
ARTICLE OPEN
doi:10.1038/nature12222

Comprehensive molecular characterization
of clear cell renal cell carcinoma
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Genetic changes underlying clear cell renal cell carcinoma (ccRCC) include alterations in genes controlling cellular oxygen
sensing (for example, VHL) and the maintenance of chromatin states (for example, PBRM1). We surveyed more than 400
tumours using different genomic platforms and identified 19 significantly mutated genes. The PI(3)K/AKT pathway was
recurrently mutated, suggesting this pathway as a potential therapeutic target. Widespread DNA hypomethylation was
associated with mutation of the H3K36 methyltransferase SETD2, and integrative analysis suggested that mutations
involving the SWI/SNF chromatin remodelling complex (PBRM1, ARID1A, SMARCA4) could have far-reaching effects
on other pathways. Aggressive cancers demonstrated evidence of a metabolic shift, involving downregulation of genes
involved in the TCA cycle, decreased AMPK and PTEN protein levels, upregulation of the pentose phosphate pathway and
the glutamine transporter genes, increased acetyl-CoA carboxylase protein, and altered promoter methylation of miR-21
(also known as MIR21) and GRB10. Remodelling cellular metabolism thus constitutes a recurrent pattern in ccRCC that
correlates with tumour stage and severity and offers new views on the opportunities for disease treatment.

Kidney cancers, or renal cell carcinomas (RCC), are a common group
of chemotherapy-resistant diseases that can be distinguished by his-
topathological features and underlying gene mutations1. Inherited
predisposition to RCC has been shown to arise from genes involved
in regulating cellular metabolism, making RCC a model for the role of
an oncologic-metabolic shift, commonly referred to as the ‘Warburg
effect’, leading to malignancy2. The most common type of RCC, clear
cell renal cell carcinoma (ccRCC), is closely associated with VHL gene
mutations that lead to stabilization of hypoxia inducible factors (HIF-
1a and HIF-2a, also known as HIF1A and EPAS1) in both sporadic
and familial forms. PBRM1, a subunit of the PBAF SWI/SNF chro-
matin remodelling complex, as well as histone deubiquitinase BAP1
and histone methyltransferase SETD2, were recently found to be
altered in ccRCC3–5, implicating major roles for epigenetic regulation
of additional functional pathways participating in the development
and progression of the disease. Oncogenic metabolism and epigenetic
reprogramming have thus emerged as central features of ccRCC.

In the present study, clinical and pathological features, genomic altera-
tions, DNA methylation profiles, and RNA and proteomic signatures
were evaluated in ccRCC. We accrued more than 500 primary nephrec-
tomy specimens from patients with histologically confirmed ccRCC
that conformed to the requirements for genomic study defined by the
Cancer Genome Atlas (TCGA), together with matching ‘normal’ geno-
mic material. Samples were restricted to those that contained at least 60%
tumour nuclei (median 85%) by pathological review (clinical data sum-
mary provided in Supplementary Table 1). A data freeze representing 446
samples was generated from at least one analytical platform (‘Extended’
data set) and data from all platforms were available for 372 samples for
coordinated, integrative analyses (‘Core’ data set) (Supplementary Data 1,
Supplementary Table 2). No substantial batch effects in the data that
might confound analyses were detected (Supplementary Figs 1–20).

Somatic alterations
The global pattern of somatic alterations, determined from analysis
of 417 samples, is shown in Fig. 1a. DNA hybridizations showed
that recurrent arm-level and focal somatic copy number alterations

(SCNAs) occurred at a fewer sites than is generally observed in other
cancers (P , 0.0004; Supplementary Figs 21–22 and Supplementary
Table 3). However, SCNAs that were observed more commonly
involved entire chromosomes or chromosome arms, rather than focal
events (17% vs 0.4%, Fig. 1b). Notably, the most frequent arm-level
events involved loss of chromosome 3p (ref. 6; 91% of samples),
encompassing all of the four most commonly mutated genes (VHL,
PBRM1, BAP1 and SETD2).

The data also suggested lower and more variable tumour cellularity7

in the accrued samples, compared to conventional pathological review
(median 54% 6 14%). This may reflect stromal or endothelial cell
contributions, or tumour cell heterogeneity. A recent study of multiple
samples from single tumours has demonstrated significant regional
genomic heterogeneity, but with shared mutations in frequently mutated
genes and convergent evolution of other common gene level events8. The
mutation frequencies of key genes (VHL, PBRM1 and so on), as well as
copy number gains and losses found here, were, however, consistent
with previous reports. Tumour purity was therefore not determined to
be a limitation in the current study.

