilization is a significant source of genomic variation and has 

been associated with various human diseases. The exponential growth of population-scale 

whole-genome sequencing and rapid innovations in long-read sequencing technologies provide 

unprecedented opportunities to study TE insertions and their functional impact in human health 

and disease. Identifying TE insertions, however, is challenging due to the repetitive nature of 

the TE sequences. Here, we review computational approaches to detecting and genotyping TE 

insertions using short- and long-read sequencing and discuss the strengths and weaknesses of 

different approaches.
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INTRODUCTION

Transposable elements (TEs) are ubiquitous in eukaryotes and constitute nearly half of 

the human genome (Lander et al., 2001). Most TE sequences are remnants of ancient 

proliferation, having lost their capacity to further mobilize; however, three TE families (L1, 

Alu, and SVA) can still mobilize by a copy-paste mechanism to transcribe themselves into 

RNA and insert cDNA reverse-transcribed from the TE RNA into a new genomic location. 

New copies of TEs are created in the human germline at an estimated rate of 1 out of 

every 20–200 live births (Feusier et al., 2019; Stewart et al., 2011); they have been found 

to account for ~40% of genomic structural variation in humans (Sudmant et al., 2015). 

In addition, more than a hundred TE insertions have been causally linked to Mendelian 

disorders and hereditary cancers (Hancks & Kazazian, 2016). A potential pathogenic role 
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of TEs has also been reported in various common diseases, such as sporadic cancers and 

autoimmune, developmental, and neuropsychiatric disorders (Gardner et al., 2019; Hancks 

& Kazazian, 2016; Lee et al., 2012; Scott & Devine, 2017). Thus, the ability to detect 

TE insertions in genome sequencing data is important for determining whether TEs are 

associated with a genetic trait or disease.

TEs are large DNA elements (several hundreds of bases to several kilobases), and the human 

genome has numerous TE copies with similar, often nearly identical sequences. This makes 

it difficult to detect TE insertions from the current short-read (100–150 bp) sequencing 

data. Whereas conventional methods for structural variation (SV) detection mainly rely on 

uniquely mapped reads, short reads derived from inserted TE copies cannot uniquely map to 

the reference genome. Thus, new methods for TE insertion detection have been developed, 

with specialized handling of non-uniquely mapped reads derived from TEs. In general, 

there are two categories of TE insertion detection tools. Those in the first category detect 

insertions of known TE families, and thus are used for species with well-annotated TEs 

like humans, utilizing TE sequence libraries to which the reads not uniquely mapping to 

the reference genome are realigned. Those in the second category detect insertions of novel 

or unknown TE families without requiring TE sequence libraries, and thus can be used in 

species for which we have limited knowledge of active TEs.

Despite the common principles, the existing TE-calling methods differ in the types of 

insertions they are designed to detect (e.g., germline vs. somatic) and the applicable 

study design. One group of tools focuses on detecting germline insertions, which are non-

reference TE insertions (i.e., absent in the reference genome) inherited from parents and thus 

present in every cell of the body (Fig. 1A). These tools typically analyze genome sequences 

from blood samples (Gardner et al., 2017; Thung et al., 2014; Wu et al., 2014; Zhuang, 

Wang, Theurkauf, & Weng, 2014; Bogaerts-Márquez et al., 2020). Tools in a second group 

analyze genome sequences from family members to identify de novo insertions, which are 

TE insertions present in individuals (often affected by diseases) but absent in their parents 

(Feusier et al., 2019; Gardner et al., 2019); Fig. 1B). Those in the last category were 

developed to identify somatic or mosaic TE insertions that occur in post-zygotic tissues, 

such as in cancer and non-cancerous brain tissues (Evrony et al., 2015; Lee et al., 2012; 

Tubio et al., 2014; also see Fig. 1C). These tools often analyze genome sequences from a 

pair of tissues—the tissue of interest and a blood or another control tissue—to ensure the 

somatic origin of detected insertions.

Diploid human genomes have three different genotypes for each germline TE insertion (Fig. 

1D): homozygous (i.e., both chromosomes carry the insertion), heterozygous (i.e., insertion 

present in one chromosome), and reference (i.e., no insertion). TE genotype information 

is important for phasing—discerning which parental alleles carry TE insertions—and also 

for associating TE insertion polymorphisms with other types of variants such as single-

nucleotide polymorphisms (SNPs) or expression quantitative trait loci (eTQLs).

