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ABSTRACT

In many next-generation sequencing (NGS) studies,
multiple samples or data types are profiled for each
individual. An important quality control (QC) step in
these studies is to ensure that datasets from the
same subject are properly paired. Given the het-
erogeneity of data types, file types and sequencing
depths in a multi-dimensional study, a robust pro-
gram that provides a standardized metric for geno-
type comparisons would be useful. Here, we describe
NGSCheckMate, a user-friendly software package for
verifying sample identities from FASTQ, BAM or VCF
files. This tool uses a model-based method to com-
pare allele read fractions at known single-nucleotide
polymorphisms, considering depth-dependent be-
havior of similarity metrics for identical and unrelated
samples. Our evaluation shows that NGSCheckMate
is effective for a variety of data types, including ex-
ome sequencing, whole-genome sequencing, RNA-
seq, ChiP-seq, targeted sequencing and single-cell
whole-genome sequencing, with a minimal require-
ment for sequencing depth (>0.5X). An alignment-
free module can be run directly on FASTQ files
for a quick initial check. We recommend using this
software as a QC step in NGS studies. Availability:
https://github.com/parklab/NGSCheckMate

INTRODUCTION

Studies utilizing next-generation sequencing (NGS) tech-
nologies often involve comparison or integration of mul-
tiple datasets from a single individual. Different tissues

or conditions from the same subject may be compared to
identify tissue- or condition-specific mutations or transcrip-
tional changes while controlling for genetic background,
for example. In many cancer genome projects, tumor and
matched normal genomes as well as their transcriptomes
are sequenced for each patient to discover somatic muta-
tions and their impact on gene expression. Other common
situations include comparison of replicate experiments or
merging of data from multiple lanes of a sequencer.

Correct labeling of the samples is essential for the in-
tegrity of downstream analysis. This quality control (QC)
is particularly important in clinical applications, in which
patient treatment may be informed by these data. Despite
efforts to streamline sample-processing protocols, sample
swapping can occur at various steps, especially when the
tubes containing the samples are handled, for example dur-
ing sample collection, DNA/RNA aliquot preparation, li-
brary construction or placement of the libraries on a se-
quencer. We have experienced the problem of inaccurately
labeled samples in many projects, even with strict QC mea-
sures and high standards for data quality. Once a sample is
found to have been mislabeled, data for that sample must
be corrected or withdrawn. If the problem is detected in the
late stages of analysis or even after publication, many anal-
yses must be repeated, resulting in considerable loss of re-
sources. Thus, one should perform sample-pairing QC of
the sequencing data as early as possible in a study.

One approach to matching data to a particular individ-
ual is to examine short tandem repeats (STRs). The Cancer
Genome Atlas (TCGA) uses a polymerase chain reaction-
based assay to verify whether cancer and normal samples
are derived from the same patient, targeting a handful of
STRs from the CODIS database that are highly polymor-
phic among the human population (1). However, it is not
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feasible to genotype these CODIS STRs directly from se-
quencing data, especially whole-exome (WES) or RNA-seq
data, because most of the STRs are located in non-coding
regions or are longer than typical sequencing reads.

A more common approach is to use genotypes for sin-
gle nucleotide polymorphisms (SNPs). Several studies pro-
posed SNP-based sample checking for specific NGS data
types such as RNA-seq (2) and WES (3). Another study
has focused on checking across multiple lanes of sequenc-
ing data before combining them (4). The VCFtools soft-
ware also provides options to verify kinship probabilities
between samples based on variants in variant call format
(VCF) files (5,6). However, all of the above methods are
confined to a single data type and do not check for consis-
tency across multiple data types. Some methods developed
for microarray data examine the association between SNP
genotype and either gene expression or DNA methylation
to test sample pairing (7,8). Compared to microarray data,
sequencing data enables improved genome-wide SNP geno-
typing in most data types, allowing direct comparison be-
tween genotypes rather than merely showing an association
between genotypes and other features.

