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Comprehensive molecular profiling of
lung adenocarcinoma
The Cancer Genome Atlas Research Network*

Adenocarcinoma of the lung is the leading cause of cancer death worldwide. Here we report molecular profiling of 230
resected lung adenocarcinomas using messenger RNA, microRNA and DNA sequencing integrated with copy number,
methylationandproteomicanalyses.Highratesof somaticmutationwereseen(mean8.9mutationspermegabase).Eighteen
geneswere statistically significantlymutated, includingRIT1 activatingmutations andnewly described loss-of-function
MGAmutationswhicharemutuallyexclusivewith focalMYCamplification.EGFRmutationsweremore frequent in female
patients, whereasmutations inRBM10weremore common inmales. Aberrations inNF1,MET, ERBB2 and RIT1 occurred
in 13%of cases andwere enriched in samples otherwise lacking an activated oncogene, suggesting a driver role for these
events in certain tumours. DNA and mRNA sequence from the same tumour highlighted splicing alterations driven by
somatic genomic changes, including exon 14 skipping inMETmRNA in 4% of cases. MAPK and PI(3)K pathway activity,
whenmeasured at the protein level,was explained by knownmutations in only a fraction of cases, suggesting additional,
unexplainedmechanisms of pathway activation. These data establish a foundation for classification and further investi-
gations of lung adenocarcinoma molecular pathogenesis.

Lung cancer is the most common cause of global cancer-related mor-
tality, leading to over amillion deaths each year and adenocarcinoma is
its most common histological type. Smoking is the major cause of lung
adenocarcinoma but, as smoking rates decrease, proportionally more
cases occur innever-smokers (defined as less than100 cigarettes in a life-
time).Recently,molecularly targeted therapieshavedramatically improved
treatment for patientswhose tumoursharbour somatically activatedonco-
genes suchasmutantEGFR1 or translocatedALK,RET,orROS1 (refs 2–4).
MutantBRAF andERBB2 (ref. 5) are also investigational targets.How-
ever,most lung adenocarcinomas either lack an identifiable driver onco-
gene, or harbourmutations inKRAS and are therefore still treatedwith
conventional chemotherapy. Tumour suppressor gene abnormalities,
such as those inTP53 (ref. 6), STK11 (ref. 7), CDKN2A8,KEAP1 (ref. 9),
and SMARCA4 (ref. 10) are also commonbut arenot currently clinically
actionable. Finally, lung adenocarcinoma shows high rates of somatic
mutation and genomic rearrangement, challenging identification of all
but themost frequent driver gene alterations because of a large burden

ofpassenger events per tumour genome11–13.Our efforts focusedoncom-
prehensive, multiplatform analysis of lung adenocarcinoma, with atten-
tion towards pathobiology and clinically actionable events.

Clinical samples and histopathologic data
Weanalysed tumour andmatchednormalmaterial from230previously
untreated lung adenocarcinoma patientswho provided informed con-
sent (Supplementary Table 1). All major histologic types of lung ade-
nocarcinoma were represented: 5% lepidic, 33% acinar, 9% papillary,
14%micropapillary, 25%solid, 4% invasivemucinous, 0.4%colloid and
8% unclassifiable adenocarcinoma (Supplementary Fig. 1)14. Median
follow-upwas 19months, and 163patientswere alive at the time of last
follow-up.Eighty-onepercent of patients reportedpastorpresent smok-
ing. SupplementaryTable 2 summarizes demographics.DNA,RNAand
protein were extracted from specimens and quality-control assessments
were performed as described previously15. Supplementary Table 3 sum-
marizes molecular estimates of tumour cellularity16.

*A list of authors and affiliations appears at the end of the paper.

a
Gender

Smoking status
NA Ever-smoker Never-smoker

F
re

q
u
e
n

c
y
 (%

)

