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Abstract

A large amount of genomic data for profiling three-dimensional genome architecture have 

accumulated from large-scale consortium projects as well as from individual laboratories. In this 

review, we summarize recent landmark datasets and collections in the field. We describe the 

challenges in collection, annotation, and analysis of these data, particularly for integration of 

sequencing and microscopy data. We introduce efforts from consortia and independent groups to 

harmonize diverse datasets. As the resolution and throughput of sequencing and imaging 

technologies continue to increase, more efficient utilization and integration of collected data will 

be critical for a better understanding of nuclear architecture.
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Introduction

The rapid pace of technology development in genome and epigenome profiling has led to 

major advances in our understanding of genome architecture and function. The initial 

techniques for measuring three-dimensional interactions among genomic loci based on 

chromosome conformation capture [1–3] have matured in terms of protocol optimization 

and have led to the development of numerous related techniques, e.g., enriching for 

interactions with a protein of interest [4,5]. Aided by decreasing sequencing cost, 

researchers can now produce high-quality data that allow for more sensitive detection of 

long-range interactions.

In addition to published data from individual laboratories, the US National Institutes of 

Health (NIH) as well as other governments’ agencies have launched consortium efforts to 

systematically profile epigenomes across many cell lines and tissue types, generating a large 
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amount of data including 3D interaction data. These data provide an opportunity for 

researchers to engage in integrative analysis that combines their DNA, RNA, and/or local 

epigenetic data with publicly available 3D interactions data.

In this review, we will first summarize the resources currently available for those interested 

in 3D data analysis. Then, we will describe several challenges in collection, curation, and 

integration of data, as well as steps that can be taken to maximize the value of the data 

resources for the scientific community. We will focus on nuclear architecture data, but the 

issues and approaches are also relevant for other data types.

Landmark nuclear architecture datasets

Here, we highlight several datasets that represent key advances in terms of data quality and 

resolution. For chromosome conformation capture assays, advances in experimental 

protocols improved the spatial resolution of long-range interactions. The first Hi-C maps 

with more than a billion reads, using in situ Hi-C, was in 2014, providing resolution 

reaching 1kb and identifying ~10k loops anchored by CTCF [6]. A subsequent dataset with 

a similar resolution was in mouse, resolving dynamic enhancer-promoter interactions 

genome-wide during development [7]. Another high-depth dataset was derived using 

induced human pluripotent stem cells to study differentiation and revealed the role of active 

HERV-H retrotransposons in demarcating topological domains [8]. Optimized protocols 

using micrococcal nuclease (MNase) for chromatin digestion have further increased the 

resolution of genome-wide 3C assays to nucleosome levels [9,10]. These five datasets likely 

constitute the deepest genome-wide 3C assays generated to date. Some of the data were 

generated as part of the NIH 4D Nucleome initiative (http://www.4dnucleome.org), and the 

uniformly curated and processed versions of all five datasets are available at the 4DN Data 

Portal (http://data.4dnucleome.org).

Whereas genomic assays are typically carried out on millions of cells and therefore capture 

the average measurements, single cell sequencing technologies provide opportunities to 

study cell-to-cell variability. Recent single cell Hi-C data include thousands of cells with an 

average of >120,000 contacts per cell to study chromosomal organization in cell cycle [11] 

and cells with >1 million contacts per cell for oocyte-to-zygote transition [12] and for 

modeling of diploid genomes [13].

Major advances in probing the genome architecture have been achieved recently by high-

throughput and high-resolution imaging. Low-throughput Fluorescent in situ hybridization 

(FISH) has been used since the 1990s to map two or three individual genomic DNA 

elements relative to cellular features like nucleolus and nuclear membrane. Emerging 

microscopy techniques such as hiFISH [14], OligoDNA-PAINT [15], multiplexed-FISH 

[16], ChromEMT [17] and OligoFISSEQ [18] enable a detailed view of the chromosome 

organization in high-throughput. Moreover, limited by the wavelength of light, traditional 

light microscopy (200–500 nm) is not precise enough to resolve genomic loci within 

hundreds of kilobases. Super-resolution microscopy methods improve the resolution to 10–

30 nm and enable tracing of chromosomes [15]. These imaging data provide a 

comprehensive picture at the single cell level, highlighting the variability in chromatin 
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structure between cells. In combination with sequencing-based methods, they can be used to 

characterize differences across cell types and stages and guide integrative modelling efforts.

