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Urothelial carcinoma of the bladder is a common malignancy that causes approximately 150,000 deaths per year world-
wide. So far, no molecularly targeted agents have been approved for treatment of the disease. As part of The Cancer
Genome Atlas project, we report here an integrated analysis of 131 urothelial carcinomas to provide a comprehensive land-
scape of molecular alterations. There were statistically significant recurrent mutations in 32 genes, including multiple
genes involved in cell-cycle regulation, chromatin regulation, and kinase signalling pathways, as well as 9 genes not previ-
ously reported as significantly mutated in any cancer. RNA sequencing revealed four expression subtypes, two of which
(papillary-like and basal/squamous-like) were also evident in microRNA sequencing and protein data. Whole-genome
and RNA sequencing identified recurrent in-frame activating FGFR3–TACC3 fusions and expression or integration of
several viruses (including HPV16) that are associated with gene inactivation. Our analyses identified potential therapeutic
targets in 69% of the tumours, including 42% with targets in the phosphatidylinositol-3-OH kinase/AKT/mTOR pathway
and 45% with targets (including ERBB2) in the RTK/MAPK pathway. Chromatin regulatory genes were more frequently
mutated in urothelial carcinoma than in any other common cancer studied so far, indicating the future possibility of
targeted therapy for chromatin abnormalities.

Urothelial carcinoma of the bladder is a major cause of morbidity and
mortality worldwide, causing an estimated 150,000 deaths per year1.
Previous studies have identified multiple regions of somatic copy number
alteration, including amplification of PPARG, E2F3, EGFR, CCND1
and MDM2, as well as loss of CDKN2A and RB1 (refs 2, 3). Sequencing
of candidate pathways has identified recurrent mutations in TP53,
FGFR3, PIK3CA, TSC1, RB1 and HRAS (refs 2, 3). Whole-exome sequenc-
ing of nine bladder cancers, followed by a replication analysis of 88
cancers, identified mutations at .10% frequency in several chromatin
remodelling genes: KDM6A, CREBBP, EP300 and ARID1A (ref. 4).
Focused molecular analyses5,6 have delineated tumour subtypes and
identified kinase-activating FGFR3 gene fusions7,8.

We report here a comprehensive, integrated study of 131 high-grade
muscle-invasive urothelial bladder carcinomas as part of The Cancer
Genome Atlas (TCGA) project. Included are data on DNA copy number,
somatic mutation, messenger RNA and microRNA (miRNA) expres-
sion, protein and phosphorylated protein expression, DNA methyla-
tion, transcript splice variation, gene fusion, viral integration, pathway
perturbation, clinical correlates and histopathology to characterize the
molecular landscape of urothelial carcinoma. This study identifies a
number of mutations and regions of copy number variation that involve
genes not previously reported as altered in a significant fraction of blad-
der cancers. It also identifies potential therapeutic targets in most of the
samples analysed.

Demographic, clinical and pathological data
Samples (from 19 tissue source sites) consisted of 131 chemotherapy-
naive, muscle-invasive, high-grade urothelial tumours (T2-T4a, Nx,
Mx), as well as peripheral blood (n 5 118) and/or tumour-adjacent,
histologically normal-appearing bladder tissue (n 5 23). Cases were
retained only if they met the following criteria: tumour nuclei con-
stituted $60% of all nuclei; tumour necrosis was #20% of the specimen;
and variant histologies (squamous or small cell) were #50% (Supplemen-
tary Information, section ‘Biospecimen collection and clinical data’).
Clinical and demographic characteristics are described in Supplementary

Data 1.1. Five expert genitourinary pathologists re-reviewed all of the
cases for multiple parameters, including the extent of variant histology
(Supplementary Fig. 1.1a and Supplementary Information, section
‘Biospecimen collection and clinical data’).

