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treated with targeted agents is increasing with 
the discovery of likely driver aberrations in 
most lung tumors16,17. Large-scale processes 
that shape cancer genomes have similarly been 
identified. Analyses of chromothripsis18 and 
chromoplexy19, which involve the breakage 
and rearrangement of chromosomes at mul-
tiple loci, and kataegis20, which involves hyper-
mutational processes associated with genomic 
rearrangements, are providing insights into 
tumor evolution (see Garraway and Lander21 
for a review).

Analysis across tumor types
Increased numbers of tumor sample data 
sets enhance the ability to detect and analyze 
molecular defects in cancers. For example, 
driver genes can be pinpointed more precisely 
by narrowing regions affected by amplifica-
tion and deletion to smaller segments of the 
chromosome using data on recurrent events 
across tumor types. The use of large cohorts 
has enabled DNA sequencing to uncover a 
list of recurrent genomic aberrations (muta-
tions, amplifications, deletions, transloca-
tions, fusions and other structural variants), 
both known and novel, as common events 
across tumor types22. However, ‘long tails’ in 
the distributions of aberrations among samples 
have also been uncovered23. Indeed, a major-
ity of the TCGA samples have distinct altera-
tions not shared with other samples in their 

Cancer can take hundreds of different forms 
depending on the location, cell of origin and 
spectrum of genomic alterations that promote 
oncogenesis and affect therapeutic response. 

Although many genomic events with direct 
phenotypic impact have been identified, much 
of the complex molecular landscape remains 
incompletely charted for most cancer lineages. 

Molecular profiling of single tumor types
That cancer is fundamentally a genomic dis-
ease is now well established. Early on, large 
numbers of oncogenes were identified using 
functional assays on genetic material from 
tumors in positive-selection systems1–3, 
and a subset of tumor suppressor genes 
was identified by analyzing loss of hetero-
zygosity4. More recently, systematic cancer 
genomics projects, including TCGA (Box 1),  
have applied emerging technologies to the 
analysis of specific tumor types. This disease-
specific focus has identified novel oncogenic 
drivers and the genes contributing to func-
tional change5–7, has established definitions 
of molecular subtypes8–12 and has identified 
new biomarkers on the basis of genomic, tran-
scriptomic, proteomic and epigenomic altera-
tions. Some of these biomarkers have clinical 
implications13,14. For example, we now view 
ductal breast cancer as a collection of distinct 
diseases whose major subtypes (for example, 
luminal A, luminal B, HER2 and basal-like) 
are managed differently in the clinic; the out-
comes for metastatic melanoma have improved 
as a result of therapeutic targeting of BRAFV600 
mutations15; and the fraction of lung cancers 

The Cancer Genome Atlas Pan-Cancer 
analysis project
The Cancer Genome Atlas Research Network1, John N Weinstein2,3, Eric A Collisson4, Gordon B Mills3,  
Kenna R Mills Shaw5,6, Brad A Ozenberger7, Kyle Ellrott8,9, Ilya Shmulevich10, Chris Sander11 &  
Joshua M Stuart8,9

the cancer Genome atlas (tcGa) research network has profiled and analyzed large numbers of human tumors to 
discover molecular aberrations at the Dna, rna, protein and epigenetic levels. the resulting rich data provide a major 
opportunity to develop an integrated picture of commonalities, differences and emergent themes across tumor lineages. 
the Pan-cancer initiative compares the first 12 tumor types profiled by tcGa. analysis of the molecular aberrations and 
their functional roles across tumor types will teach us how to extend therapies effective in one cancer type to others with 
a similar genomic profile.