Arm level losses on chromosome 14q, associated with loss of
HIF1A, which has been predicted to drive more aggressive disease9,
were also frequent (45% of samples). Gains of 5q were observed (67%
of samples) and additional focal amplifications refined the region of
interest to 60 genes in 5q35, which was particularly informative as
little has been known about the importance of this region in ccRCC
since the 5q gain was initially described. Focal amplification also
implicated the protein kinase C member PRKCI (ref. 10), and the
MDS1 and EVI1 complex locus MECOM at 3p26, the p53 regulator
MDM4 at 1q32, MYC at 8q24 and JAK2 on 9p24. Focally deleted
regions included the tumour suppressor genes CDKN2A at 9p21 and
PTEN at 10q23, putative tumour suppressor genes NEGR1 at 1p31,
QKI at 6q26, and CADM2 at 3p12 and the genes that are frequently
deleted in cancer, PTPRD at 9p23 and NRXN3 at 14q24 (ref. 11).

Whole-exome sequencing (WES) of tumours from 417 patients
identified 36,353 putative somatic mutations, including 16,821 missense
mutations, 6,383 silent mutations and 2,999 indels, with an average of

*Lists of participants and their affiliations appear at the end of the paper.
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1.1 6 0.5 non-silent mutations per megabase (Supplementary Figs 23–
25). Mutations from 50 genes with high apparent somatic mutation
frequencies (Supplementary Table 4) were independently validated
using alternative sequencing instrumentation (Supplementary Fig. 26).
In tumours from 22 patients, whole-genome sequencing was also used to
validate and calibrate the WES data and confirmed 83% of the WES
mutation-calls (Supplementary Tables 5 and 6). In line with results of
previous studies (Supplementary Tables 7 and 8), the validated mutation
data identified nineteen significantly mutated genes (SMGs) (false dis-
covery rate (FDR) , 0.1), with VHL, PBRM1, SETD2, KDM5C, PTEN,
BAP1, MTOR and TP53 representing the eight most extreme members
(q , 0.00001) (Fig. 1a). Eleven additional SMGs were of considerably
lower significance (q , 0.1–0.5) but included known cancer genes.
Among all SMGs, only mutation of BAP1 correlated with poor survival
outcome (Supplementary Fig. 27)12. Approximately 20% of cases had
none of the 19 recorded SMGs, although many contained rare muta-
tions in other known oncogenes or tumour suppressors, involving
survival associations, illustrating the genetic complexity of ccRCC8

(Supplementary Figs 28–30 and Supplementary Table 9).
Eighty-four putative RNA fusions were identified in 416 ccRCC

samples13. Eleven of thirteen predicted events (Fig. 1c) were validated
using targeted methods, consistent with an 85% true-positive rate
(Supplementary Table 10 and Supplementary Figs 31–35). A recurrent
SFPQ–TFE3 fusion (previously linked to non-clear cell translocation-
associated RCC14) was found in five samples, all of which were VHL
wild type, indicating either that these tumours are a clear cell variant or
that translocation-associated renal tumours may be histologically
indistinguishable from conventional ccRCC. Furthermore, the TFE3
protein as well as an X(p11) rearrangement was found in three of those
samples, where there were available slides.

DNA methylation profiles
We observed epigenetic silencing of VHL in about 7% of ccRCC tumours,
which was mutually exclusive with mutation of VHL (Fig. 1a), reflecting
the central role of this locus in ccRCC15. An additional 289 genes showed

evidence of epigenetic silencing in at least 5% of tumours. The top-
ranked gene by inverse correlation between gene expression and
DNA methylation was UQCRH, hypermethylated in 36% of the
tumours. UQCRH has been previously suggested to be a tumour
suppressor16, but not linked to ccRCC. Interestingly, increasing pro-
moter hypermethylation frequency correlated with higher stage and
grade (Fig. 2a, b).

We also evaluated the global consequences of mutation in specific
epigenetic modifiers. Mutations in SETD2, a non-redundant H3K36
methyltransferase, were associated with increased loss of DNA methy-
lation at non-promoter regions (Fig. 2c, d). This discovery is consistent
with the emerging view that H3K36 trimethylation may be involved in
the maintenance of a heterochromatic state17, whereby DNA methyl-
transferase 3A (DNMT3A) binds H3K36me3 and methylates nearby
DNA18. Thus, reductions of H3K36me3 through SETD2 inactivation
could lead indirectly to regional loss of DNA methylation.