Somatic DNA alterations
The tumours displayed a large number of DNA alterations, slightly
fewer than in lung cancer and melanoma, but more than in other adult
malignancies studied by TCGA (Fig. 1)9. On average, there were 302
exonic mutations, 204 segmental alterations in genomic copy number
and 22 genomic rearrangements per sample. We analysed somatic copy
number alterations (CNAs) using both SNP 6.0 arrays and low-pass
whole-genome sequencing; the two were strongly concordant (Sup-
plementary Methods 6.1 and Supplementary Fig. 6.1). There were 22
significant arm-level copy number changes (Supplementary Data 6.1.1),
and GISTIC (genomic identification of significant targets in cancer)
(Supplementary Methods 6.2) identified 27 amplified and 30 deleted
recurrent focal somatic CNAs (Supplementary Data 6.2.1 and 6.3.1).
Focal amplifications involved genes previously reported to be altered in
bladder cancer (Fig. 1c and Supplementary Fig. 6.2.1) and some not
previously implicated. The latter included PVRL4, BCL2L1 and ZNF703.
The most common recurrent focal deletion, seen in 47% of samples,
contained CDKN2A (9p21.3) and correlated with reduced expression
(Fig. 1 and Supplementary Fig. 2.7). Other focal deletions containing
,10 genes appeared to target PDE4D, RB1, FHIT, CREBBP, IKZF2,
FOXQ1, FAM190A (also called CCSER1), LRP1B and WWOX.

Whole-exome sequencing of 130 tumours and matched normal sam-
ples targeted 186,260 exons in 18,091 genes (mean coverage 100-fold,
with 82% of target bases covered .303). MuTect10 identified 39,312
somatic mutations (including 38,012 point mutations and 1,138 indels
(insertions or deletions)), yielding mean and median somatic mutation
rates of 7.7 and 5.5 per megabase (Mb), respectively (Fig. 1a and Sup-
plementary Table 2.1.1). Thirty-two genes showed statistically significant
levels of recurrent somatic mutation (Fig. 1b and Supplementary
Table 2.1.2) by analysis using MutSig 1.5 (refs 9, 11) (Supplementary
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Methods 2.2). Three other genes identified by MutSig were not con-
sidered further because of low or undetectable expression (Supplemen-
tary Fig. 2.1.1). A similar analysis considering only mutations in the
COSMIC database2 identified three more significantly mutated genes:
ERBB2, ATM and CTNNB1 (Supplementary Table 2.1.3). We validated
the mutation findings in three ways: targeted re-sequencing of all
significantly mutated gene mutations, comparison with RNA-seq data
for 123 samples and comparison with whole-genome sequence data for
18 samples. Overall, the validation rate was .99% in selected muta-
tions by a combination of the methods (Supplementary Methods 2.4).

Nearly half (49%) of the samples had TP53 mutations (Fig. 1b),
which were mutually exclusive in their relationship with amplification
(9%) and overexpression (29%) of MDM2; hence, TP53 function was
inactivated in 76% of samples. Most RB1 mutations were inactivating,
were associated with significantly reduced mRNA level (Supplemen-
tary Fig. 2.7) and were mutually exclusive with CDKN2A deletions
(Supplementary Fig. 2.8 and Supplementary Table 2.8.1). FGFR3 muta-
tions (12%) typically affected known kinase-activating sites. PIK3CA
mutations were relatively common (20%), clustering in the helical
domain near E545 (Supplementary Fig. 2.4). Most TSC1 mutations (8%)
were truncating, and six were homozygous (allele fraction .0.5).

Many of the 32 genes identified in Fig. 1b have not previously been
reported as statistically significantly mutated in bladder cancer: MLL2

(also called KMT2D; 27%), CDKN1A* (14%), ERCC2* (12%), STAG2
(11%), RXRA* (9%), ELF3* (8%), NFE2L2 (8%), KLF5* (8%), TXNIP
(7%), FOXQ1* (5%), RHOB* (5%), FOXA1 (5%), PAIP1* (5%), BTG2*
(5%), ZFP36L1 (5%), RHOA (4%) and CCND3 (4%). The nine genes
marked with asterisks have not been reported as significantly mutated
genes in any other TCGA cancer type or reported in another study as
mutated at .3% frequency2. CDKN1A (p21CIP1), a cyclin-dependent
kinase inhibitor12, had predominantly null or truncating mutations,
indicating loss of function. Fifteen of sixteen mutations in ERCC2, a
nucleotide excision repair gene13, were deleterious missense mutations,
suggesting dominant-negative effects. ERCC2-mutant tumours also
had significantly fewer C.G mutations than did ERCC2-wild-type
tumours (Supplementary Figs 2.3.1 and 2.3.2), and they trended towards
higher overall mutation rate (Supplementary Fig. 2.12). Seven of twelve
mutations in RXRA (retinoid X nuclear receptor alpha)14 occurred at
the same amino acid (five S427F; two S427Y) in the ligand-binding
domain. Those seven tumours showed increased expression of genes
involved in adipogenesis and lipid metabolism (Supplementary Fig. 2.6
and Supplementary Data 2.6.1–2.6.3), suggesting that the mutations
cause constitutive activation.