1Full lists of members and affiliations appear at the 
end of the paper. 2Department of Bioinformatics 
and Computational Biology, University of Texas 
MD Anderson Cancer Center, Houston, Texas, 
USA. 3Department of Systems Biology, University 
of Texas MD Anderson Cancer Center, Houston, 
Texas, USA. 4Department of Medicine, University 
of California, San Francisco, San Francisco, 
California, USA. 5The Cancer Genome Atlas 
Program Office, Center for Cancer Genomics, 
National Cancer Institute, Bethesda, Maryland, 
USA. 6University of Texas MD Anderson Cancer 
Center, Institute for Personalized Cancer Therapy, 
Houston, Texas, USA. 7National Human Genome 
Research Institute, US National Institutes of 
Health, Bethesda, Maryland, USA. 8Department 
of Biomolecular Engineering, University of 
California, Santa Cruz, Santa Cruz, California, 
USA. 9Center for Biomolecular Science and 
Engineering, University of California, Santa 
Cruz, Santa Cruz, California, USA. 10Institute 
for Systems Biology, Seattle, Washington, USA. 
11Computational Biology Center, Memorial Sloan-
Kettering Cancer Center, New York, New York, 
USA. Correspondence should be addressed to 
J.M.S. (jstuart@ucsc.edu).

OPEN

np
g

©
 2

01
3 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

mailto:jstuart@ucsc.edu


1114 volume 45 | NumBeR 10 | oCToBeR 2013 | nature genetics

commentary

NOTCH gene family, which is inactivated in 
some squamous cell cancers of the lung, head 
and neck29, skin30 and cervix31 but activated by 
mutation in leukemias32.

Such examples illustrate the importance of 
developing a comprehensive perspective across 
tumors, independent of histopathologic diag-
nosis; shared molecular patterns will enable 
etiologic and therapeutic discoveries in one dis-
ease that can be applied to another. Importantly, 
integrative interpretation of the data will help 
identify how the consequences of mutations 
vary across tissues, with important therapeutic 
implications. Relatively rare cancers, such as 
childhood malignancies, in particular stand to 
benefit from such an approach.

We know much more about the molecular 
details of major cancers than we did just a few 
years ago, but once a cancer is metastatic it 
remains incurable with few exceptions. Only 
time will tell whether the integration of molec-
ular characteristics with data on histology, 
organ site and metastatic location will contrib-
ute to an improvement in patient outcomes. 
But the balance is shifting in this direction. 
Hence, the goal of the Pan-Cancer project is to 
identify and analyze aberrations in the tumor 
genome and phenotype that define cancer 
lineages as well as to identify aberrations that 
transcend particular lineages. This report out-
lines the scope of the project and introduces 
the first coordinated set of manuscripts to be 
published from the enterprise.

The Pan-Cancer project
To gain analytical breadth—defining com-
monalities, differences and emergent themes 
across cancer types and organs of origin—
TCGA launched the Pan-Cancer analysis proj-
ect at a meeting held on 26–27 October 2012 
in Santa Cruz, California. The Pan-Cancer 
project is a coordinated initiative whose goals 
are to assemble coherent, consistent TCGA 
data sets across tumor types, as well as across 
platforms, and then to analyze and interpret 
these data (Box 2). Within 2 months of the 
project’s launch, a ‘data freeze’ was declared 
on the first 12 TCGA tumor types, each pro-
filed using 6 different genomic, epigenomic, 
transcriptional and proteomic platforms (Fig. 
1). Since that time, the aggregated data sets 
have been quality controlled, analyzed sta-
tistically and interpreted by a consortium of 
researchers, principally members of the TCGA 
Research Network.

The Pan-Cancer project lays the framework 
for an analytic process that, in the future, will 
include the integration of new tumor types and 
data from TCGA and other such enterprises. 
There are currently major consortium efforts 
in pediatric cancers (TARGET; Therapeutically 

part, also divided by disease as defined by organ 
of origin. This framework has made sense for 
generations, but the results of molecular analysis 
are now calling this view into question; cancers 
of disparate organs have many shared features, 
whereas, conversely, cancers from the same 
organ are often quite distinct.