100

80

60

40

20

0

P
e
rc

e
n
ta

g
e

b

c

Transversion high

Number of mutations

Transversion low

Number of mutations

150 100 50 0

TP53
KRAS

STK11

RBM10

NF1

ERBB2

EGFR

RB1
PIK3CA

SMARCA4

U2AF1

KEAP1

Males

Number of mutations

Females

Number of mutations

204060 0

EGFR

RBM10
SMARCA4

STK11
2
3
4
4
6
7
7
7
8
8
9
10
11
14
17
17
33
46

FemaleMale

RIT1
U2AF1

CDKN2A
RB1

SMARCA4
PIK3CA
ARID1A

MET
MGA

RBM10
SETD2
BRAF

NF1
EGFR

STK11
KEAP1
KRAS
TP53

0 20 40 60

0 20 40 60

Missense
Nonsense

Splice site
In-frame indel

Frameshift

Transversions Transitions Indels, other

Q < 0.05
P < 0.05

Missense
Splice site
Nonsense

Frameshift
In-frame indel
Other non-synonymous

Figure 1 | Somatic mutations in lung
adenocarcinoma. a,Co-mutation plot fromwhole
exome sequencing of 230 lung adenocarcinomas.
Data from TCGA samples were combined with
previously published data12 for statistical analysis.
Co-mutation plot for all samples used in the
statistical analysis (n5 412) can be found in
Supplementary Fig. 2. Significant genes with a
corrected P value less than 0.025 were identified
using the MutSig2CV algorithm and are ranked
in order of decreasing prevalence. b, c, The
differential patterns of mutation between samples
classified as transversion high and transversion low
samples (b) or male and female patients (c) are
shown for all samples used in the statistical analysis
(n5 412). Stars indicate statistical significance
using the Fisher’s exact test (black stars: q, 0.05,
grey stars: P, 0.05) and are adjacent to the sample
set with the higher percentage of mutated samples.
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Somatically acquired DNA alterations
Weperformed whole-exome sequencing (WES) on tumour and germ-
lineDNA,with ameancoverageof 97.63 and95.83, respectively, as per-
formedpreviously17. Themean somaticmutation rate across theTCGA
cohort was 8.87mutations permegabase (Mb) of DNA (range: 0.5–48,
median: 5.78). The non-synonymous mutation rate was 6.86 per Mb.
MutSig2CV18 identified significantly mutated genes among our 230
cases along with 182 similarly-sequenced, previously reported lung
adenocarcinomas12. Analysis of these 412 tumour/normal pairs high-
lighted18statistically significantmutatedgenes (Fig. 1a showsco-mutation
plotofTCGAsamples (n5230), SupplementaryFig. 2 showsco-mutation
plot of all samples used in the statistical analysis (n5 412) and Sup-
plementary Table 4 contains complete MutSig2CV results, which also
appear on the TCGAData Portal alongwithmany associated data files
(https://tcga-data.nci.nih.gov/docs/publications/luad_2014/).TP53was
commonly mutated (46%). Mutations in KRAS (33%) were mutually
exclusivewith those inEGFR (14%).BRAFwas also commonlymutated
(10%), aswerePIK3CA (7%),MET (7%)and the smallGTPasegene,RIT1
(2%). Mutations in tumour suppressor genes including STK11 (17%),
KEAP1 (17%),NF1 (11%),RB1 (4%)andCDKN2A (4%)wereobserved.
Mutations in chromatinmodifyinggenesSETD2 (9%),ARID1A (7%)and
SMARCA4 (6%) and the RNA splicing genes RBM10 (8%) andU2AF1
(3%)were also common. Recurrentmutations in theMGA gene (which
encodes aMax-interacting protein on theMYC pathway19) occurred in
8% of samples. Loss-of-function (frameshift and nonsense) mutations
inMGAweremutually exclusivewith focalMYCamplification (Fisher’s
exact test P5 0.04), suggesting a hitherto unappreciated potentialmech-
anismofMYCpathwayactivation.Coding singlenucleotide variants and
indel variants were verified by resequencing at a rate of 99% and 100%,
respectively (Supplementary Fig. 3a, Supplementary Table 5). Tumour
purity was not associated with the presence of false negatives identified
in the validation data (P5 0.31; Supplementary Fig. 3b).
Past or present smoking associatedwith cytosine to adenine (C.A)