RNA expression
Unsupervised clustering methods identified four stable subsets in
both mRNA (m1–m4) and miRNA (mi1–mi4) expression data sets
(Fig. 3a and Supplementary Figs 36–39). Supervised clustering revealed
the similarity of these new mRNA classes to the previously reported ccA
and ccB expression subtypes19, with cluster m1 corresponding to ccA
and ccB divided between m2 and m3 (Supplementary Table 11). Cluster
m4 probably accounts for the roughly 15% of tumours previously
unclassified in the ccA/ccB classification scheme. Similarly, the survival
advantage previously observed for ccA cases was again identified for
m1 tumours (Fig. 3b).

The m1 subtype was characterized by gene sets associated with
chromatin remodelling processes and a higher frequency of PBRM1
mutations (39% in m1 vs 27% in others, P 5 0.027). Deletion of
CDKN2A (53% vs 26%; P , 0.0001) and mutations in PTEN (11%
vs 1%; P , 0.0001) were more frequent in m3 tumours (Supplementary
Fig. 5). The m4 group showed higher frequencies of BAP1 mutations
(17% vs 7%; P 5 0.002) and base-excision repair; however, this group
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Figure 1 | Somatic alterations in ccRCC. a, Top histogram, mutation events
per sample; left histogram, samples affected per alteration. Upper heat map,
distribution of fusion transcripts and VHL methylation across samples
(n 5 385 samples, with overlapping exome/SCNA/RNA-seq/methylation
data); middle heat map, mutation events; bottom heat map, copy number gains
(red) and losses (blue). Lower chart, mutation spectrum by indicated categories.

b, Left panel, frequency of arm-level copy-number alterations versus focal copy
number alterations. Right panel, comparison of the average numbers of arm-
level and focal copy-number changes in ccRCC, colon cancer (CRC),
glioblastoma (GBM), breast cancer (BRCA) and ovarian cancer (OVCA).
c, Circos plot of fusion transcripts identified in 416 samples of ccRCC, with
recurrent fusions highlighted.
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also harboured more mTOR mutations (12% vs 4%; P 5 0.01) and
ribosomal gene sets.

Survival differences evident in miRNA-based subtypes (Supplemen-
tary Figs 40–44) correlated with the mRNA data (Fig. 3b–d). For
example, miR-21, previously shown to demonstrate strong regulatory
interactions in ccRCC20 and with established roles in metabolism17,21,22

correlated strongly with worse outcome, and DNA promoter methyla-
tion levels inversely correlated with expression of miR-21, miR-10b
and miR-30a (Supplementary Tables 12–14). miRNA interactions
thus represent a significant component of the epigenetic regulation
observed in ccRCC.

Integrative data analyses
We used a combination of approaches for integrative pathway analysis.
The HotNet23 algorithm uses a heat diffusion model, to find sub-
networks distinguished by both the frequency of mutation in genes
(nodes in the network) and the topology of interactions between genes
(edges in the network). In ccRCC, HotNet identified twenty-five sub-
networks of genes within a genome-scale protein–protein interaction
network (Supplementary Table 15 and Supplementary Fig. 45). The
largest and most frequently mutated network contained VHL and inter-
acting partners. The second most frequently mutated sub-network
included PBRM1, ARID1A and SMARCA4, key genes in the PBAF
SWI/SNF chromatin remodelling complex.

We also inferred activities for known pathways, by using the PARADIGM
algorithm to incorporate mutation, copy and mRNA expression data,
with pathway information catalogued in public databases. This method
identified a highly significant sub-network of 2,398 known regulatory
interactions, connecting 1,218 molecular features (645 distinct proteins)
(Supplementary Figs 46–49 and Supplementary Tables 16 and 17).
Several ‘active’ transcriptional ‘hubs’ were identified, by searching for
transcription factors with targets that were inferred to be active in the
PARADIGM network. The active hubs found included HIF1A/ARNT,
the transcription factor program activated by VHL mutation, as well as
MYC/MAX, SP1, FOXM1, JUN and FOS. These hubs, together with

several other less well-studied transcription factors, interlink much of the
transcriptional program promoting glycolytic shift, de-differentiation
and growth promotion in ccRCC.

We next searched for causal regulatory interactions connecting
ccRCC somatic mutations to these transcriptional hubs, using a bi-
directional extension to HotNet (‘TieDIE’) and identified a chromatin-
specific sub-network (Fig. 4a and Supplementary Figs 50–52). TieDIE
defines a set of transcriptional targets, whose state in the tumour cells is
proposed to be influenced by one or more of the significantly mutated
genes. The chromatin modification pathway intersects a wide variety of
processes, including the regulation of hormone receptors (for example,
ESR1), RAS signalling via the SRC homologue (SHC1), immune-related
signalling (for example, NFKB1 and IL6)24, transcriptional output (for
example, HIF1A, JUN, FOS and SP1), DNA repair (via BAP1) and beta-
catenin (CTNNB1) and transforming growth factor (TGF)-b (TGFBR2)
signalling via interactions with a SMARC–PBRM1–ARID1A complex.
The complexity of these interactions reflects the potential for highly pleio-
tropic effects following primary events in chromatin modification genes.