Important similarities among tumor sub-
types from different organs have already been 
identified. For example, TP53 mutations drive 
high-grade serous ovarian, serous endometrial 
and basal-like breast carcinomas, all of which 
share a global transcriptional signature involv-
ing the activation of similar oncogenic path-
ways10,27. Similarly, ERBB2-HER2 is mutated 
and/or amplified in subsets of glioblastoma, 
gastric, serous endometrial, bladder and lung 
cancers. The result, at least in some cases, is 
responsiveness to HER2-targeted therapy,  
analogous to that previously observed for 
HER2-amplified breast cancer. Other com-
monalities across tumor types include inherited 
and somatic inactivation of the BRCA1-BRCA2 
pathway in both serous ovarian and basal-like 
breast cancers, microsatellite instability in 
colorectal and endometrial tumors, and the 
recently identified POLE-mediated ultramu-
tator phenotype characterized by extremely 
high mutation rates, common to both colon 
and endometrial cancers12,27,28. Conversely, 
there are important cases in which the same 
genetic aberrations have very different effects 
depending on the organ within which they 
arise. A prime example is provided by the 

cohort. Despite the apparent uniqueness of 
each individual tumor in this regard, the set 
of molecular aberrations often integrates into 
known biological pathways that are shared 
by sets of tumor samples. In other cases, rare 
somatic mutations can be implicated as driv-
ers by aggregating events across tumor types 
to improve the detection of patterns, for exam-
ple, hotspot mutations in DNA segments that 
encode particular protein domains, leading to 
the identification of potential new drug targets.

Determining whether rare aberrations are 
drivers (oncogenic contributors) or just pas-
sengers (clonally propagated with neutral 
effect) and whether they are clinically action-
able will require further functional evaluation 
as well as the analysis of additional tumors to 
increase power. The identification of more 
driver aberrations and acquired vulnerabili-
ties for each individual tumor will undoubtedly 
boost personalized care. Developing treat-
ments that target the ~140 drivers22 validated 
so far, however daunting, appears possible; 
devising one-off therapies for the thousands 
of aberrations in the long tails will be much 
more challenging.

Although important general principles 
have emerged from decades of study24,25, 
until recently, most research on the molecular,  
pathological and clinical natures of cancers has 
been ‘siloed’ by tumor type26. One has only to 
glance at the directory of oncology departments 
in any major cancer center to realize that medi-
cal and surgical cancer care are, for the most 

Box 1  tcGa: mission anD strateGy
Important information about the biological relevance of the molecular changes in cancer 
can be obtained through combined analysis of multiple different types of data.

For that reason, TCGA’s principal aims are to generate, quality control, merge, analyze 
and interpret molecular profiles at the DNA, RNA, protein and epigenetic levels for 
hundreds of clinical tumors representing various tumor types and their subtypes. Cases 
that meet quality assurance specifications are characterized using technologies that 
assess the sequence of the exome, copy number variation (measured by SNP arrays), DNA 
methylation, mRNA expression and sequence, microRNA expression and transcript splice 
variation. Additional platforms applied to a subset of the tumors, including whole-genome 
sequencing and RPPAs, provide additional layers of data to complement the core genomic 
data sets and clinical data. By the end of 2015, the TCGA Research Network plans to have 
achieved the ambitious goal of analyzing the genomic, epigenomic and gene expression 
profiles of more than 10,000 specimens from more than 25 different tumor types.

TCGA has other, complementary aims as well: to promote the development and 
application of new technologies, to detect cancer-specific molecular alterations, to make 
data and results freely available to the scientific community, to develop tools and standard 
operating procedures that can serve other large-scale profiling projects and to build 
cadres of individuals (including experimentalists, computational biologists, statistical 
analysts, computer scientists and administrative staff) with the expertise to carry out such 
large-scale, team science projects. As of 24 July 2013, TCGA had mapped molecular 
patterns across 7,992 total cases representing 27 tumor types. The data, along with tools 
for exploring them, are publicly available at http://www.cancergenome.nih.gov/. Eight 
‘marker papers’ (comprehensive initial publications on each of the tumor types) have been 
published so far8–12,14,27.
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hormonal dependencies of breast, ovarian and 
endometrial cancers and a common ‘squamous 
cell’ signature across head and neck, lung, cer-
vical and bladder cancers.