nucleotide transversions aspreviouslydescribedboth in individual genes
and genome-wide12,13. C.A nucleotide transversion fraction showed
twopeaks; this fraction correlatedwith totalmutation count (R25 0.30)
and inversely correlatedwithcytosine to thymine (C.T) transition fre-
quency (R25 0.75) (Supplementary Fig. 4). We classified each sample
(SupplementaryMethods) into one of two groupsnamed transversion-
high (TH,n5269), and transversion-low(TL,n5144).The transversion-
high group was strongly associated with past or present smoking (P,
2.23 10216), consistentwithprevious reports13. The transversion-high
and transversion-lowpatient cohortsharboureddifferent genemutations.
WhereasKRASmutationswere significantly enriched in the transversion-
highcohort (P52.1310213),EGFRmutationsweresignificantlyenriched
in the transversion-lowgroup (P5 3.33 1026).PIK3CA andRB1muta-
tions were likewise enriched in transversion-low tumours (P, 0.05).
Additionally, the transversion-low tumours were specifically enriched
for in-frame insertions in EGFR and ERBB2 (ref. 5) and for frameshift
indels in RB1 (Fig. 1b). RB1 is commonly mutated in small-cell lung
carcinoma (SCLC).We found RB1mutations in transversion-low ade-
nocarcinomaswere enriched for frameshift indels versus singlenucleotide
substitutions compared toSCLC(P, 0.05)20,21 suggesting amutational
mechanism in transversion-low adenocarcinoma that is probably dis-
tinct from smoking in SCLC.
Gender is correlatedwithmutationpatterns in lungadenocarcinoma22.

Onlya fractionof significantlymutatedgenes fromthecomplete set reported
in this study (Fig. 1a) were enriched in men or women (Fig. 1c). EGFR
mutationswere enriched in tumours from the female cohort (P5 0.03)
whereas loss-of-functionmutationswithinRBM10, anRNA-bindingpro-
tein located on the X chromosome23 were enriched in tumours frommen
(P5 0.002).When examining the transversion-high group, 16 out of 21
RBM10mutationswereobserved inmales (P5 0.003, Fisher’s exact test).
Somatic copy number alterations were very similar to those previ-

ously reported for lung adenocarcinoma24 (Supplementary Fig. 5, Sup-
plementaryTable 6). Significant amplifications includedNKX2-1,TERT,

MDM2,KRAS,EGFR,MET,CCNE1,CCND1,TERC andMECOM (Sup-
plementary Table 6), as previously described24, 8q24 nearMYC, and a
novel peak containingCCND3 (SupplementaryTable 6). TheCDKN2A
locus was the most significant deletion (Supplementary Table 6). Sup-
plementary Table 7 summarizes molecular and clinical characteristics
by sample. Low-passwhole-genome sequencing on a subset (n5 93) of
the samples revealed an average of 36 gene–gene and gene–inter-gene
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Figure 2 | Aberrant RNA transcripts in lung adenocarcinoma associated
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rearrangements per tumour. Chromothripsis25 occurred in six of the
93 samples (6%) (Supplementary Fig. 6, Supplementary Table 8). Low-
pass whole genome sequencing-detected rearrangements appear in
Supplementary Table 9.

Description of aberrant RNA transcripts
Gene fusions, splice sitemutations ormutations in genes encoding splic-
ing factors promote or sustain the malignant phenotype by generating
aberrant RNA transcripts. Combining DNA with mRNA sequencing
enabled us to catalogue aberrant RNA transcripts and, in many cases,
to identify the DNA-encoded mechanism for the aberration. Seventy-
fiveper cent of somaticmutations identified byWESwerepresent in the
RNAtranscriptomewhen the locus inquestionwas expressed (minimum
53) (SupplementaryFig. 7a) similar toprior analyses15. Previously iden-
tified fusions involving ALK (3/230 cases), ROS1 (4/230) and RET
(2/230) (Fig. 2a, Supplementary Table 10), all occurred in transversion-
low tumours (P5 1.853 1024, Fisher’s exact test).
MET activation can occur by exon 14 skipping, which results in a

stabilized protein26. Ten tumours had somaticMET DNA alterations
withMET exon 14 skipping in RNA. In nine of these samples, a 59 or
39 splice site mutation or deletion was identified27.MET exon 14 skip-
ping was also found in the setting of aMET Y1003* stop codonmuta-
tion (Fig. 2b, Supplementary Fig. 8a). The codonaffectedby theY1003*
mutation is predicted to disrupt multiple splicing enhancer sequences,
but the mechanism of skipping remains unknown in this case.
S34F mutations inU2AF1 have recently been reported in lung ade-

nocarcinoma12 but their contribution to oncogenesis remains unknown.
Eight samples harbouredU2AF1S34F.We identified 129 splicing events
strongly associatedwithU2AF1S34Fmutation, consistentwith the role of
U2AF1 in39-splice site selection28.Cassette exons andalternative 39 splice
sitesweremost commonly affected (Fig. 2c, SupplementaryTable 11)29.
Among these events, alternative splicing of theCTNNB1proto-oncogene
was strongly associatedwithU2AF1mutations (Supplementary Fig. 8b).
Thus, concurrent analysis of DNA and RNA enabled delineation of
both cis and trans mechanisms governing RNA processing in lung
adenocarcinoma.