Databases for nuclear architecture and epigenomics data

The largest coordinated initiative focusing on 3D genome architecture is the 4D Nucleome 

Network (the authors are associated with the Data Coordination and Integration Center of 

this project) [19]. This initiative aims to understand the principles underlying nuclear 

organization in space and time (hence the ‘4D’), the role of nuclear organization in gene 

expression and cellular function, and the impact of changing nuclear organization in various 

diseases. 4D Nucleome in Phase I (2015–2020) has generated ~1200 replicate experiment 

sets that span sequencing and imaging datasets. The second phase has just begun in 

September 2020 and is expected to produce even a greater amount of data. The 4DN Data 

Portal also hosts 336 replicate experiment sets from landmark publications produced outside 

the 4DN Network.

Multiple consortia have generated epigenomic data that are highly relevant to understanding 

nuclear architecture. The largest of these consortia is the Encyclopedia of DNA Elements 

(ENCODE) project [20]. Now in its Phase 4 (18th year), it has produced more than 10,000 

experiments that map regions of transcription, regulatory elements, transcription factor 

binding sites, chromatin structure, and histone modification. In particular, it also includes 56 

Hi-C profiles across 34 human cell lines and tissues. Several dozens of additional Hi-C and 

ChIA-PET profiles are planned for the current phase of the ENCODE Project. The 

ENCODE Data Portal also hosts data from related consortia, such as Roadmap Epigenomics 

[21], model organism ENCODE (modENCODE) [22], and Genomics of Gene Regulation 

(GGR, https://www.genome.gov/Funded-Programs-Projects/Genomics-of-Gene-

Regulation). Roadmap Epigenomics is another notable consortium that generated valuable 

data, with 111 reference epigenomes (e.g., histone modification, DNA methylation, 

chromatin accessibility) in a variety of healthy human cells and tissues. These and other 

epigenomics projects are summarized in Table 1.

There have also been efforts from individual laboratories to collect and uniformly process 

public epigenomics and nuclear architecture data. One of the successful examples is 

Cistrome Data Browser (http://cistrome.org/db/) [26], which provides uniformly processed 

data such as peak calls and profile tracks for >56,000 transcription factor (TF) and histone 

modification ChIP-seq, DNase-seq, and ATAC-seq datasets in human and mouse, along with 

quality control metrics and the list of the tools and parameters used. Another related 

database is SEA (now in version 3, http://sea.edbc.org) [27], which provides super-enhancer 

calls in 266 cell/tissue types based on ChIP-seq data. Databases that focus on 3D 

architecture data include 3DIV (https://www.kobic.kr/3div/) [28], which has collected public 

Hi-C and promoter capture Hi-C data in 80 human cell/tissue types and provides normalized 

contact matrices and significant interactions, and 3D Genome Browser (http://

promoter.bx.psu.edu/hi-c/index.html) [29], which profiled chromatin loops using a machine 

learning model [30] for all available ENCODE Hi-C data in 56 cell/tissue types.
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Data visualization tools

Exploratory analysis of Hi-C or other 3D interaction data typically begins with visual 

inspection of the interaction matrix, which shows the estimated frequency of interactions 

between every pair of loci. These datasets are large in size: the minimum number of reads 

required for a Hi-C experiment in the 4D Nucleome consortium is 600 million (a standard 

RNA-seq may contain on the order of 10–40 million reads). Thus, a tool that allows 

visualization of the interaction maps quickly without having to download and process the 

raw data is beneficial. One recent advance in this area is HiGlass [31], which allows for 

interactive visualization embedded in a web browser. When the user finds a Hi-C dataset in 

the 4D Nucleome Data Portal, for instance, the interaction map is already in place, ready to 

be browsed. The challenge in visualization of the matrix is its sheer size at high resolution: 

at 10kb resolution, the matrix is 300k bins by 300k bins (3 billion bases in the genome 

divided by 10k), containing nearly 100 billion entries. To display such a matrix while 

zooming in and out, HiGlass utilizes a Google Map-like technology. With only the necessary 

data streaming from the cloud as the user navigates the contact map, this tool obviates the 

need for downloading the full data. Juicebox [32], is another popular tool that allows users to 

interactively navigate interaction maps.