Which events actionable in one tumor lineage 
are also actionable in another tumor lineage, 
potentially increasing the range of indications 
for specific targeted therapeutics? A systematic 
evaluation of machine-learning approaches is 
needed to highlight methodological principles 
for predicting patient outcomes using inte-
grated information across tissues (H. Liang, 
personal communication).

Limitations of analysis across tumor types
Several data integration challenges place 
unavoidable limitations on cross-tumor 
analysis at the current time. A key challenge 
is the integration of data that have been gener-
ated on different platforms or updates of the 
same platform, as technologies improve. In 
the Pan-Cancer studies, for example, there 
have been transitions to much higher den-
sity DNA methylation arrays, use of differ-
ent exome capture technologies, addition of 
RNA sequencing to microarray-based RNA  

improve the ability to distinguish driver aber-
rations from passengers? A bird’s-eye view of 
genomic and epigenomic events yields a ‘fate 
map’ of the alternative routes to carcinogenesis 
in a decision tree that spans tissue boundaries37.

Can molecular subtypes be delineated to disen-
tangle tissue-specific from tissue-independent 
components of disease? Analyses of the epi-
genome, transcriptome and proteome show a 
strong influence of tissue on the state of altered 
pathways in tumor cells. For instance, analysis 
of the gene expression landscape reinforces the 
dominant tissue dependence of altered path-
ways and complements simultaneous profil-
ing of over a hundred proteins important in 
cancer38. Using all of the tumor types together 
allows for any tumor-specific signals to be 
subtracted from the data sets. Intriguingly, 
subtracting tissue-specific signal from DNA 
microarray gene expression data sets identifies 
signatures of immune stromal influence that 
transcend tumor type boundaries (R. Verhaak, 
personal communication). Further, events that 
are common across lineages become apparent 
in a cross-tumor analysis38. Examples are the 

Applicable Research to Generate Effective 
Treatments) and adult cancers (ICGC; 
International Cancer Genomics Consortium), 
as well as smaller projects by research teams 
around the world. A critical component of 
such efforts will be the functional validation 
of aberrations in individual genes in team 
science efforts such as CTD2 (Cancer Target 
Discovery and Development) and the eluci-
dation of pathway and network relationships 
in programs such as the US National Cancer 
Institute’s Integrative Cancer Biology Program.

A number of investigations that go beyond 
the single-tumor perspective are being 
addressed in the collection of Pan-Cancer 
manuscripts. Examples of the kinds of ques-
tions addressed by these investigations are 
given below.

Can increases in statistical power help to dis-
tinguish new driver mutations from the back-
ground of passenger mutations as the sample 
size is increased by aggregating the 12 tumor 
types? Assembled Pan-Cancer data have, in 
fact, enabled the identification of new pat-
terns of genomic drivers. New computational 
approaches that leverage cross-tumor princi-
ples of replication timing and gene expression 
correlated with background mutation rates 
now enable the identification of frequently 
mutated genes while eliminating many false-
positive and false-negative calls made in sev-
eral single-tumor-type projects33. Further, the 
power to identify multiple signals of positive 
selection has increased the ability to distin-
guish ‘driver’ from ‘passenger’ aberrations34.

What tissue associations underlie the major 
genomic structural changes in cancer? Improved 
methods for the analysis of structural variation 
of large chromosome segments have refined 
the ability to identify genomic and epigenetic 
regulators in multiple peak regions seen only 
by collating data across different cancer types. 
Tissue-associated patterns have now been 
established for the rate and timing of whole-
genome duplication events35.