Candidate driver genes
The receptor tyrosine kinase (RTK)/RAS/RAF pathway is frequently
mutated in lung adenocarcinoma. Striking therapeutic responses are
often achievedwhenmutantpathwaycomponents are successfully inhib-
ited. Sixty-twoper cent (143/230)of tumoursharbouredknownactivating
mutations in known driver oncogenes, as defined by others30. Cancer-
associatedmutations inKRAS (32%, n5 74), EGFR (11%, n5 26) and
BRAF (7%, n5 16) were common. Additional, previously uncharac-
terizedKRAS, EGFR and BRAFmutations were observed, but were not
classified as driver oncogenes for the purposes of our analyses (see Sup-
plementaryFig. 9a for depictionof allmutations of knownandunknown
significance); explaining the differingmutation frequencies in each gene
between this analysis and theoverallmutational analysis describedabove.
We also identified known activatingERBB2 in-frame insertion and point
mutations (n5 5)6, aswell asmutations inMAP2K1 (n5 2),NRAS and
HRAS (n5 1 each).RNAsequencing revealed theaforementionedMET
exon 14 skipping (n5 10) and fusions involving ROS1 (n5 4), ALK
(n5 3) and RET (n5 2).We considered these tumours collectively as
oncogene-positive, as they harboured a known activating RTK/RAS/
RAF pathway somatic event. DNA amplification events were not con-
sidered to be driver events before the comparisons described below.
Wesought tonominate previouslyunrecognized genomic events that

might activate this critical pathway in the 38% of samples without a
RTK/RAS/RAF oncogene mutation. Tumour cellularity did not differ
betweenoncogene-negative andoncogene-positive samples (Supplemen-
taryFig. 9b).Analysisof copynumberalterationsusingGISTIC31 identified
unique focal ERBB2 andMET amplifications in the oncogene-negative
subset (Fig. 3a, SupplementaryTable 6); amplifications in otherwild-type
proto-oncogenes, including KRAS and EGFR, were not significantly
different between the two groups.
Wenext analysedWESdata independently in the oncogene-negative

and oncogene-positive subsets.We found thatTP53,KEAP1,NF1 and
RIT1mutationswere significantly enriched inoncogene-negative tumours
(P, 0.01; Fig. 3b, SupplementaryTable 12).NF1mutations have previ-
ously been reported in lung adenocarcinoma11, but this is the first study,
to our knowledge, capable of identifying all classes of loss-of-function
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Figure 3 | Identification of novel candidate driver genes. a,GISTIC analysis
of focal amplifications in oncogene-negative (n5 87) and oncogene-positive
(n5 143) TCGA samples identifies focal gains of MET and ERBB2 that are
specific to the oncogene-negative set (purple). b, TP53, KEAP1, NF1 and RIT1
mutations are significantly enriched in samples otherwise lacking oncogene
mutations (adjusted P, 0.05 by Fisher’s exact test). c, Co-mutation plot of
variants of known significance within the RTK/RAS/RAF pathway in lung

adenocarcinoma. Not shown are the 63 tumours lacking an identifiable driver
lesion. Only canonical driver events, as defined in Supplementary Fig. 9, and
proposed driver events, are shown; hence not every alteration found is
displayed. d, New candidate driver oncogenes (blue: 13% of cases) and known
somatically activated drivers events (red: 63%) that activate the RTK/RAS/RAF
pathway can be found in the majority of the 230 lung adenocarcinomas.
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NF1defects and to statistically demonstrate thatNF1mutations, aswell
as KEAP1 and TP53mutations are enriched in the oncogene-negative
subset of lung adenocarcinomas (Fig. 3c). AllRIT1mutations occurred
in theoncogene-negative subset andclusteredaroundresidueQ79(homol-
ogous to Q61 in the switch II region of RAS genes). These mutations
transform NIH3T3 cells and activate MAPK and PI(3)K signalling32,
supporting a driver role formutantRIT1 in 2%of lung adenocarcinomas.
This analysis increases the rate at which putative somatic lung adeno-
carcinoma driver events can be identified within the RTK/RAS/RAF
pathway to 76% (Fig. 3d).