Here we review the computational approaches and available tools to identify and genotype 

different types of TE insertions, mostly from whole-genome sequencing (WGS) data 

generated using short- and long-read platforms. In this review, we focus on methods for 
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the human genome and recommend other reviews for tools for non-human species (Goerner-

Potvin & Bourque, 2018).

TE CONSENSUS SEQUENCE AND REFERENCE ANNOTATION

Over evolutionary time, new TE families and subfamilies have emerged through different 

mechanisms, including the arms race between TEs and a host’s defense system that drives 

novel mutations in TEs (Jacobs et al., 2014; Kazazian, 2004). A TE phylogeny tree can be 

constructed by comparing TE sequences, with each clade in the tree defining a subfamily. A 

representative sequence for each subfamily, called the consensus sequence, is determined by 

multiple sequence alignments of individual TEs that belong to each clade. Repbase (Jurka 

et al., 2005), Dfam (Hubley et al., 2016), and UCSC Repeat Browser (Fernandes et al., 

2020) provide well-curated libraries for consensus sequences of TE sub-families, including 

subfamilies of L1, Alu, and SVA. The most popular TE annotation tool is RepeatMasker 

(Smit, Hubley and Green, 2015), which annotates individual TE copies in the reference 

genome using BLAST to match the consensus sequence to the reference genome. The 

annotation includes information on the TE subfamily, the degree of sequence divergence, 

genomic coordinates, and the length of each TE copy in the reference genome. Most TE 

insertion calling methods use consensus sequences and reference annotations (Table 1).

GENERAL STRATEGIES TO DETECT TE INSERTIONS FROM PAIRED-END 

SHORT READS

Most TE detection methods for paired-end short sequence reads use similar strategies to 

identify two types of read alignment patterns near the breakpoints of each insertion (Fig. 

2; Table 1). First, the tools examine read pairs with one end mapping to the genomic 

region flanking a new TE copy and the mate read mapping to the TE sequence library. 

They typically have default TE sequence libraries consisting of TE consensus sequences. 

Some tools, such as Tea (Lee et al., 2012) and TraFiC (Tubio et al., 2014), also include 

sequences of individual TE copies from the reference genome; a subset of the tools, for 

example, MELT (Gardner et al., 2017) and xTea (https://github.com/parklab/xTea), can take 

customized TE libraries from users as input. Second, the tools identify “soft-clipped” (or 

“split”) reads that originate from the junction between a TE and the flanking region. When 

aligned to the reference genome, these junction-spanning reads show that only a part of the 

read maps to the flanking region and the remaining TE portion of the read is clipped.

From an input BAM or CRAM file including the reference read alignment, tools collect 

discordant read pairs where mate reads in a pair display alignment at an unexpected distance 

or orientation; some tools collect read pairs where one read is uniquely mapped while 

the mate read is ambiguously mapped to the reference genome. Tools identify candidate 

insertion sites by verifying whether uniquely mapped reads from the collected read pairs 

form clusters and whether their mate reads map to a TE copy. Tea, MELT, and several 

other tools align the reads to TE sequence libraries to verify whether the reads originated 

from a potentially new TE copy. Other tools, such as TEMP (Zhuang et al., 2014), simply 

verify whether the reported mapping position of the mate read is within a reference TE 

copy according to RepeatMasker annotation. Next, for each cluster of TE-derived discordant 
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reads, clipped reads are examined by realigning the clipped sequence to TE sequence 

libraries to pinpoint insertion breakpoints.

For each insertion, several tools, such as Tea, TraFiC, MELT, Mobster (Thung et al., 

2014), and xTea, also annotate TE-specific features (e.g., subfamily, insertion size, and 

orientation). Several features, such as the presence of target site duplication (TSD) and 

poly(A) tails, indicate the insertional mechanism. Given that all active human TEs are 

retrotransposons that mobilize via mRNA intermediates with poly(A) tails, a pileup of 

clipped reads with consecutive poly(A/T) bases on one side of a breakpoint is a strong 

indicator of target-primed reverse transcription (TPRT)−mediated retrotransposition rather 

than of other types of genomic rearrangement involving TE sequences. In addition, because 

the L1-encoding endonuclease responsible for retrotransposition of all active TE families 

cuts double-stranded DNA in a staggered manner with a ~15 bp overhang, the completion 

of retrotransposition leads to TSD, which is duplication of the short overhang sequence on 

both sides of the genomic flanking regions of the insertion (Gilbert, Lutz-Prigge, & Moran, 

2002). The tools annotate and utilize these mechanistic signatures to filter false positive calls 

and improve detection specificity.