While HiGlass and Juicebox primarily focus on Hi-C data, 3D genome browser [29] and 

WashU epigenome browser [33] can visualize other 3D chromatin interaction data such as 

ChIA-PET, capture Hi-C, and PLAC-seq. One of the challenges in 3D data visualization is 

how to efficiently integrate other epigenomic profiles (e.g., ChIP-seq and ATAC-seq). These 

browsers host a large number of epigenetic profiles from ENCODE and Roadmap 

Epigenomics so that functional elements can be easily linked with chromatin interactions.

Additional algorithm development is needed to produce more accurate interaction matrices. 

A standard procedure for generating an interaction matrix fails to account for any copy 

number variants and translocations in the genome—when there is a copy number gain, for 

instance, that region will show more interaction counts simply because there is more genetic 

material to interact. While the effects of copy number variations are partially removed by the 

canonical matrix balance methods [34], several approaches have been proposed to explicitly 

account for the copy number changes [35,36]. Alternatively, one could detect copy number 

variation and translocations directly from Hi-C data [37] and use this information to 

normalize contact frequencies.

Challenges and best practices in the analysis of chromatin interaction data

To ensure the validity of a study based on chromatin interaction data, evaluation of data 

quality and reproducibility is essential. In addition to the common statistics on read 

alignments, several additional measures specific to 3D data are often informative, such as the 

fraction of valid pairs, the ratio between intra- and inter-chromosomal contacts, and the 

fraction of short-range compared to long-range interactions [38]. Many Hi-C analysis 

pipelines, such as HiC-Pro [39], generate similar QC statistics. To access reproducibility 

between replicates, several 3D data-specific methods [40–42] have been developed, as 

summarized and evaluated recently [43]. These methods propose similarity measures for 
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contact maps that perform better than conventional correlation coefficients. Single cell Hi-C 

data are much noisier, and new methods will be needed [44].

Identification of chromatin structures such as topologically-associated domains (TADs) and 

chromatin loops is crucial to understanding how spatial organization affects gene regulation. 

Although TADs are evident in contact maps visually, appearing as blocks with high 

interaction frequencies within, their accurate delineation remains challenging due to their 

hierarchical structure and a lack of clear correlation with other features, e.g., TAD 

boundaries often, but not always, colocalize with insulation proteins. A recent comparison of 

thirteen algorithms for Hi-C data has found that there is wide variability in the chromatin 

interactions found among the algorithms, but the TAD detection results were more 

comparable [45]. For chromatin loops, detection methods typically build a background 

model of interaction frequencies between two loci and access significance of the observed 

interaction frequency [46,47]. One of the main issues in methods development for 3D 

feature detection has been the lack of gold standards; however, integration of data from 

genomics and new microscopy techniques in the coming years will enable more accurate 

evaluation and thus better tools.

Opportunities and challenges for data reuse

The key datasets highlighted above and the hundreds of other published datasets present 

many opportunities for deriving new insights without the need to perform expensive 

experiments. For instance, a cancer biologist may have found a recurrent non-coding 

mutation in colorectal cancers that, based on the histone mark H3K27ac or H3K4me1, 

appears to be in an enhancer region. To identify which genes may be regulated by the 

enhancer, she could generate her own data. Alternatively, she could first search for a 

chromatin interaction map in a relevant cell line from a public database.

Such analysis, however, requires several elements. First, a sufficiently large number of 

samples need to be profiled by the research community so that a researcher is likely to find 

applicable profiles. In the above example, 3D data from a colorectal cancer tissue would be 

ideal, but, since it is still difficult to do 3C-based experiments on clinical samples, data from 

cell lines derived from colorectal cancer could serve as a substitute. Most Hi-C data do not 

have sufficient resolution for linking an enhancer to a complete set of targets, so capture-

based experiments would be ideal. Second, the researcher must be able to find relevant 

samples. A simple approach may be to find papers of interest and look for datasets 

associated with the publications; however, this process can be laborious, as tracking down 