Here, we present NGSCheckMate, a stand-alone tool for
sample-pairing QC, applicable to multiple data formats: the
unaligned read format (FASTQ), the aligned read format
(BAM) and the VCF. Our tool can be used to check pair-
ings both between data of the same type and, importantly,
between data of different types. For example, it can deter-
mine pairings between tumor and blood WES data and be-
tween RNA-seq and WES data from the same individual.
The alignment-free module of NGSCheckMate can also be
applied directly to raw sequencing data, avoiding the time-
consuming alignment step. Our performance evaluation of
NGSCheckMate using several data types with various se-
quencing depths shows that it is accurate and computation-
ally efficient, making it a rapid and effective QC tool for a
wide range of studies.

MATERIALS AND METHODS
Overview

NGSCheckMate takes various types of NGS data in three
formats (FASTQ, BAM or VCF) as input (Figure 1). It
generates three types of output files (Figure 1): (i) a list
of matched sample pairs with genotype correlation coef-
ficients; (ii) a sample clustering dendrogram; and (iii) a
graphical representation of sample clustering that can be
entered into graphical visualization tools such as Cytoscape
).

To determine whether two input files belong to the same
individual, NGSCheckMate evaluates the correlation be-
tween the variant allele fractions (VAF) estimated from the
two files at known SNPs (Figure 2A). The VAF of an SNP
is defined as the ratio of the number of reads supporting a
non-reference allele to the total number of reads spanning
the SNP locus. For BAM input files, NGSCheckMate cal-
culates VAFs using SAMtools mpileup (10) using the de-
fault options; for FASTQ input files, it scans the reads to
search for k-mer sequences that span an SNP locus with a
reference or alternative allele and calculates a VAF using the
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Figure 1. A schematic overview. NGSCheckMate can handle various data
types in any of the three formats (FASTQ, VCF or BAM). The tool calcu-
lates pairwise correlations of VAFs (variant allele fractions) from the input
files and classifies each pair of files as either matched (from the same in-
dividual) or unmatched (not from the same individual). The output files
are a text file listing the VAF correlation for each pair, a dendrogram im-
age or an XGMML file with a graph structure that can be fed into graph
visualization tools such as Cytoscape.

read counts containing the k-mer (Figure 2B; see ‘Materials
and Methods’ section).

A pair of data files is classified as matched or unmatched
depending on whether their VAF correlation is closer to
the pre-computed distribution of correlations for matched
pairs from a training dataset or closer to the pre-computed
distribution for unmatched pairs (Figure 2C; see ‘Mate-
rials and Methods’ section). Since the accuracy of SNP
calls and thus the VAF correlations depend on sequenc-
ing depth, NGSCheckMate pre-computes and stores VAF
correlations from datasets of diverse sequencing depths for
comparison.

Selection of a reference SNP set

Among the SNP set (version 138) downloaded from dbSNP,
we selected 21 067 exonic SNPs that are variable across in-
dividuals to construct a set of informative features for in-
dividual identification. Specifically, we calculated the VAF
of every SNP in the dbSNP set using 40 germline WGS
profiles from TCGA stomach cancer patients and selected
SNPs whose median absolute deviation of the SNP VAF
across samples is larger than zero. The resulting 21 067 ex-
onic SNPs served as a reference set to measure VAF corre-
lation between input files. For the alignment-free method,
we required uniqueness of the k-mer sequence flanking the
SNPs and used 11 696 SNPs (more details below). Our sim-
ulation showed that there was no difference in the distribu-
tion of VAF correlations between using the 21 067 and the
reduced 11 696 SNP sets.