IDENTIFICATION OF DIFFERENT TYPES OF TE INSERTIONS

Germline and de novo TE insertions

Each tool is designed to analyze certain types of TE insertions. Specifically, tools such as 

MELT, RetroSeq (Keane, Wong, & Adams, 2013), Mobster, T-lex3 (Bogaerts-Márquez et 

al., 2020), and TEMP, were developed to identify germline insertions. Few of these tools 

provide a module to call de novo insertions; however, users can utilize the basic functions of 

the tools for de novo calling by considering the proband as a “case” and all other members 

in the family as “controls.” A straightforward approach adopted in multiple studies is to 

run the tool on each genome of both case and controls and then compare the outputs to 

filter out insertions shared in both case and controls. Due to the often lower sequencing 

depths of control samples, true TE insertions may fail to be detected in control genomes, 

resulting in false positive de novo calls in probands. One strategy to cope with this issue is 

to lower the stringency of calls for control samples. An extreme example of such filtering 

is to require control samples to have no split reads or discordant TE-mapping read pairs 

consistent with the insertion in the proband. One obvious caveat is the risk of missing true 

de novo events with such strict filtering. Most studies choose filtering schemes empirically, 

and so their performance may vary for different datasets. Of note is that the origin of some 

de novo insertions may be mosaic in their parents, i.e., present in the germ cell of a parent 

that generated the zygote and perhaps present in a low fraction of cells in the parent’s blood 

sample (Faulkner & Billon, 2018). These parental mosaic events are likely to be missed with 

stringent control filtering, and thus require a different approach to ensure their detection.

Somatic or mosaic TE insertions

Most tools for detecting somatic TE insertions, including Tea and TraFiC, were developed to 

study somatic insertions in cancer (Lee et al., 2012; Rodriguez-Martin et al., 2020; Tubio et 

al., 2014). These tools detect non-reference TE insertions from genome sequences of cancer 
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and matched non-cancerous—mostly blood—samples from the same patients. They then 

filter out those events shared between the cancer and non-cancer samples, just as is done 

to detect de novo insertions. Detecting somatic insertions in cancer genomes is complicated 

by the abundant clipped and discordant reads that originate from various types of genomic 

rearrangement other than retrotransposition. Thus, the tools need effective filtering schemes 

to improve detection specificity, for example, using annotation of mechanistic signatures and 

code optimization to minimize run-time and resource requirements.

Somatic TE insertions also occur in non-cancer samples. Recent studies report post-zygotic 

somatic retrotransposition creating somatic mosaicism in the human brain and other tissues 

(Erwin et al., 2016; Evrony et al., 2015; Faulkner & Billon, 2018; Upton et al., 2015; 

Zhao et al., 2019). Identification of such somatic TE insertions in non-cancer samples is 

challenging due to the low fraction of cells carrying each insertion in a heterogeneous cell 

population. Thus, a single-cell approach has been used to identify somatic insertions in 

the human brain by leveraging the fact that somatic signals in a single cell have the same 

appearance as heterozygous germline insertions. scTea (single-cell Tea; Evrony et al., 2015) 

was developed to analyze MDA-amplified single-cell WGS data, and takes into account 

genome-amplification artifacts (e.g., chimeric reads, uneven genomic coverage, and allelic/

locus dropout) to separate true insertion signals from noise. Several single-cell-targeted 

sequencing approaches including L1–IP (Evrony et al., 2012), RC–seq (Upton et al., 2015), 

and SLAV–seq (Erwin et al., 2016) have been used to profile somatic L1 insertions from a 

large number of brain cells. Different studies, however, have produced substantially different 

estimates of the somatic L1 insertion rate, necessitating rigorous bioinformatic analysis 

and experimental validation (Evrony, Lee, Park, & Walsh, 2016; Faulkner & Garcia-Perez, 

2017).

As an alternative to single-cell sequencing with its high experimental costs and amplification 

bias, some recent studies have used a bulk sequencing approach with high sequencing 

coverage to detect low-level mosaic somatic insertions in the brain and other tissues. 