Eleven tumours (8%) had deleterious missense mutations in the
Neh2 domain of NFE2L2, a transcription factor that regulates the
anti-oxidant program in response to oxidative stress15. Those tumours
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Figure 1 | The genomic landscape of bladder cancer. a, Mutation rate and
type, histological subtype, smoking status, gender, tumour stage and cluster
type. b, Genes with statistically significant levels of mutation (MutSig, false
discovery rate ,0.1) and mutation types. c, Deletions and amplifications for
genomic regions with statistically significant focal copy number changes
(GISTIC2.0). ‘Copy number’ refers to absolute copy number. Note that two
amplification peaks (*) contain several genes, any of which could be the target,

as opposed to the single gene listed here. d, RNA expression level for selected
genes, expressed as fold change from the median value for all samples. Tumour
samples were grouped into three clusters (red, blue and green) using consensus
NMF clustering (see the main text and Supplementary Fig. 2.1.2). Three
samples with no copy number data and two samples with no mutations in the
genes were not used in the clustering and are shown in grey.
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showed markedly increased expression of genes involved in genotoxic
metabolism and the reactive oxygen species (ROS) response (Supplemen-
tary Figs 2.5.1–2.5.3 and Supplementary Data 2.5.2). Furthermore,
nine samples had mutations in redox regulator TXNIP (ref. 16) (five
of them inactivating) and were mutually exclusive of samples with
NFE2L2 mutations, providing another mechanism for dysregulation
of redox metabolism. Predominant inactivating mutations were seen in
STAG2, an X-linked cohesin complex component required for separation
of sister chromatids during cell division17 (Supplementary Fig. 2.4).

Unsupervised clustering by non-negative matrix factorization of
mutations and focal somatic CNAs in 125 samples identified three
distinct groups (Fig. 1a and Supplementary Fig. 2.1.2). Group A (red),
classified as ‘focally amplified’, is highly enriched in focal somatic
CNAs in several genes, as well as mutations in MLL2 (Fig. 1 and Sup-
plementary Tables 2.1.4 and 2.1.5). Group B (blue), classified as ‘pap-
illary CDKN2A-deficient FGFR3 mutant’, is enriched in papillary
histology. Nearly all group B samples show loss of CDKN2A, and most
have one or more alterations in FGFR3. Group C (green), classified as
‘TP53/cell-cycle-mutant’, shows TP53 mutations in nearly all samples,
as well as enrichment with RB1 mutations and amplifications of E2F3
and CCNE1 (Fig. 1 and Supplementary Table 2.1.4). These differences
in pattern of mutation suggest the possibility of different oncogenic
mechanisms.

Seventy-two per cent of the cancers in this study were from current
or past smokers, consistent with extensive epidemiological studies
indicating an association between smoking and urothelial cancer risk.
In contrast with lung cancer, however, there was no statistically signi-
ficant association between smoking status and the mutational spectrum,
frequency of mutation in any significantly mutated gene, occurrence of
focal somatic CNAs or expression subtype (Supplementary Tables 2.9.1
and 2.9.2). Never-smokers did have a slightly higher fraction of C.G
mutations than did current/former smokers (28.5% versus 23.8%,
P 5 0.032; Supplementary Figs 2.3.2 and 2.3.3). Unsupervised cluster-
ing of promoter CpG island DNA methylation data revealed a major
subgroup (34%) of tumours (CIMP) characterized by cancer-specific
DNA hypermethylation (Supplementary Fig. 7.1). Multivariate regres-
sion analysis with age, sex and tumour stage as covariates identified
smoking pack-years as the only significant predictor of CIMP pheno-
type, as has also been reported for colorectal cancer18.