What pathways emerge as critical and poten-
tially actionable when all mutational events 
across many tissues are considered together? 
New classes of mutations, such as those in 
chromatin-remodeling genes, are emerging 
as cancer drivers identified only by (i) collect-
ing less frequent events across tumor types, 
(ii) integrating event types such as mutations, 
copy number changes and epigenetic silencing, 
(iii) combining multiple algorithms to identify 
predicted drivers34 and (iv) aggregating genes 
using gene networks and pathways36.

Can an increase in the number of samples 
enhance analysis of the co-occurrence and 
mutual exclusivity of gene aberrations and 
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Figure 1  Integrated data set for comparing and contrasting multiple tumor types. The TCGA Pan-
Cancer project assembled data from thousands of patients with primary tumors occurring in different 
sites of the body, covering 12 tumor types (top left) including glioblastoma multiformae (GBM), 
lymphoblastic acute myeloid leukemia (LAML), head and neck squamous carcinoma (HNSC), lung 
adenocarcinoma (LUAD), lung squamous carcinoma (LUSC), breast carcinoma (BRCA), kidney renal 
clear-cell carcinoma (KIRC), ovarian carcinoma (OV), bladder carcinoma (BLCA), colon adenocarcinoma 
(COAD), uterine cervical and endometrial carcinoma (UCEC) and rectal adenocarcinoma (READ). 
Six types of omics characterization were performed creating a ‘data stack’ (right) in which data 
elements across the platforms are linked by the fact that the same samples were used for each, thus 
maximizing the potential of integrative analysis. Use of the data enables the identification of general 
trends, including common pathways (bottom left), revealing master regulatory hubs activated (red) or 
deactivated (blue) across different tissue types.
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the smoking history of patients with lung, 
bladder and head and neck cancers). Clear 
viral etiologies have been identified in several 
solid tumor types, including head and neck 
cancer, cervical cancer, Kaposi’s sarcoma and 
hepatocellular carcinoma. However, a pan-
cancer analysis of the infectious etiologies 
of other cancers could not be conducted at 
present because infection status was recorded 
for only some tumors and tumor types (as an 
optional data element). Finally, tumor stage 
and grade are not easily comparable across 
different tumor types because, for good rea-
son, each tumor type has its own system. 
This set of challenges to cross-tumor analysis 
highlights the fact that current clinical prac-
tice is largely conducted according to clas-
sification by tissue or organ.

Statistically speaking, care must be taken 
to ensure that the increased sample size 

specific biases (R. Akbani, personal commu-
nication). However, more work is needed 
to establish best practices for minimizing 
unwanted batch effects while preserving bio-
logical signals.

The nature and quality of available clinical 
data vary widely by cancer type. Differences 
in these data limit the ability to establish 
one-size-fits-all norms for the comparison 
of demographic information, histopatho-
logic characterization, behavioral context 
and clinical outcomes. For example, the Pan-
Cancer survival data are relatively robust for 
serous ovarian cancer because of its poor 
prognosis but are still immature for breast 
and endometrial cancers, as (thankfully) 
most patients with these cancers do better 
for longer periods of time. Certain data ele-
ments are routinely collected only when they 
are anticipated to be relevant (for example, 

characterization and increases in the qual-
ity and number of antibodies available for 
reverse-phase proteomic arrays (RPPAs). A 
series of analyses of batch effects has been 
carried out to assess systematic and platform-

The first goal of the Pan-Cancer Analysis Working Group was to 
assemble data from the separate disease projects to build a well-
coordinated joint data set spanning multiple tumor types. A data 
freeze (21 December 2012) based on six different genomic and 
epigenomic characterization platforms was made available as 
the pancan12 data set to all analysis groups. Twelve tumor types 
(GBM, OV, BRCA, LUSC, LUAD, COAD, READ, KIRC, UCEC, BLCA, 
HNSC and LAML; see Fig. 1 for definitions) were selected on the 
basis of data maturity, adequate sample size and publication or 
submission for publication of primary analyses. The Pan-Cancer 
12 data set includes a total of 5,074 tumor samples, of which 
93% had been assessed for genomic, epigenomic, and gene and 
protein expression data on at least one platform each (table 1). The 
essential purpose of such a joint data set is twofold: to increase 
the statistical power to detect functional genomic determinants of 
disease and to identify both tissue-specific aspects of cancer and 
intrinsic molecular commonalities across tumor types.