RetroSom is a machine learning–based tool that detects somatic L1 and Alu insertions 

from ultra-high-depth WGS, and its application to ~ 200× bulk WGS of sorted neurons 

and glia revealed two brain-specific somatic L1 insertions at ~1% mosaicism (Zhu et al., 

2019). Furthermore, HAT-seq, a PCR-based targeted bulk sequencing approach, identified 

somatic L1 insertions with low–level mosaicism in neurons and non-brain tissues (Zhao et 

al., 2019). By employing a nucleotide–shifting design for semi-amplicon libraries, HAT-seq 

produces high-quality sequences that fully cover the 3′ insertion junction, which facilitate 

false-positive filtering based on both sequence and read-count features. The aforementioned 

studies based on single-cell WGS and bulk WGS or targeted capture approaches present 

mounting evidence of somatic retrotransposition in various human tissues creating inter-

cellular genomic diversity within individuals. More studies are warranted to better 

understand the role of somatic TE activity in various tissues.

Non-canonical or complex TE insertions

Some TE insertions mobilize the flanking sequence of a source TE along with the TE 

sequence to a new insertion site when TE transcription uses an alternative upstream 
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promoter or continues beyond the TE’s weak polyadenylation signal (Goodier, Ostertag, 

& Kazazian, 2000). This event is called transduction. ~30% of SVA insertions have 

5′ or 3′ transduction (Damert et al., 2009), whereas ~15% of L1 insertions have 3′ 
transduction, with a few anecdotal examples of 5′ transduction in the human brain (Evrony 

et al., 2015; Sanchez-Luque et al., 2019). Reads originating from the transduced flanking 

sequences cannot be aligned to TE sequence libraries, which often results in a failure to 

call such insertions with transduction. To better detect TEs with transduction, MELT first 

runs canonical modules, and then for each candidate insertion it searches for potential 

transduction events. TraFiC detects somatic transduction events by determining whether 

the cluster of discordant read pairs points to the flanking region of either reference or 

polymorphic full-length TE copies. TraFiC also detects the so-called orphan transduction 

events where only flanking sequences are inserted without TE sequences due to early 3′ 
truncation upon retrotransposition. Similar to TraFiC, xTea also re-aligns the collected reads 

to flanking region sequences of both reference and polymorphic full-length copies to detect 

insertions with transduction, including orphan transductions.

Some TE insertions are also known to promote SVs upon retrotransposition in human 

cell lines (Gilbert et al., 2002) and in the human brain (Erwin et al., 2016). TraFiC-mem 

(Rodriguez-Martin et al., 2020) detects, in human tumors, different types of L1-associated 

SVs—deletion, duplication, inversion, and translocation—by examining the patterns of 

discordant read pairs that support an SV and an L1 insertion. For L1-promoted deletions, 

TraFiC-mem additionally utilizes read-depth-based copy number variation (CNV) calls 

and filters out candidates that are not supported by CNV calls. Requiring this additional 

CNV support improves specificity, but limited sensitivity and resolution of read-depth 

CNV calling, especially for small events, may lead to sensitivity loss for the detection of 

TE-mediated deletions. xTea provides an option to report the breakpoints of TE-mediated 

SVs without requiring CNV calls.

THE USE OF LONG READS FOR COMPREHENSIVE TE INSERTION 

DETECTION

Despite the improved performance of TE detection algorithms for short-read sequencing 

data, it is still difficult to detect certain subsets of TE insertions, including those that 

accompany complex genomic rearrangements or fall into repetitive genomic regions. 

Genomic regions with existing TE copies from the same TE subfamily, or centromeric 

or telomeric regions with many gaps, are particularly challenging for TE detection due to 

limited short read mappability (Bzikadze & Pevzner, 2019; Jain et al., 2018; Miga et al., 

2019). Recent advances in long-read sequencing, notably PacBio and Oxford Nanopore 

(ONT) technologies, create ~10- to 15-Kbp-long reads. Data from these platforms allow one 

to construct the entire region that includes a new insertion and its flanking regions; thus 

markedly improving the identification of those challenging types of TE insertions.