Fifty-one per cent of mutations overall were Tp*C-.(T/G) (Sup-
plementary Table 2.1.1), a class of mutation recently reported to be
mediated by one of the DNA cytosine deaminases, APOBEC (refs 19, 20).
APOBEC3B was expressed at high levels in all of the tumours, suggest-
ing a major role for APOBEC-mediated mutagenesis in bladder carci-
nogenesis (Supplementary Figs 12.1 and 12.2).

Four genes involved in epigenetic regulation were significantly mutated
genes: MLL2, ARID1A, KDM6A and EP300 (Fig. 1). Truncating muta-
tions were significantly enriched in each of those genes (Supplemen-
tary Fig. 2.2 and Supplementary Data 2.2.1–2). Three of the genes had
previously been identified as mutated in urothelial cancers4, but muta-
tion of MLL2, which encodes a histone H3 lysine 4 (H3K4) methyl-
transferase, is a novel finding. Several other chromatin-regulating genes
had mutation rates $10% but were not statistically significant by
MutSig analysis: MLL3, MLL, CREBBP, CHD7 and SRCAP. Many other
epigenetic regulators were mutated at lower frequency but were also
enriched with truncating mutations, indicating functional significance
(Supplementary Fig. 2.2 and Supplementary Data 2.2.1 and 2.2.2).
Non-silent mutations in chromatin regulatory genes overall were sig-
nificantly enriched in bladder cancer in comparison with the entire
exome, in contrast with all other epithelial cancers studied so far in the
TCGA project (Supplementary Table 2.10). Mutations in MLL2 and
KDM6A (the latter encoding a histone H3 lysine 27 (H3K27) demethy-
lase) were mutually exclusive (Supplementary Fig. 2.8 and Supplemen-
tary Table 2.8.1), suggesting that mutations in the two genes have
redundant downstream effects on carcinogenesis or that the combined
loss is synthetically lethal.

Chromosomal rearrangements and viral integration
To identify structural variations and pathogen sequences, we used low-
pass, paired-end, whole-genome sequencing (WGS; 6–83 coverage) of
114 tumours and RNA sequencing of all tumours. We detected 2,529
structural aberrations, including 1,153 that involve gene–gene fusions.
Among the translocations, 379 were inter-chromosomal, 237 were
intra-chromosomal, 274 were the result of inversions and 263 resulted
from deletions (Supplementary Table 3.1). We found several recurrent
translocations of probable pathogenic significance, including an intra-
chromosomal translocation on chromosome 4 involving FGFR3 and
TACC3 (n 5 3). The breakpoints were in intron 16 (two cases) or exon
17 (one case) of FGFR3 and intron 10 of TACC3 (confirmed by DNA
sequencing and RNA-seq). All three lead to fusion mRNA products for
which the predicted proteins include the amino-terminal 758 amino
acids of FGFR3 fused with the carboxy-terminal 191 amino acids of
TACC3 (Fig. 2a). On the basis of the structure of the FGFR3–TACC3
fusion protein, we predict that it can auto-dimerize, leading to con-
stitutive activation of the kinase domain of FGFR3. FGFR3–TACC3
fusion, which was recently described in both glioblastoma21 and blad-
der cancer7,8, represents a promising therapeutic target. The ERBB2 gene
was also involved in translocations in four tumours, all with different
fusion partners and all confirmed by DNA sequencing, RNA-seq or
both. In one case, exons 4 to 29 of ERBB2 were fused to the promoter
plus exon 1 of DIP2B, and the fusion product was amplified (Fig. 2b).
Two other fusion products resulted in novel mRNA products, the bio-
logical significance of which is not known.