The mutations in the chromatin regulators PBRM1, BAP1 and
SETD2 were differentially associated with altered expression patterns
of large numbers of genes when compared to samples bearing a
background of VHL mutation (Supplementary Tables 18–21 and Sup-
plementary Fig. 53). Each chromatin regulator had a distinct set of
downstream effects, reflecting diverse roles for chromatin remo-
delling in the transcriptome.

Additionally, an unsupervised pathway analysis using the MEMo
algorithm25 identified mutually exclusive patterns of alterations target-
ing multiple components of the PI(3)K/AKT/MTOR pathway in 28%
of the tumours (Fig. 4b and Supplementary Table 22). Interestingly, the
altered gene module included two genes from the broad amplicon on
5q35.3: GNB2L1 and SQSTM1. Both these genes have previously been
associated with activation of PI(3)K signalling26,27. Furthermore, mRNA
expression levels of these two genes were correlated with both DNA
copy number increases and alteration status of the PI(3)K pathway
(Supplementary Figs 54–55). The mutual exclusivity module also includes
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Figure 2 | DNA methylation and ccRCC.
a, b, Overall promoter DNA hypermethylation
frequency in the tumour increases with rising stage
(a) and grade (b). The promoter DNA
hypermethylation frequency is calculated as the
percentage of CpG loci hypermethylated among
15,101 loci which are unmethylated in the normal
kidney tissue and normal white blood cells
(boxplots, median with 95% confidence interval).
c, Volcano plots showing a comparison of DNA
methylation for SETD2 mutant versus non-mutant
tumours (n 5 224, HumanMethylation450
platform). Unshaded area: CpG loci with
Benjamini–Hochberg (B–H) FDR 5 0.001 and
difference in mean beta value . 0.1 (n 5 2,557).
d, Heat map showing CpG loci with SETD2
mutation-associated DNA methylation (from part
c); blue to red indicates low to high DNA
methylation. The loci are split into those
hypomethylated (top panel; n 5 1,251) or
hypermethylated (bottom panel; n 5 1,306) in
SETD2 mutants. Top colour bars indicate SETD2
mRNA expression (red: high, green: low) and
SETD2 mutation status. Grey-scale row-side colour
bar on left-hand side represents the relative number
of overlapping reads, based on H3K36me3 ChIP-seq
experiment in normal adult kidney (http://
nihroadmap.nih.gov/epigenomics/); black, high
read count. DNA methylation patterns include 14
normal kidney samples. Among the tumours
without SETD2 mutations, six (arrowhead) have
both the signature pattern of SETD2 mutation and
low SETD2 mRNA expression.
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frequent overexpression of EGFR, which correlates with increased
phosphorylation of the receptor (Supplementary Fig. 56), and which
has been previously associated with lapatinib response in ccRCC28.

Correlations with survival
Where unsupervised analyses had indicated that common molecular
patterns were associated with patient survival, we sought to further
define molecular prognostic signatures at the levels of mRNA, miRNA,
DNA methylation and protein. Data were divided into ‘discovery’
(n 5 193) and ‘validation’ (n 5 253) sets and platform-specific signa-
tures were defined using Cox analyses24. Kaplan–Meier analysis for each
signature showed statistically significant associations with survival in
the validation subset (Fig. 5a and Supplementary Fig. 57). Multivariate
Cox analyses, incorporating established clinical variables, showed that
the mRNA, miRNA and protein signatures provided additional pro-
gnostic power (Supplementary Table 23). In addition, these signatures
could provide molecular clues as to the drivers of aggressive cancers.

Top protein correlates of worse survival included reduced AMP-
activated kinase (AMPK) and increased acetyl-CoA carboxylase (ACC)

(Supplementary Fig. 58). Together, downregulation of AMPK and
upregulation of ACC activity contribute to a metabolic shift towards
increased fatty acid synthesis29. A metabolic shift to an altered use of key
metabolites and pathways was also apparent when considering the full
set of genes involved in the core metabolic processes, including a shift
towards a ‘Warburg effect’-like state (Fig. 5b). Poor prognosis correlated
with downregulation of AMPK complex and the Krebs cycle genes, and
with upregulation of genes involved in the pentose phosphate pathway
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(G6PD, PGLS, TALDO (also known as TALDO1P1), TKT) and fatty
acid synthesis (FASN, ACC (also known as ACACA)).