Currently, there are only two tools specifically designed for TE calling using long-read 

sequencing: PALMER (Zhou et al., 2019) and xTea. PALMER detects L1 insertions from 

PacBio long reads, whereas xTea detects insertions of all TE families from long reads 
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generated using PacBio and ONT, as well as the 10X barcode-linked read technology. Un-

like the short reads, the long reads often encompass the inserted TEs, thus not necessitating 

the use of clipped or discordant reads and directly reporting the insertion sequences within 

each read alignment (i.e., in the CIGAR field of SAM/BAM/CRAM files). Some aligners, 

such as BLASR (Chaisson & Tesler, 2012) and BWA (Li & Durbin, 2009) rarely report 

insertions in the CIGAR field, but only report clipped reads. In contrast, recent aligners, 

such as NGLMR (Sedlazeck et al., 2018) and Minimap2 (Li, 2018) report insertions of small 

and intermediate size within the CIGAR field of each alignment. In general, the preferred 

approach would be to examine not only read clipping, but also internal insertion breakpoints 

and sequences reported in the CIGAR field.

Due to the high rate of sequencing errors in long-read sequencing, reads supporting TE 

insertions are clipped not at the exact insertion breakpoint but at highly variable positions. 

To define accurate breakpoints, different tools use different strategies (Fig. 3). xTea and 

Sniffles (Sedlazeck et al., 2018), a SV caller, use a similar approach, clustering breakpoints 

and filtering out clusters for which the standard deviation of breakpoint coordinates is larger 

than a pre-determined cutoff. By contrast, PALMER relies on the L1 annotation of the 

human reference genome rather than checking the clipped or internal CIGAR field. It first 

masks portions of long reads aligned to the reference L1 copies, and then searches the 

remaining portions of long reads against a hot full-length L1 sequence (GenBank: L19088) 

to identify reads with a putative L1 insertion. All supporting reads are then clustered and 

assembled into long contig sequences when reads are within 100 bp of each other. xTea 

and a few other SV callers, such as SMRT-SV (Huddleston et al., 2017), also provide this 

local assembly option that combines sequences from clipped reads and reads supporting 

internal insertions and compare the assembled contigs to the reference genome to define 

the insertion sequence. General, non-TE-specific SV callers, such as SMRT-SV, only report 

insertion sequences lacking TE-specific annotation.

TE INSERTION DETECTION FOR NOVEL TE FAMILIES

Some TE insertion callers do not rely on any reference TE annotation or any TE sequence 

library, and thus are well-suited to studying TEs in species in which there is limited 

information for active TEs. To our knowledge, only two tools—DD_DETECTION (Kroon 

et al., 2016) and TranSurVeyor (Rajaby & Sung, 2018)—support TE insertion calls for such 

de novo families. Similar to typical SV callers, DD_DETECTION (Kroon et al., 2016) 

collects discordant reads and clusters them according to their genomic coordinates. For 

each discordant read cluster, it examines clipped or split reads to define the breakpoints, 

with additional filtering to remove false positives, for example by checking the consistency 

of the two sides of discordant reads. TranSurVeyor (Rajaby & Sung, 2018) takes a 

similar approach but improves the performance by re-aligning one end of discordant reads 

originating from TEs and adopting an SNP-aware filter to remove incorrectly aligned reads 

in repeat regions. A major limitation of the existing de novo TE insertion callers is that they 

still only focus on detecting insertions, like other SV callers, but do not provide TE-specific 

annotation, such as TE family or target site duplication.
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TE INSERTION GENOTYPING

Three tools—MELT, TypeTE (Goubert et al., 2020), and xTea—report the genotypes of 

germline TE insertions that are inferred from supporting read patterns. Notably, TypeTE 

provides genotypes of input TE insertions, but does not detect TE insertions. Since paternal 

and maternal chromosomes cannot be distinguished in general, the algorithms can only 

classify each insertion into one of three different genotype states (Fig. 1D; Table 2): neither 

paternal nor maternal alleles with the insertion (0/0 or homozygous reference), one parental 

allele with the insertion (0/1 or heterozygous), and both alleles with the insertion (1/1 or 

homozygous). TE genotyping is generally performed in two steps: feature extraction and 

statistical estimation of genotype.

Feature extraction for SV genotyping can be accomplished by aligning reads either to the 

linear reference genome or to genome graphs (Fig. 4A). All current TE-specific genotyping 

methods extract features using the linear reference genome. The tools utilize the number 

of discordant reads and the number of concordant reads across the breakpoints, and also 

the number of clipped or split reads at the breakpoints of each insertion to determine its 

genotype. xTea extracts additional features that support the reference allele, including the 

number of fully mapped reads at the breakpoints. These additional features can improve 

accuracy in TE genotyping.