The Pan-Cancer analysis project started as an informal 
collaboration among members of the TCGA Research Network 
but then quickly expanded to include many other interested 
researchers. Ensuring standardization and consistency of the 
data and annotations across multiple platforms and clinical data 
elements was a necessity for the project. To coordinate analyses 
across this large group of researchers, formal pipelines were 
created to establish a coherent working base of data and results.

The process of TCGA data generation and Pan-Cancer analysis 
was as follows (Fig. 2). First, tumor and germline samples were 
obtained from a large number of tissue source sites and processed 
by the Biospecimen Core Resource (with sample selection 
according to criteria established for each tumor type and with 

extensive quality controls) to generate purified DNA, RNA and 
protein preparations. The preparations were sent to Genome 
Characterization Centers (GCCs) and Genome Sequencing Centers 
(GSCs) for molecular profiling, and the resulting data were 
deposited at the TCGA Data Coordinating Center (DCC) to provide 
a primary source of data at four levels of data processing. Seven 
Genome Data Analysis Centers (GDACs), along with analysts at 
the GCCs and GSCs and the external research community, shared 
analysis and interpretation of the data, coordinating activities 
through face-to-face meetings and regular (usually weekly) 
teleconferences.

A data freeze was created by pulling higher levels of interpreted 
data (Level 3) from the DCC into a coordinating repository called 
Synapse created by Sage Bionetworks. To create a coherent data 
set, a sample ‘white list’ was created by synchronizing flagged 
samples with the DCC on the basis of annotations and criteria 
from the individual disease working groups. The Pan-Cancer 
project leveraged the TCGA infrastructure for sample acquisition, 
sample processing and data generation on individual tumor types, 
as well as for the production of derived data sets and a variety 
of analysis results assembled in the Broad Institute’s Firehose 
system. Assembled robust, self-consistent data sets across all 
12 Pan-Cancer tumor types were deposited into Synapse. The 
Synapse system implements mechanisms for tracking provenance 
and metadata, stable digital object identifiers (DOIs) for data 
referencing and flexible methods for data access, either through 
a wiki-like web-based environment or programmatically through 
application programming interfaces (APIs). The pancan12 data 
sets and selected results are available under the Synapse accession 
doi:10.7303/syn300013.
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ClinicalRNA

cBioPortal

Figure 2  Data coordination for the Pan-Cancer TCGA project. Data were collected by the Biospecimen 
Collection Resource (BCR) from 12 different tumor types and characterized on 6 major platforms by 
the Genome Characterization Centers and Genomic Sequencing Centers (GCCs and GSCs). Data sets 
were deposited in the TCGA Data Coordination Center (DCC) from which they were then distributed to 
the Broad Institute’s Firehose and the Memorial Sloan-Kettering Cancer Center’s cBioPortal for various 
automated processing pipelines. Analysis Working Groups (AWGs) conducted focused analyses on 
individual tumor types. Results from the DCC, Firehose and AWGs were collected and stored in Sage 
Bionetworks’ Synapse database system to create a data freeze. Genome data analysis centers (GDACs) 
accessed and deposited both data and results through Synapse to coordinate distributed analyses.