Alignment-free method

The alignment-free method is designed to obtain read
counts for each SNP by scanning reads in FASTQ files to
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Figure 2. Illustration of key steps. (A) A VAF is computed as the fraction of reads supporting a variant (non-reference) allele for a given SNP site. A
VAF ranges between 0 and 1 at each genotype. The VAFs are computed across a panel of SNP sites for each file and the Pearson correlation between
two VAF vectors is computed. (B) For the alignment-free module, a pre-built hash table stores 21-mer sequence tags that represent SNP sites and alleles.
Each tag overlaps with the SNP site either at the center or at one of the two ends. For each SNP site, a total of 24 tag sequences (4 alleles x 3 overlapping
SNP locations to the SNP site x 2 orientations (forward and reverse complementary)) are prepared and 6 and 18 of them represent a reference allele and
alternative alleles, respectively. A hash is constructed with the 21-mer tags as keys, each pointing to an element of a 2-dimensional read count array, where
the two dimensions are SNP loci and alleles. Given an input FASTQ file (single-end) or a pair of input FASTQ files (paired-end), randomly subsampled
reads are examined by a 21-nt sliding window. If a 21-nt substring exists in the hash, we increase the corresponding read count value by one and move to the
next read. In the end, VAFs are computed using the count values in the array. (C) A depth-dependent VAF correlation background model is constructed
by down-sampling from high-coverage WGS data to 0.01-60X. Given input data files i and j, NGSCheckMate computes a VAF correlation coefficient Cj;
between the two files and compares it to the precomputed model at the observed depth D;; defined as the smaller of the mean depths for the two files. The
VAF correlation cutoff for classification is the midpoint between the average correlation for matched pairs (C*) minus one standard deviation (sd*) and
the average correlation for unmatched pairs (C™) plus one standard deviation (sd~) at a given depth.

search for a k-mer sequence that spans the SNP locus either Prediction
at the center or at one of the two ends (k = 21 for the cur-
rent version). Both forward and reverse complementary se-
quences were included in the k-mer set. To ensure that each
k-mer uniquely represents an SNP and its allele, we exclude
SNPs for which the k-mers with the reference allele do not
uniquely map to the reference genome or for which the k-
mers with an alternative allele map to the reference genome.
We used only perfect matches. Each k-mer (the hash key) de-
rived from the remaining SNPs is stored in a hash table and
points to the read count of the SNP and its allele type (the
hash value). Every time we encounter a read with a k-mer
in the hash, we increase the read count by one. Later, we use
the read counts to calculate VAFs and perform the subse-
quent steps, as in the alignment-based method. To speed up
the process, reads are randomly subsampled to a lower read
depth that provides comparable accuracy.

We estimated the distributions of VAF correlation coeffi-
cients for matched pairs (data files from the same individ-
ual) and unmatched pairs (data files from different individ-
uals) using a training dataset of germline WGS data from
40 TCGA stomach cancer patients. To estimate the dis-
tributions at different sequencing depths, we subsampled
reads from the original high coverage (>30X) data to 0.01-
10X. Simulations varying factors such as the number of
SNPs used, the read depth, and the read depth distribu-
tion showed that the estimated distributions were robust.
We used the empirical distribution of VAF correlations as a
reference model for prediction.

Given a pair of input files, we predicted that they are
from the same person if their VAF correlation was closer
to the VAF correlations for matched pairs than for un-
matched pairs at similar sequencing depths. Practically,
we divided sequencing depths into multiple intervals and
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pre-calculated an interval-specific VAF correlation cutoff,
roughly the midpoint between the two distributions of VAF
correlations for matched and unmatched pairs, as illustrated
in Figure 2C. The cutoffs are 0.38, 0.41, 0.46, 0.55 and 0.61
for unrelated data with sequencing depth of <1, [1, 2), [2,
5), [5, 10) and >10, respectively. For related data including
family data, the cutoffs were 0.50, 0.54, 0.59 0.69 and 0.76,
respectively. For WGS, WES and RNA-seq data, the mean
depth across all of the 20K or 12K exonic SNPs was used as
a reference depth to retrieve the corresponding VAF corre-
lation cutoff. For Panel-seq and ChIP-seq data where many
SNPs do not have mapped reads, the mean depth across a
subset of the SNPs with at least one mapped read (the mean
of non-zero depths) was used as a reference depth to de-
termine the VAF correlation cutoff. When the reference se-
quencing depths from input files span different intervals, we
used the lower sequencing depth to find the corresponding
interval and the VAF correlation cutoff. For example, if an
input file A has an average sequencing depth of 3X, and an-
other input file B has an average sequencing depth of 7X,
then we predict files A and B to be from the same person
when their VAF correlation coefficient is larger than 0.46,
the cutoff value for the depth interval [2,5). For datasets
with samples of related individuals (e.g. parent-child and
siblings), more stringent VAF correlation cutoff values were
used to distinguish matched from unmatched pairs.