We identified viral DNAs in 7 of 122 tumours (6%), and viral tran-
scripts in 5 of 122 (4%). Three tumours expressed cytomegalovirus (CMV)
transcripts (encoding RL5A, RNA2.7, RL9A, RNA1.2, UL5 and UL22A),
one expressed BK polyoma virus and one expressed human papilloma
virus 16 (HPV16). HPV16 and human herpesvirus 6B DNA were each
identified in one other sample but without expression. None of the
tumours expressing CMV showed evidence of CMV integration into
the host genome, suggesting the presence of a stable episome. In the
BK-positive tumour, two BK genes were integrated into GRB14, a sig-
nalling adaptor protein for receptor tyrosine kinases. In the HPV-16-
expressing case, the virus integrated into BCL2L1, an apoptosis-regulating
gene (Fig. 2c). In that tumour, BCL2L1 was amplified (,63) and
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Figure 2 | Structural rearrangements and viral integration. a, FGFR3–
TACC3 fusion in sample TCGA-CF-A3MH showing the breakpoints in the
two genes, the breakpoint junction sequences and the predicted fusion protein.
b, Rearrangement involving DIP2B and ERBB2 in TCGA-DK-A2I6. The
ERBB2 gene has swapped its promoter with that of DIP2B, resulting in
overexpression of ERBB2. c, Insertion of human papilloma virus 16 (HPV16)
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BCL2L1 into which the virus has integrated and the integration junction
sequence are shown.
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overexpressed (,103 median; .23 any of the other samples). Overall,
these findings indicate that viral infection may have a role in the
development of a small percentage of urothelial carcinomas.

mRNA, miRNA and protein expression
Analysis of RNA-seq data from 129 tumours identified four clusters
(clusters I–IV) (Fig. 3 and Supplementary Fig. 4.1). Cluster I (‘papillary-
like’) is enriched in tumours with papillary morphology (P 5 0.0002),
FGFR3 mutations (P 5 0.0007, q 5 0.02), FGFR3 copy number gain
(P 5 0.04, q 5 0.1) and elevated FGFR3 expression (P , 0.0001) (Fig. 3a).
It includes all three samples with FGFR3–TACC3 fusions. Cluster I
samples also show significantly lower expression of miR-99a and miR-100,
miRNAs that downregulate FGFR3 expression (P 5 0.0002, Figs 3a
and Supplementary Fig. 5.3)22. Cluster I samples also show lower
expression of miR-145 and miR-125b, which have been reported as
frequently downregulated in bladder cancer23. Tumours with FGFR3
alterations, and perhaps other tumours that share the cluster I expression
profile, may respond to inhibitors of FGFR or its downstream targets.

Reverse-phase protein array (RPPA) data indicate that clusters I
and II express high HER2 (ERBB2) levels and an elevated oestrogen
receptor beta (ESR2) signalling signature, indicating potential targets
for hormone therapies such as tamoxifen or raloxifene (Fig. 3d). In
fact, HER2 protein levels in a subset of the tumours are comparable to
those found in TCGA HER2-positive breast cancers23.

For comparison, we asked whether any of the four clusters show
gene signatures similar to those identified in any other tumour type(s)
among the first 11 analysed by TCGA. We found that the signature of

bladder cancer cluster III (‘basal/squamous-like’) is similar to that of
basal-like breast cancers, as well as squamous cell cancers of the head
and neck and lung (Supplementary Fig. 4.2)24,25. All four of those cancer
types express characteristic epithelial lineage genes, including KRT14,
KRT5, KRT6A and EGFR. Basal-like subtype26 and squamous cell
subtype27 of urothelial carcinoma have been independently reported.
Many of the samples in bladder cluster III express cytokeratins (that is,
KRT14 and KRT5) that were recently reported to mark stem/progenitor
cells26. Some of those samples also show a level of variant squamous
histology (Fig. 3b). Bladder clusters I and II show features similar to
those of luminal A breast cancer, with high mRNA and protein expres-
sion of luminal breast differentiation markers, including GATA3 and
FOXA1 (Fig. 3c). Markers of urothelial differentiation such as the
uroplakins (for example, UPK3A) are also highly expressed in clusters
I and II, as are the epithelial marker E-cadherin and members of
the miR-200 family of miRNAs (which target multiple regulators of
epithelial–mesenchymal transition)28 (Fig. 3c). Taken together, these
observations indicate that, despite their diverse tissue origins, some
bladder, breast, head and neck and lung cancers share common path-
ways of tumour development.