Recurrent alterations in key pathways
Recurrent aberrations inmultiple key pathways and processes charac-
terize lung adenocarcinoma (Fig. 4a). Among these were RTK/RAS/
RAF pathway activation (76% of cases), PI(3)K-mTOR pathway activa-
tion (25%), p53 pathway alteration (63%), alteration of cell cycle regu-
lators (64%,SupplementaryFig. 10), alterationofoxidative stresspathways
(22%, Supplementary Fig. 11), andmutation of various chromatin and
RNA splicing factors (49%).
We then examined the phenotypic sequelae of some key genomic

events in the tumours in which they occurred. Reverse-phase protein
arrays provided proteomic and phosphoproteomic phenotypic evidence
of pathway activity.Antibodies on this platformare listed in Supplemen-
tary Table 13. This analysis suggested that DNA sequencing did not
identify all samples with phosphoprotein evidence of activation of a
given signalling pathway. For example,whereasKRAS-mutant lung ade-
nocarcinomas had higher levels of phosphorylated MAPK than KRAS
wild-type tumours had onaverage,manyKRASwild-type tumours dis-
played significant MAPK pathway activation (Fig. 4b, Supplementary
Fig. 10). The multiple mechanisms by which lung adenocarcinomas
achieveMAPK activation suggest additional, still undetectedRTK/RAS/
RAF pathway alterations. Similarly, we found significant activation of
mTORand its effectors (p70S6kinase, S6, 4E-BP1) in a substantial frac-
tion of the tumours (Fig. 4c). Analysis of mutations in PIK3CA and
STK11, STK11 protein levels, and AMPK and AKT phosphorylation33

led to the identification of three major mTOR patterns in lung adeno-
carcinoma: (1) tumours withminimal or basal mTOR pathway activa-
tion, (2) tumours showing highermTORactivity accompanied by either
STK11-inactivating mutation or combined low STK11 expression and
low AMPK activation and (3) tumours showing high mTOR activity
accompanied by either phosphorylated AKT activation, PIK3CAmuta-
tion, or both.AswithMAPK,many tumours lack an obvious underlying
genomic alteration to explain their apparent mTOR activation.

Molecular subtypes of lung adenocarcinoma
Broad transcriptional and epigenetic profiling can reveal downstream
consequences of drivermutations, provide clinically relevant classifica-
tion and offer insight into tumours lacking clear drivers. Prior unsuper-
vised analysesof lungadenocarcinomagene expressionhaveused varying
nomenclature for transcriptional subtypes of the disease34–37. To coor-
dinatenamingof the transcriptional subtypeswith thehistopathological38,
anatomic and mutational classifications of lung adenocarcinoma, we
propose anupdatednomenclature: the terminal respiratory unit (TRU,
formerly bronchioid), the proximal-inflammatory (PI, formerly squa-
moid), and theproximal-proliferative (PP, formerlymagnoid)39 transcrip-
tional subtypes (Fig. 5a). Previously reported associations of expression
signatureswithpathways andclinical outcomes34,36,39wereobserved (Sup-
plementary Fig. 7b) and integration with multi-analyte data revealed
statistically significant genomic alterations associated with these tran-
scriptional subtypes. ThePP subtypewas enriched formutationofKRAS,
along with inactivation of the STK11 tumour suppressor gene by chro-
mosomal loss, inactivating mutation, and reduced gene expression. In
contrast, the PI subtype was characterized by solid histopathology and
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Figure 4 | Pathway alterations in lung adenocarcinoma. a, Somatic
alterations involving key pathway components for RTK signalling, mTOR
signalling, oxidative stress response, proliferation and cell cycle progression,
nucleosome remodelling, histone methylation, and RNA splicing/processing.
b, c, Proteomic analysis by RPPA (n5 181) P values by two-sided t-test.
Box plots represent 5%, 25%, 75%, median, and 95%. PP, proximal
proliferative; TRU, terminal respiratory unit; PI, proximal inflammatory.
c,mTOR signallingmay be activated, by either Akt (for example, via PI(3)K) or
inactivation of AMPK (for example, via STK11 loss). Tumours were separated
into three main groups: those with PI(3)K-AKT activation, through either
PIK3CA activating mutation or unknown mechanism (high p-AKT); those
with LKB1-AMPK inactivation, through either STK11 mutation or unknown
mechanism with low levels of LKB1 and p-AMPK; and those showing none
of the above features.
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co-mutation ofNF1 andTP53. Finally, theTRUsubtype harboured the
majorityof theEGFR-mutated tumoursaswell as thekinase fusionexpress-
ing tumours. TRU subtypemembershipwas prognostically favourable,
as seen previously34 (Supplementary Fig. 7c). Finally, the subtypes exhib-
iteddifferentmutation rates, transition frequencies, genomicploidypro-
files, patterns of large-scale aberration, and differed in their association
with smoking history (Fig. 5a). Unsupervised clustering of miRNA
sequencing-derived or reverse phase protein array (RPPA)-derived data
also revealed significant heterogeneity, partially overlapping with the
mRNA-based subtypes, asdemonstrated inSupplementaryFigs12and13.
Mutations in chromatin-modifying genes (for example, SMARCA4,