the datasets associated with each paper is time-consuming. To search data repositories, the 

investigator must know which repository contains relevant data. Currently, there exists no 

centralized catalog of datasets across repositories—to find an RNA-seq profile of a cancer 

cell line, for instance, one must visit individual data portals one at a time. There is an effort 

to coordinate among the NIH Common Fund programs (projects of broad interest jointly 

funded by multiple NIH institutes), with the goal of providing a common interface that 

catalogs multiple portals (https://commonfund.nih.gov/dataecosystem). However, building 

such an interface is not trivial, as the scope and vocabulary used in annotations are 

heterogeneous. Even when a relevant dataset is found, the investigator (i) should be 
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confident that the data are suitable based on the metadata provided and are of high-quality 

based on the description of quality control steps and replication; (ii) should be able to find 

the data at the desired level of analysis, e.g., for Hi-C, raw data, contact matrix at multiple 

resolutions, or gene-level summaries; (iii) should be able to explore the data, unless a 

bioinformatics analyst is available to download, process, visualize, and interpret the data.

To combine datasets from multiple sources, data processing steps and parameters must be 

examined carefully. For instance, sequenced reads are often aligned to different genome 

versions. As this discrepancy could lead to significant differences in analysis results, re-

processing of the raw data may be necessary. Besides genome versions, there are many other 

sources of variations, including different data quality standards, experimental protocols and 

reagents, and algorithms used for features identifications (e.g., gene expression levels, 

regions of chromatin accessibility, and chromatin compartments). It is not unusual to have 

dramatically different results depending on the analytical steps (and the parameters used); 

thus, attention to details is necessary when working with published data, especially when 

metadata explaining the analytical pipelines are inadequate.

Importance of metadata collection for reproducible science

To take full advantage of the existing data, proper metadata (‘data about data’) must be 

available at the repositories. Lack of proper metadata is one of the main factors that hinder 

reproducibility of published results. To increase scientific rigor and transparency, NIH has 

implemented policies that emphasize the “FAIR” principle: findability, accessibility, 

interoperability, and reusability [48]. The idea behind this principle is to encourage data 

producers and publishers to provide sufficiently rich metadata and persistent identifiers in 

such a way that the data can be found easily by a potential user and the results can be 

reproduced.

Although the FAIR principles are reasonable and straightforward, their implementation is 

complicated by a number of factors. A complete set of metadata necessary for replicating 

one’s analysis is substantially more than what is currently required for data submission to 

common repositories. For instance, what information does an RNA-seq dataset require to 

ensure full reproducibility? In addition to clearly annotated raw sequence data (FASTQ or 

BAM files), several pieces of information are needed: how replicates were handled, what 

control samples were used, what normalization was used, which version of which aligner 

was used with which parameters; which transcriptome annotation was used; how gene 

expression levels were quantified; and how subsequent analyses were performed. The 

problem is compounded when laboratory experiments must be described. Once collected, 

the metadata must be stored in a standardized manner—in a ‘data model’—so that the 

information can be organized and searched by other tools.

In many NIH consortia, the primary objective is to generate resources for the scientific 

community. As such, there is a great deal of emphasis on proper metadata curation: key 

components of domain-specific metadata are decided in relevant working groups and formed 

into a metadata model. Whenever possible, the metadata model incorporates existing 

ontologies; in other cases, at least standardized controlled vocabulary is used [49]. In the 4D 
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Nucleome project, for instance, a working group consensus for the required metadata 

information for Hi-C experiment included experiment types, biosample metadata, biosample 

amount, protocol, enzyme, library preparation methods, enzyme lot number, digestion time, 

crosslinking method, time and temperature, tagging method, ligation time and temperature, 

ligation volume, whether biotin is removed, average fragment size, fragment size range, 

fragmentation method, fragment size selection method, raw FASTQ files, and replicate 

information. In ENCODE and 4D Nucleome, metadata are stored in the JSON (JavaScript 

Object Notation) format, organized as objects linked to each other.