Box 2  coorDination oF Data anD results
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arise from malignant or stromal cells. Histone 
profiling, protein analysis based on mass 
spectrometry and deconvolution of tumor 
heterogeneity through single-cell sequencing 
are examples of technologies expected to add 
important new dimensions of information. 
Continued efforts to identify the progenitor 

power will come from a detailed analysis across 
tumor types—with links to high-quality clini-
cal outcomes and eventual experimental vali-
dation and clinical trials to test the hypotheses 
that emerge. Technologies such as laser capture 
microdissection and cell sorting will improve 
the ability to distinguish whether omic signals 

achieved by cross-cancer comparison does 
not lead to increased false-negative rates for 
discovery (for example, by ‘diluting out’ an 
important mutation specific to one disease) 
or false-positive rates (for example, by com-
pounding false positives known to result 
from current single-tumor investigations33).

Tumor lineage has an important role in the 
observed patterns of co-aberrations and gene 
expression profiles that indicate different 
consequences of seemingly similar events, 
for example, involving the same gene(s) or 
amplicon(s). Likewise, new methods for 
accurately probing cross-tumor trends will 
need to account explicitly for differences 
across tissues in mutation rates, copy num-
ber changes on the focal and arm-level scales, 
and the prevalence of other co-occurring 
events in the genetic and epigenetic back-
grounds.

Despite these challenges, the collection of 
Pan-Cancer publications presented here rep-
resents a landmark in the continuing effort to 
understand the common and contrasting biol-
ogies of cancers from a molecular perspec-
tive. Still, major questions amenable to further 
cross-tumor investigations remain (Box 3), 
and the techniques used to compare different 
tumors will undoubtedly improve with use, 
time and further collaborative efforts.

Future directions
The Pan-Cancer project represents one of 
the first of what will surely be many efforts 
to coordinate analysis across the molecular 
landscape of cancer, especially as additional 
tumor types are investigated in large numbers. 
Further increasing the number of samples per 
tumor type and the variety of tumor types will 
improve our ability to detect rare driver events 
in heterogeneous tumor samples. But the true 

Box 3  examPles oF aDDitional major questions 
amenaBle to Further Pan-cancer analyses

•  What is the spectrum of nucleotide- and dinucleotide-level changes associated with 
different carcinogenic etiologies (for example, tobacco, pathogens or inflammation) 
operating in different parts of the body?

•  Will integration of additional data sources, including additional tumor types from TCGA 
and other projects, increase the power of analysis in useful ways?

•  How can characterization based on molecular changes complement pathological 
analysis for classification of cancers into tumor lineages with potentially different 
clinical management?

•  Can molecular profiles effectively categorize cancers for therapeutic decision-making?

•  Are there predictive expression-based signatures for genomic events that transcend 
tissues, reflecting pathways disrupted by the alterations?

•  Will comprehensive protein analysis through emerging mass spectrometry approaches in 
the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and other efforts extend the 
power of the genomic, transcriptomic and proteomic analyses in TCGA?

•  Will whole genome analysis demonstrate the influence of mobile elements, mutations in 
non-coding regions and connections to constitutional risk-associated loci?

•  How are changes in protein families distributed across different tumor types?

•  Are aberrations in specific protein domains or pathways distributed differentially across 
tumor lineages?

•  Beyond the known examples, including in cervical, head and neck, esophageal and 
hepatocellular cancers, can we identify other cancer types that show virally mediated 
initiation?

•  Are bacteria associated with different cancer lineages (as Fusobacteria are in colorectal 
cancer43)?