Although not specific to TE insertion detection, multiple SV genotyping tools use graph 

alignment to extract features to determine genotypes. Since SV genotyping tools can be 

applied to TE genotyping with additional TE annotation, we introduce some of the tools 

in this review to facilitate the development of better tools using this approach. Paragraph 

(Chen et al., 2019) and GraphTyper2 (Eggertsson et al., 2019) genotype SVs; vg toolkit 

(Hickey et al., 2020) genotypes SVs, SNVs, and indels; and SVJedi (Lecompte, Peterlongo, 

Lavenier, & Lemaitre, 2019) genotypes SVs for long-read sequencing data. These graph 

alignment tools construct a genome graph based on detected SVs and align reads to it (Fig. 

4B). Genome graphs constructed for new local haplotypes consist of an SV sequence (e.g., 

an inserted TE sequence) connected to flanking sequences. Reads are then aligned to the 

graph. If a read originates from the TE insertion junction, it will fully map to the newly 

constructed haplotype; if a read originates from the reference homozygous allele, then it will 

fully align to the original reference genome. To estimate the genotype, reads fully aligned 

to the junction and reads aligned to the insertion are counted separately for each of the two 

haplotypes (with and without an insertion).

After feature extraction, genotype inference is performed using either the maximum-

likelihood approach or a machine-learning approach. The maximum-likelihood approach 

assigns to each insertion the genotype with the highest probability of having the observed 

features. This approach has been widely adopted for SNP and indel genotyping (Li, 

2011), and most tools, including MELT, TypeTE, Paragraph, GraphTyper2, and SVJedi, 

adopt this approach to genotype TE insertions and SVs. In contrast, xTea and GINDEL 

(Chu, Zhang, & Wu, 2014) take a machine-learning approach that views genotyping as a 

classification problem, with different class labels for each genotype. Different supervised 

machine-learning techniques are used with pre-labeled training data. For example, GINDEL 
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uses a support vector machine and xTea uses random forest to train the model using 

simulation or curated training data. Rigorous performance evaluation of TE genotyping 

methods is warranted.

DISCUSSION

Several factors affect the sensitivity and specificity of TE insertion detection. In general, 

methods performing read realignment to TE sequence libraries show higher accuracy than 

methods that examine reference mapping and TE annotation without read realignment 

(Gardner et al., 2017). For example, SVA elements have internal Alu-like sequences, so 

some short reads from SVAs can be erroneously aligned to Alus in the reference genome. 

Thus, methods without read realignment may fail to correctly associate these SVA reads, 

and thus may fail to call some SVA insertions. In addition, most tools examine poly(A/T) 

tails and target site duplication, using the information to filter out false positives. However, 

a subset of germline TE insertions may have mutations in these features or have target site 

deletions rather than duplications. Thus, stringent filtering on these criteria may lead to 

loss of sensitivity. Long-read tools can detect insertions that are generally undetectable with 

short-read tools, especially in regions with low mappability; however, most long-read data 

have low sequencing depth due to high sequencing cost, sometimes leading to missed true 

insertions.

Precise genotyping and phasing of TE insertions is essential in genetic studies in order to 

associate TE insertions with other quantitative traits such as gene expression levels, or with 

SNPs from genome association studies (GWAS) of various genetic traits and diseases. Since 

GWAS SNPs are selected among tagging SNPs for which probes exist on SNP arrays, most 

of them are unlikely to represent true functional variants. To identify those more likely to be 

functional, TE phasing can be used to identify TE insertions with strong linkage to known 

GWAS variants (Payer et al., 2017). TE phasing is also important to identify a compound 

heterozygous TE insertion that causes a recessive genetic disease by confirming that the TE 

insertion inherited from one parent and the other pathogenic variant inherited from the other 

parent.

Currently, all TE-specific genotyping methods extract features for genotype estimation using 

read alignment to the linear reference genome. New TE genotyping methods need to be 

developed using genome graphs, as in recent SV genotyping approaches. To our knowledge, 

there is no existing tool for TE insertion phasing. With a large, population-scale dataset, 

SHAPEIT (Delaneau, Marchini, & Zagury, 2011), Eagle2 (Loh et al., 2016), and other 

algorithms can phase SNVs. However, since there are far fewer TE insertions than SNVs in 

each genome, these algorithms may not work for TE phasing. Heterozygous SNPs near TE 

insertions can be utilized to phase TEs, but only ~20% of TE insertions have such proximal 

heterozygous SNPs (Bohrson et al., 2019), making TE phasing with short reads challenging. 