ARID1A and SETD2) suggest a major role for chromatinmaintenance
in lung adenocarcinoma. To examine chromatin states in an unbiased
manner,we selected themost variableDNAmethylation-specific probes
inCpG islandpromoter regions andclustered thembymethylation inten-
sity (Supplementary Table 14). This analysis divided samples into two
distinct subsets: a significantly alteredCpG islandmethylator phenotype-
high (CIMP-H(igh)) cluster and amorenormal-likeCIMP-L(ow) group,
with a third set of samples occupying an intermediate level of methy-
lation at CIMP sites (Fig. 5b). Our results confirm a prior report40 and
provideadditional insights into this epigeneticprogram.CIMP-Htumours
often showed DNA hypermethylation of several key genes: CDKN2A,
GATA2, GATA4, GATA5, HIC1, HOXA9, HOXD13, RASSF1, SFRP1,
SOX17 andWIF1 among others (Supplementary Fig. 14).WNTpathway
genes are significantly over-represented in this list (P value5 0.0015)
suggesting that this is a key pathway with an important driving role
within this subtype.MYC overexpression was significantly associated
with the CIMP-H phenotype as well (P5 0.003).
Althoughwe did not find significant correlations between globalDNA

methylation patterns and individual mutations in chromatin remodel-
linggenes, therewas an intriguingassociationbetween SETD2mutation

and CDKN2A methylation. Tumours with low CDKN2A expression
due tomethylation (rather than due tomutation or deletion) had lower
ploidy, fewer overallmutations (Fig. 5c) andwere significantly enriched
for SETD2mutation, suggesting an important role for this chromatin-
modifying gene in the development of certain tumours.
Integrative clustering41of copynumber,DNAmethylationandmRNA

expression data found six clusters (Fig. 5c). Tumour ploidy andmutation
rate are higher in clusters 1–3 than in clusters 4–6.Clusters 1–3 frequently
harbour TP53mutations and are enriched for the two proximal tran-
scriptional subtypes. Fisher’s combined probability tests revealed signi-
ficant copy number associated gene expression changes on 3q in cluster
one, 8q in cluster two, and chromosome 7 and 15q in cluster three (Sup-
plementary Fig. 15). The low ploidy and lowmutation rate clusters four
and five containmanyTRU samples, whereas tumours in cluster 6 have
comparatively lower tumour cellularity, and few other distinguishing
molecular features. Significant copy number-associated gene expres-
sion changes are observed on 6q in cluster four and 19p in cluster five.
The CIMP-H tumours divided into a high ploidy, high mutation rate,
proximal-inflammatoryCIMP-Hgroup (cluster 3) and a lowploidy, low
mutation rate,TRU-associatedCIMP-Hgroup (cluster 4), suggesting that
the CIMP phenotype in lung adenocarcinoma can occur in markedly
different genomic and transcriptional contexts. Furthermore, cluster
four is enriched forCDKN2Amethylation and SETD2mutations, sug-
gestingan interactionbetweensomaticmutationofSETD2andderegulated
chromatin maintenance in this subtype. Finally, cluster membership
was significantly associated with mutations in TP53, EGFR and STK11
(Supplementary Fig. 15, Supplementary Table 6).