To determine whether the expression-based clusters could be seen
in other data sets, we used the muscle-invasive bladder cancer samples
from ref. 27, hierarchically clustering them with the genes used in our
analysis. From the sample dendrogram, we identified four groups
(Supplementary Fig. 4.3a). The four groups identified in the data set
of ref. 27 correlated well with the four clusters identified in our TCGA
data (Supplementary Fig. 4.3b).

When we analysed the RNA-seq data for transcript splice variation
using SpliceSeq29 (Supplementary Information, section 11), one find-
ing of interest was an average of 3% PKM1 and 97% PKM2 transcripts
in the tumour samples. The PKM2 isoform of pyruvate kinase is the
principal driver of a shift to aerobic glycolysis in tumours (the Warburg
effect)30. Therefore, urothelial bladder cancers (and other cancer types)
may prove sensitive to inhibition of glycolysis or related metabolic
pathways.

Pathway analysis and therapeutic targeting
Integrated analysis of the mutation and copy-number data revealed three
main pathways as frequently dysregulated in bladder cancer: cell cycle
regulation (altered in 93% of cases); kinase and phosphatidylinositol-
3-OH kinase (PI(3)K) signalling (72%); and chromatin remodelling,
including mutations/somatic CNAs in histone-modifying genes (89%)
and components of the SWI/SNF nucleosome remodelling complex
(64%) (Fig. 4a). To complement these results for well-defined path-
ways, we applied network analysis methods to examine other possible
interactions between genes and pathways (Fig. 4b). In particular, we
used the TieDIE algorithm to search for causal regulatory interactions
within the PARADIGM network, which connects mutated genes to
active transcriptional hubs31,32. The analysis identified a sub-network
linking mutated histone-modifying genes to a large array of activated
transcription factors, indicating potential far-reaching effects of his-
tone modification on other pathways (Supplementary Fig. 8.2.1) con-
verging on MYC/MAX regulation. Both MYC and MAX showed
similar levels of pathway activity, independent of mutations in chro-
matin genes, suggesting that mutations in histone-modifying genes
provide just one mechanism for disruption of the MYC/MAX hub.
By contrast, tumours with chromatin-related mutations showed dif-
ferential activity of transcription factors FOXA2 and SP1, implicating
de-differentiation processes as a result of the mutations. Our network
analysis also identified HSP90AA1 as a critical signalling hub, indicating
that inhibitors of HSP90 may have therapeutic value in urothelial
carcinoma. Although the linkages between mutations and transcrip-
tional changes were statistically significant in terms of their proximity
in the network (as determined by permutation tests; see Supplemen-
tary Fig. 8.2), further studies will be needed to assess the biological
relevance of the findings.
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and samples were organized in the horizontal direction by mRNA clustering.
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Integrated analysis also identified mutations, copy number altera-
tions or RNA expression changes affecting the PI(3)K/AKT/mTOR
pathway in 42% of the tumours (Fig. 5a). Included were activating
point mutations in PIK3CA (17%; potentially responsive to PI(3)K
inhibitors), mutation or deletion of TSC1 or TSC2 (9%; potentially
responsive to mTOR inhibitors) and overexpression of AKT3 (10%;

potentially responsive to AKT inhibitors). We also observed muta-
tions, genomic amplifications or gene fusions that affect the RTK/RAS
pathway in 44% of the tumours (Fig. 5b, c). Included were events that
can activate FGFR3 (17%; potentially responsive to FGFR inhibitors
or antibodies), amplification of EGFR (9%; potentially responsive to
EGFR antibodies or inhibitors), mutations of ERBB3 (6%; potentially
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sensitive to ERBB kinase inhibitors) and mutation or amplification of
ERBB2 (9%; potentially sensitive to ERBB2 kinase inhibitors or antibodies).
ERBB3 mutations in bladder cancer have been noted previously4, but
statistically significant mutation of ERBB2 in bladder cancer has not
been reported. Both genes are potential therapeutic targets in other
diseases33–35. Notably, ERBB2 alterations were approximately as fre-
quent in this study as in TCGA breast cancers, but with fewer ampli-
fications and more mutations (Fig. 5d)24.