Examination of potential genetic or epigenetic drivers of a glycolytic
shift led us to identify methylation events involving MIR21 and GRB10,
with decreased promoter methylation of each gene (thereby higher
expression) being associated with worse or better outcome, respect-
ively (Fig. 5b, Supplementary Fig. 59 and Supplementary Table 24).
Both genes regulate the PI(3)K pathway: miR-21 is inducible by high
glucose levels and downregulates PTEN22; whereas the tumour sup-
pressor GRB10 negatively regulates PI(3)K and insulin signalling30.
Promoter methylation of MIR21 and GRB10 were coordinated with
their mRNA expression patterns, as well as with the mRNA expression
of other key genes and protein expression in the metabolic pathways
(Fig. 5c and Supplementary Fig. 60). In addition to the PI(3)K pathway
(Fig. 5b and Supplementary Fig. 61), molecular survival correlations
involved several pro-metastatic matrix metalloproteinases (Supplemen-
tary Fig. 62).

Discussion
Our study sampled a single site of the primary tumour, in a disease
with a potentially high level of tumour heterogeneity8. The extent to
which convergent evolutionary events are a common theme in ccRCC
remains to be determined, but may indicate that critical genes will be
represented across the tumour landscape for an individual mass. In
general, the large sample size seemed to overcome the intrinsic chal-
lenges of studying a genetically complex disease, revealing rare variants

at rates similar to what has been described previously3. The samples,
taken from primary tumour specimens, were reflective of patients fit
for either definitive or cytoreductive nephrectomy, whereas future work
could explore the genomic landscape of metastatic lesions.

Pathway and integrated analyses highlighted the importance of
the well-known VHL/HIF pathway, the newly emerging chromatin
remodelling/histone methylation pathway, and the PI(3)K/AKT path-
way. The observation of chromatin modifier genes being frequently
mutated in ccRCC strongly supports the model of nucleosome dynamics,
providing a key function in renal tumorigenesis. Although the mech-
anistic details remain to be defined as to how such modulation promotes
tumour formation, the data presented here revealed alterations in DNA
methylation associated with SETD2 mutations. As an epigenetic process
that can potently modify many transcriptional outputs, these mutational
events have the potential to change the landscape of the tumour genome
through altered expression of global sets of genes and genetic elements.
Molecular correlates of patient survival further implicated PI(3)K/AKT
as having a role in tumour progression, involving specific DNA methy-
lation events. The PI(3)K/AKT pathway presents a strong therapeutic
target in ccRCC, supporting the potential value of MTOR and/or
related pathway inhibitor drugs for this cancer31,32.

Cross-platform molecular analyses indicated a correlation between
worsened prognosis in patients with ccRCC and a metabolic shift
involving increased dependence on the pentose phosphate shunt,
decreased AMPK, decreased Krebs cycle activity, increased glutamine
transport and fatty acid production. These findings are consistent
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with the isotopomer spectral analysis of a pair of VHL2/2 clear cell
kidney cancer cell lines, both of which were notably derived from
patients with aggressive, metastatic disease, which revealed a depend-
ence on reductive glutamine metabolism for lipid biosynthesis33. The
metabolic shift identified in poor prognosis ccRCC remarkably mirrors
the Warburg metabolic phenotype (increased glycolysis, decreased
AMPK, glutamine-dependent lipogenesis) identified in type 2 pap-
illary kidney cancer characterized by mutation of the Krebs cycle
enzyme, fumarate hydratase33. Further studies to dissect out the role
of the commonly mutated chromosome 3 chromatin remodelling
genes, PBRM1, SETD2 and BAP1, in ccRCC tumorigenesis and their
potential role in the metabolic remodelling associated with progression
of this disease will hopefully provide the foundation for the develop-
ment of effective forms of therapy for this disease.

METHODS SUMMARY
Specimens were obtained from patients, with appropriate consent from insti-
tutional review boards. Using a co-isolation protocol, DNA and RNA were purified.
In total, 446 patients were assayed on at least one molecular profiling platform,
which platforms included: (1) RNA sequencing, (2) DNA methylation arrays, (3)
miRNA sequencing, (4) Affymetrix single nucleotide polymorphism (SNP) arrays,
(5) exome sequencing, and (6) reverse phase protein arrays. As described above
and in the Supplementary Methods, both single platform analyses and integrated
cross-platform analyses were performed.
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