Conclusions
Weassessed themutationprofiles, structural rearrangements, copynumber
alterations,DNAmethylation,mRNA,miRNAand protein expression
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of 230 lung adenocarcinomas. In recent years, the treatment of lung
adenocarcinoma has been advanced by the development of multiple
therapies targeted against alterations in the RTK/RAS/RAF pathway.We
nominate amplifications in MET and ERBB2 as well as mutations of
NF1 andRIT1 as driver events specifically in otherwise oncogene-negative
lung adenocarcinomas. This analysis increases the fraction of lung ade-
nocarcinoma caseswith somatic evidence of RTK/RAS/RAFactivation
from 62% to 76%. While all lung adenocarcinomas may activate this
pathway by some mechanism, only a subset show tonic pathway acti-
vation at the protein level, suggesting both diversity between tumours
with seemingly similar activating events and as yet undescribed mech-
anismsof pathway activation. Therefore, the current study expands the
range of possible targetable alterations within the RTK/RAS/RAF path-
way in general and suggests increased implementation of MET and
ERBB2/HER2 inhibitors in particular. Our discovery of inactivating
mutations of MGA further underscores the importance of the MYC
pathway in lung adenocarcinoma.
This study further implicates both chromatinmodifications andsplic-

ing alterations in lung adenocarcinoma through the integration ofDNA,
transcriptome and methylome analysis. We identified alternative splic-
ing due to both splicing factormutations in trans andmutation of splice
sites in cis, the latter leading to activation of theMET gene by exon 14
skipping.Cluster analysis separated tumours basedonsingle-genedriver
events as well as large-scale aberrations, emphasizing lung adenocarci-
noma’smolecular heterogeneity and combinatorial alterations, includ-
ing the identification of coincident SETD2 mutations and CDKN2A
methylation in a subset of CIMP-H tumours, providing evidence of a
somatic event associated with a genome-wide methylation phenotype.
These studies provide new knowledge by illuminating modes of geno-
mic alteration, highlightingpreviously unappreciated altered genes, and
enabling further refinement in sub-classification for the improved per-
sonalization of treatment for this deadly disease.

METHODS SUMMARY
All specimenswere obtained frompatientswith appropriate consent from the rele-
vant institutional review board. DNAandRNAwere collected from samples using
theAllprep kit (Qiagen).Weused standard approaches for capture and sequencing of
exomes fromtumourDNAandnormalDNA15andwhole-genomeshotgun sequenc-
ing. Significantlymutated genes were identified by comparing themwith expectation
models based on the exact measured rates of specific sequence lesions42. GISTIC
analysis of the circular-binary-segmentedAffymetrix SNP6.0 copynumberdatawas
used to identify recurrent amplification and deletion peaks31. Consensus clustering
approaches were used to analyse mRNA, miRNA andmethylation subtypes using
previous approaches15. The publication web page is (https://tcga-data.nci.nih.gov/
docs/publications/luad_2014/). Sequence files are inCGHub(https://cghub.ucsc.edu/).
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CORRECTIONS & AMENDMENTS

CORRIGENDUM
doi:10.1038/nature13879

Corrigendum: Comprehensive
molecular profiling of lung
adenocarcinoma
The Cancer Genome Atlas Research Network

Nature 511, 543–550 (2014); doi:10.1038/nature13385

In this Article, the surname of author Kristen Rodgers was incorrectly
spelled Rogers. This error has been corrected in theHTML and PDF of
the original paper.

2 6 2 | N A T U R E | V O L 5 1 4 | 9 O C T O B E R 2 0 1 4

Macmillan Publishers Limited. All rights reserved©2014

www.nature.com/doifinder/10.1038/nature13879
http://www.nature.com/doifinder/10.1038/nature13385


CorreCtion
https://doi.org/10.1038/s41586-018-0228-6

Author Correction: Comprehensive 
molecular profiling of lung 
adenocarcinoma
The Cancer Genome Atlas Research Network

Correction to: Nature https://doi.org/10.1038/nature13385, 
published online 9 July 2014; corrected online 8 October 2014.

In this Article, the Supplementary Table 7 iCLUSTER output column 
included incorrect cluster labels for the integrated subtypes presented 
in Fig. 5c. These changes affect only the iCLUSTER output column and 
do not affect the analysis or the conclusions of the work. The authors 
apologise for the error. Supplementary Table 7 has been corrected 
online, and the original incorrect table is provided as Supplementary 
Information to this Amendment for transparency.

Supplementary Information is available in the online version of this Amendment.
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