Although submission of full metadata is desirable, it presents practical challenges for 

individual investigators. For most data types, there is no consensus on the required metadata 

fields or data models, and common repositories such as Gene Expression Omnibus (GEO) 

and Short Read Archive (SRA) require only very limited metadata with no controlled 

vocabularies. Investigators are also not incentivized to spend the additional effort necessary 

to obtain and submit full metadata. As a result, a large proportion of data in public 

repositories (other than those in consortium data portals) lack sufficiently detailed and 

structured metadata to allow efficient searching or full reproducibility. Published datasets are 

a valuable resource for the community, and a greater emphasis on proper metadata curation 

in the scientific community will enable a more efficient use of the resource.

Collecting imaging data

Collection, curation, and re-analysis of microscopy data present additional challenges to the 

ones we have outlined above for genomic assays. Whereas sequencing experiments have 

common data formats (e.g., FASTQ) and common coordinate systems (genome builds), 

microscopy experiments are diverse in many aspects, including image resolutions, biological 

sample preparation methods, imaging modalities, and data formats. Imaging experiments are 

sometimes performed with extensive protocol variations even for the same technique. The 

signal in the microscopy data may be encoded in the cell line, added by a modification, or 

transiently activated by a treatment. Microscopy equipment is produced by various 

manufacturers in numerous models, each with its own hardware and software 

customizations. Microscopes often come with their own software that stores the data 

acquisition metadata and output imaging files in proprietary formats.

Capturing all metadata and making them interoperable across different technologies and 

with genomic experiments require an extensive metadata model and file format 

standardization. There are multiple community-driven efforts in this direction. The most 

prominent of these is Bio-Formats by Open Microscopy Environment consortium (OME) 

[50]. Bio-Formats enables conversion of different microscopy file formats and acquisition 

metadata to the common formats OME-TIFF and OME-XML. Any data portal or 

consortium dealing with imaging data from multiple sources would benefit from building on 

such tools.

In addition to the lack of metadata and data standards, sharing of microscopy experiments is 

also hindered by the large data volumes. For example, super-resolution microscopy 

experiments produce terabytes of data per day, making long term storage of raw imaging 
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files prohibitive. Reproducible methods to reliably summarize these raw data to concise 

localization formats will make future imaging data sharing more feasible. However, the field 

has not yet converged on such methods. As an interim solution, the 4DN Network’s pilot for 

microscopy data sharing presents example subsets of the raw microscopy data and focuses 

on sharing the most interoperable processed results, such as the pixel positions of recorded 

signals, drift profiles, and constructed 3D models.

Conclusion

In recent years, we have seen major advances in our understanding of nuclear architecture, 

aided by the increase in the resolution and throughput with which we can probe chromatin 

organization. An important byproduct of these advances are the high-quality datasets that 

have been generated. We have highlighted some datasets that provide the highest resolutions 

of genomic interactions to date. We have described how data portals such as those by 4DN 

and ENCODE increase the utility of datasets with uniform curation, processing, quality 

control, and visualization. We provided a perspective on remaining challenges in extending 

such efforts to the whole field, especially for microscopy data. We hope that with rising 

awareness for FAIR principles across the whole scientific community and funding agencies, 

our community will tackle these challenges effectively.
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Table 1.

Consortium projects that have generated large-scale epigenomics data

Project Brief description Years Data portal Cell types/tissues Data types Ref

ENCODE (the 
Encyclopedia 
of DNA 
Elements)

NIH-funded project 
to map functional 
elements primarily 
for human and later 
extended to mouse 
and other model 
organisms

2003 - 
current

https://www.encodeproject.org/ In Phases 1–2, it 
profiled focusing 
on several human 
cell lines 
(including cancer 
cell lines). Now it 
contains datasets 
in more than 200 
cell lines. Later 
phases also 
included data from 
healthy tissues. 
Others include 
primary cells, in 
vitro differentiated 
cells, whole 
organisms, single 
cells, organoids, 
cell-free samples.

>900 ChIP-seq (TF, 
histone modification), 
769 DNase-seq, 200 
ATAC-seq, >1000 
RNA-seq (sc, total, 
polyA, sm etc), 
CAGE, Repli-seq, 
RRBS etc.
*59 Hi-C (mouse 
data included), 57 
ChlA-PET, 12 5C

[20]

Roadmap 
Epigenomics

NIH-funded project 
for 111 human 
reference 
epigenomes 
primarily from 
normal, healthy 
individuals

2008 – 
2017

http://
www.roadmapepigenomics.org/

It contains datasets 
in 111 human cell 
types, tissues from 
healthy 
individuals. It also 
provided several 
ENCODE cell line 
data uniformly 
processed.