Utilizing long reads is effective in constructing genomic haplotypes (Edge, Bafna, & Bansal, 

2017; Martin et al., 2016; Mostovoy et al., 2016; Porubsky et al., 2019), and is likely to also 

be effective for TE insertion phasing.
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The availability of large WGS datasets from healthy and disease cohorts underscores the 

importance of scalable TE analysis methods. Such datasets are increasingly stored and 

shared through commercial cloud computing platforms, such as Amazon Web Services 

(AWS) and Google Cloud Platform (GCP), and the Broad Institute’s Terra (https://

terra.bio/). Thus, TE insertion and genotyping methods need to be efficient in terms of 

both time and memory, and should provide platform-independent usability. For example, a 

Docker (https://docker.com) or Singularity-based container (https://singularity.lbl.gov/) can 

allow other researchers to easily use the tools on different computing platforms. Combined 

efforts in advancing sequencing technologies and TE analytical methods will enable us to 

scrutinize these previously underappreciated genetic elements in the diverse contexts of 

genomic studies and to understand the role of TEs in human health and disease.
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Figure 1. 
Different types of TE insertions and TE genotypes. (A-C) Three different types of TE 

insertions with light yellow boxes indicating the time frames for when each arises. The 

colored triangles point to the origin of chromosomes carrying insertions. (A) Germline TE 

insertions are inherited from parents, and thus are present in every cell of the body. (B) De 
novo TE insertions arise during gametogenesis of the parents or early embryogenesis of the 

child, and thus are not detected in blood samples of the parents. (C) Somatic insertions occur 

during development and aging and create genetic mosaicism in an individual. Depending 

on when and where insertions occur, they are detected in different tissues at different 

mosaic levels. (D) Every TE insertion in an individual genome has three genotypes: 

homozygous (1/1), heterozygous (0/1), or no insertion (0/0). A homozygous insertion 

produces TE-junction-spanning reads originating from two insertion alleles; a heterozygous 

insertion produces reads from both insertion and reference alleles. Chromosomes carrying a 

non-reference TE insertion and sequence reads derived from the chromosomes are marked in 

red.
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Figure 2. 
Identification of TE insertions from short-read sequencing data. Paired-end short reads from 

an individual with a TE insertion are aligned to the reference genome. A TE insertion 

is detected by identifying two types of read clusters near the insertion breakpoints: (i) 

discordant reads (reads 1–4) are uniquely aligned to flanking regions and have their 

mate-pair reads aligned to one of many reference TE copies remotely located from the 

breakpoints; and (ii) clipped reads or split reads (reads 5–8) span the insertion breakpoints, 

and thus have soft-clipped or split mapping to the reference (shown in dotted blue boxes). 

The change in read depth at a non-reference insertion site is shown at the bottom. Gray 

dashed lines indicate the boundary of TSDs.
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Figure 3. 
Identification of TE insertions from long-read sequencing data. Long reads from an 

individual with a TE insertion are aligned to the reference genome. First, insertion-

supporting reads are collected: reads with a CIGAR field indicating internal insertions 

(read 2) and soft-clipped or split reads (read 1 and 3). Local assembly of these insertion-

supporting reads is performed to create long contig sequences. The contigs are aligned to 

TE subfamily sequence libraries, and TE insertions are identified and annotated for multiple 

features, such as insertion size, TSD, and poly(A) tails.
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Figure 4. 
Overview of TE insertion genotyping. (A) In order to genotype TE insertions, informative 

features are extracted from read alignment to the linear reference genome or genome 

graphs. The IGV screenshot shows the local alignment patterns of a non-reference insertion 

with discordant and soft-clipped reads. Based on the extracted features, machine-learning 

or maximum-likelihood approaches are taken to estimate the genotype of each insertion. 

(B) Genome graph−based feature extraction is illustrated. Genome graphs represent two 

haplotypes of a heterozygous insertion (top), a homozygous insertion (middle), and no 

insertion (bottom). Using each genome graph, read pairs with one read aligned to the 

flanking region and the mate-pair read aligned to the TE insertion are counted as pairs 

supporting the presence of a TE insertion, while read pairs with both reads aligned to the 

reference flanking regions are counted as pairs supporting no TE insertion.
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