•  Can the answers to any of these questions help in the design of novel therapies and 
clinical trials, with the ultimate goal of improving patient outcomes?

table 1  Data freeze used by the Pan-Cancer project as defined on 21 December 2012 
cancer rPPaa Dna methylationb copy numberc mutationd micrornae expressionf

LUSC 195 358 345 178 332 227

READ 130 162 164 69 143 71

GBM 214 405 578 290 501 495

LAML NA 194 198 197 187 179

HNSC 212 310 310 277 309 303

BLCA 54 126 126 99 121 96

KIRC 423 457 457 417 442 431

UCEC 200 512 511 248 497 333

LUAD 237 431 357 229 365 355

OV 332 592 577 316 454 581

BRCA 408 888 887 772 870 817

COAD 269 420 422 155 407 192

Total 2,674 4,855 4,932 3,247 4,628 4,080

Tabulated are the numbers of unique tumor samples available for each tumor type (rows) and each measurement platform (columns). NA, not available. 
aReverse-phase protein arrays measuring protein and phosphoprotein abundance. bDNA methylation at CpG islands. cMicroarray-based measurement of copy number. dSamples subjected 
to whole-exome sequencing to determine single-nucleotide and structural variants. eSequencing of microRNAs. fRNA sequencing and microarray gene expression analysis.
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cally—perhaps in novel adaptive, biomarker-
based clinical trials that cross boundaries 
between tumor types. Toward this end, TCGA 
Pan-Cancer data sets have been made available 
publicly in one location. Although coordination 
remains a challenge, the data sets comprise an 
unequalled resource for the integrative analysis 
of cancer in its many forms.

A key challenge is the development of clinical 
trial strategies for connecting subsets of tumors 
from different tissues in terms of molecular 
signatures. Recent analyses of pharmacologi-
cal profiling experiments across a diverse panel 
of cancer cell lines has suggested that com-
mon genetic alterations can sometimes pre-
dict response to therapy across multiple cell 
lineages39–42. Biomarker-based design of clini-
cal trials can increase statistical power, greatly 
decreasing the size, expense and duration of 
clinical trials.

The number and size of omic data sets on can-
cer available to the research community for min-
ing and exploring continue to expand rapidly, 
and computational tools to derive insights into 
the fundamental causes of cancer are becoming 
more powerful. It is important to note that the 
full potential of the enterprise will be realized 
only over time and with broader efforts. Still, the 
collection of TCGA Pan-Cancer publications 
represents a significant contribution to a new 
period of discovery in cancer research.
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cells of tumors will enable universal proper-
ties to be distinguished from parochial ones. 
Clone-level and other types of studies may 
identify even more connections among tumor 
types. Longitudinal genomic studies on pri-
mary resected tumors paired with their local 
recurrences and/or metastases will be under-
taken by large consortium efforts, which have 
heretofore been restricted to primary disease 
and have lacked information about response 
to treatment. The characteristics of primary 
tumors may change markedly when they 
metastasize to distant sites, particularly bone 
and brain. Analysis of metastasis across tumor 
types will therefore be highly informative.

The power of cross-tumor analysis will 
increase as technologies for monitoring indi-
vidual tumor cells at high resolution come into 
play. Now that the price of genome sequenc-
ing has fallen, the next Pan-Cancer enter-
prise will be able to analyze large numbers of 
whole-genome sequences across tumor types. 
Whole-genome analysis will complement the 
current studies by shedding light on muta-
tional processes in the noncoding parts of the 
genome, which have not been as well explored 
so far. This expanded analysis will bring focus 
to disruptions in promoter and enhancer sites 
and aberrations in noncoding RNAs, as well as 
the genomic integration processes at work in 
tumor evolution that result from mobile endog-
enous and exogenous DNA elements such as 
retrotransposons and viruses. Whole-genome 
sequencing will create a backdrop against which 
genome-wide association studies can relate 
inherited predispositions to particular forms 
of cancer. Systems-oriented approaches, based 
on relevant pathways and networks, will add to 
the therapeutic opportunities that arise from 
the wealth of data. Experimental follow-up will 
be critical to assess the functional consequences 
and therapeutic liabilities of these new findings.

From many tumors to the individual
The hope is that investigations across tumor 
type such as the Pan-Cancer project will ulti-
mately inform clinical decision-making. We 
hope such studies will enable the discovery of 
novel therapeutic agents that can be tested clini-
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