>1000 experiment 
sets consisting of 
ChIP-seq (histone 
modification), 
DNase-seq, RNA-seq, 
Bisulfite-seq, MeDIP-
seq, MRE-seq, 
RRBS, DGF

[21]

4D Nu cleome NIH-funded project 
to map the genome 
structure and 
dynamics in space 
and time mainly for 
human and mouse

2015 - 
current

https://data.4dnucleome.org/ Most datasets in 
cell lines (>1000 
datasets from 
immortalized, 
stem cell derived 
or primary cell 
lines)

*295 Hi-C datasets 
(in situ, dilution, 
dnase, capture, 
micro-c, methyl, sn, 
sci, single cell, single 
cell methyl, MC) 
with other data 
types including 
SPRITE, PLAC-seq, 
ChlA-PET, ChlA-
Drop, TCC, and 
MARGI
**
275 DNA FISH, 3 
Electron 
Tomography
Although its primary 
data type is Hi-C, it 
also includes 
nonarchitecture data 
such as ChIP-seq, 
RNA-seq, 2-stage 
Repli-seq, ATAC-seq, 
DamID-seq, NAD-
seq, CUT&RUN, 
TSA-seq, TRIP. In 
addition, it hosts 359 
experiment sets from 
other projects.

[19]

CEEHRC 
(Canadian 
Epigenetics, 
Environment 
and Health 
Research)

Canadian project to 
generate human 
reference 
epigenomes 
focusing on 
diseases including 
cancer, 
inflammatory, 

2012 - 
current

https://epigenomesportal.ca/
ihec/about.html

30 tissues, cell 
types, cell lines 
(mostly tissues or 
cells) in human 
blood, brain, 
breast, thyroids, 
skin, sperm, and 
tonsils, both from 

> 1000 experiment 
sets in ChIP-seq 
(histone 
modification), 
Bisulfite-seq and 
RNA-seq

[23]

Curr Opin Genet Dev. Author manuscript; available in PMC 2022 April 01.

https://www.encodeproject.org/
http://www.roadmapepigenomics.org/
http://www.roadmapepigenomics.org/
https://data.4dnucleome.org/
https://epigenomesportal.ca/ihec/about.html
https://epigenomesportal.ca/ihec/about.html


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jung et al. Page 13

Project Brief description Years Data portal Cell types/tissues Data types Ref

cardio-metabolic, 
and 
neuropsychiatric 
diseases

healthy and 
diseased 
conditions

Blueprint 
epigenome

European project to 
provide 100 
reference 
epigenomes from 
healthy and disease 
individuals, focused 
on blood diseases

2012 – 
2017

http://dcc.blueprint-
epigenome.eu/#/home

> 90 tissues and 
cell types in 
human blood, 
bone marrow, 
thymus, tonsil and 
liver

2602 datasets in 
ChIP-seq (histone 
modification), 
Bisulfite-seq, RNA-
seq, DNase-seq

[24]

IHEC 
(International 
Human 
Epigenome 
Consortium)

International efforts 
to generate 1000 
human reference 
epigenomes

2010 - 
current

https://epigenomesportal.ca/
ihec/about.html

human tissues and 
cells in diseased 
and normal 
conditions

> 5000 profiles 
collected from 
multiple projects 
including ENCODE, 
Roadmap, CEEHRC, 
Blueprint, AMED-
CREST for ChIP-seq 
(histone 
modification), 
Bisulfite-seq, RNA-
seq

[23]

TaRGET 
(Toxicant 
Exposures and 
Responses by 
Genomic and 
Epigenomic 
Regulators of 
Transcription)

NIEHS-funded 
project for the study 
of epigenetic 
changes in toxicant 
exposure, primarily 
in human liver and 
blood tissues

2013 - 
current

https://
data.targetepigenomics.org/

human liver and 
blood tissues 
before and after 
toxican exposure

382 ATAC-seq, 387 
RNA-seq

[25]

*
3D genomic data,

**
Imaging data
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