Discussion
This integrated study of 131 invasive urothelial bladder carcinomas
provides numerous novel insights into disease biology and delineates
multiple potential opportunities for therapeutic intervention. Treatment
for muscle-invasive bladder cancer has not advanced beyond cisplatin-
based combination chemotherapy and surgery in the past 30 years36,
and no new drugs for the disease have been approved in that time.
Median survival for patients with recurrent or metastatic bladder can-
cer remains 14–15 months with cisplatin-based chemotherapy, and
there is no widely recognized second-line therapy37. With the excep-
tion of a single case report, there is also no known benefit from treat-
ment with newer, targeted agents38. Several of the genomic alterations
identified in this study, particularly those involving the PI(3)K/AKT/
mTOR, CDKN2A/CDK4/CCND1 and RTK/RAS pathways, including
ERBB2 (Her-2), ERBB3 and FGFR3, are amenable in principle to
therapeutic targeting. Clinical trials based on patients with relevant
druggable genomic alterations are warranted.

FGFR3 mutation is a common feature of low-grade non-invasive
papillary urothelial bladder cancer, but it occurs at a much lower fre-
quency in high-grade invasive bladder cancer. The cluster analysis in
Fig. 3 highlights multiple mechanisms of FGFR3 activation, and its
strong association with papillary morphology. The data presented here
suggest a subset of muscle-invasive cancers that can potentially be
targeted through FGFR3. Similarly, ERBB2 amplification may be targe-
table by strategies used in breast cancer, by small-molecule tyrosine kinase
inhibitors or by novel immunotherapeutic approaches (NCT01353222)34.
The data here provide further support for several on-going ERBB2-
targeted trials in bladder cancer and further define the subpopulation
of cancers suited to that approach. Finally, cluster III of the integrated
expression profiling analysis reveals the existence of a urothelial car-
cinoma subtype with cancer stem-cell expression features (including
KRT14 and KRT5), perhaps providing another avenue for therapeutic
targeting.

The alterations identified in epigenetic pathways also suggest new
possibilities for bladder cancer treatment. Ninety-nine (76%) of the
tumours analysed here had an inactivating mutation in one or more of
the chromatin regulatory genes, and 53 (41%) had at least two such
mutations. Overall, the bladder cancers showed a mutational spectrum
highly enriched with mutations in chromatin regulatory genes (Sup-
plementary Table 2.10). Furthermore, integrated network analyses
revealed a profound impact of those mutations on the activity levels
of various transcription factors and pathways implicated in cancer.
Drugs that target chromatin modifications—for example, recently
developed agents that bind acetyl-lysine binding motifs (bromodo-
mains)—might prove useful for treatment of the subset of bladder
tumours that exhibit abnormalities in chromatin-modifying enzymes39.
Our findings overall indicate bladder cancer as a prime candidate for
exploration of that approach to therapy.

METHODS SUMMARY
Tumour and normal samples were obtained with institutional-review-board-
approved consent and processed using a modified AllPrep kit (Qiagen) to obtain
purified DNA and RNA. Quality-control analyses revealed only modest batch
effects (Supplementary Information, section ‘Batch effects’). The tumours were
profiled using Affymetrix SNP 6.0 microarrays for somatic CNAs, low-pass WGS
(HiSeq) for somatic CNAs and translocations, RNA-seq (HiSeq) for mRNA and
miRNA expression, Illumina Infinium (HumanMethylation450) arrays for DNA
methylation, HiSeq for exome sequencing and RPPA for protein expression and

phosphorylation. Statistical analysis and biological interpretation of the data were
spearheaded by the TCGA genome data analysis centres. Sequence files are in
CGHub (https://cghub.ucsc.edu/). All other molecular, clinical and pathological data
are available through the TCGA Data Portal (https://tcga-data.nci.nih.gov/tcga/). The
data can be explored through a compendium of next-generation clustered heat
maps (http://bioinformatics.mdanderson.org/TCGA/NGCHMPortal/), the cBio
Cancer Genomics Portal (http://cbioportal.org), TieDIE (http://sysbiowiki.soe.
ucsc.edu/tiedie), SpliceSeq (http://bioinformatics.mdanderson.org/main/SpliceSeq:
Overview), MBatch batch effects assessor (http://bioinformatics.mdanderson.org/
tcgambatch/) and Regulome Explorer (http://explorer.cancerregulome.org/). Also
see Supplementary Information.
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