Preparing WGS data of various sequencing depths

To construct a depth-dependent prediction model, we gen-
erated WGS data of various sequencing depths by split-
ting reads from different sequencing lanes or by subsam-
pling reads from the original high-depth data. We used the
splitBam function of BamUtil (http://genome.sph.umich.
edu/wiki/BamUtil) to separates reads per sequencing lane
annotated by RG tags in BAM files. From 18 pairs of
TCGA stomach cancer WGS data (35-74X), we obtained
147 BAM files of sequencing depth 1-25X separated by
sequencing lanes. For down-sampling, we used samtools
view —s sampling_ratio, where the sampling_ratio was used
to achieve the desired read depth. We generated WGS data
of depth (X) 0.01, 0.02, 0.05,0.1,0.2, 0.5, 1, 2, 5, 10 and 30,
and WES data of depth (X) 0.5, 1, 2, 5, 10 and 30.

Simulation

Simulation was performed to test the effect of various fac-
tors on VAF correlations in identical, related and unre-
lated individuals. First, an SNP was simulated by randomly
drawing two alleles from a distribution of allele frequencies
in the human population. Each individual was then repre-
sented by n independently generated SNPs. We tested n =
10 000 and n = 20 000, to address alignment-free and post-
alignment SNP sets, respectively. We assumed a uniform
distribution of variant allele frequencies, as reported in the
HapMap study (11). We also tested an alternative distribu-
tion (Supplementary Figure S1C, B distribution with ¢ =
1, b = 2). The uniform distribution produced a set of SNPs
where a third were heterozygotes, a third were non-reference
homozygotes and the other a third were reference homozy-
gotes, and the ratio of heterozygotes to non-reference ho-
mozygotes was 1.0. In contrast, the B distribution resulted
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in a set of SNPs where ~35% were heterozygotes, ~16%
were non-reference homozygotes and the ratio of heterozy-
gotes to non-reference homozygotes was ~2.2. Both distri-
butions showed consistency with the previous reports that
the proportion of heterozygotes was ~35% (12) and that
the ratio of heterozygotes to non-reference homozygotes
ranged 1-2.2 (13).

Two unrelated individuals were simulated by indepen-
dently drawing two individuals as described above. To sim-
ulate a parent-child pair or siblings, we randomly drew an
allele for each SNP from each of two unrelated individuals
(parents) to represent a child genotype.

To simulate VAFs, we considered the read depth distri-
bution and the distribution of fraction of reads supporting
an alternative allele. Since the non-uniformity of depth in
the sequencing data can adversely affect the performance
by reducing the number of informative SNPs, we simulated
the depth distribution to be similar to that of real WGS
data. To simulate the total depth for each SNP site, we first
trained a series of negative binomial (NB) models from the
depths across the 21 067 SNP sites using the WGS data
from TCGA stomach cancer, colorectal cancer and lym-
phoma samples, including the original and down-sampled
ones. The estimated inverse of the shape parameter (1/r)
ranged between 0 and 5 when the average depth was larger
than 0.05X. The larger the variance of the depth, the smaller
the inverse shape parameter (equivalent to Poisson variance
when the shape parameter reaches infinity). For each set of
simulations, the depth distribution was chosen to be either a
Poisson or an NB with 1/r = 5. For each SNP site, we inde-
pendently drew a depth from the chosen depth distribution.
Then, to simulate fraction of reads supporting alternative
alleles, we used by default a binomial model with p = 0.5
for each heterozygous site. For comparison, we also used a
uniform distribution that reflects higher allelic imbalance,
as often observed in single-cell data. The mean and 5 and
95% quantiles of VAF correlations were derived from 1000
replicate simulations for each category. We used the fitdis-
trplus (14) R package to train a NB model. Some of the
factors used in simulation are described in Supplementary
Figure S1.

Copy number variation (CNV) analysis

To further investigate whether samples with different phe-
notypes or disease status (e.g. cancer versus normal) are
from the same person, we utilized germline copy number
variations (CNVs). Briefly, we identified CNVs using the
read-depth-based BIC-seq?2 algorithm, a revised version of
BIC-seq (15) for analyzing WGS data without matched
controls (16). We selected CNVs that overlap with known
germline CNVs reported in the Database of Genomic Vari-
ants Gold Standard CNV set (17), with at least 50% recipro-
cal overlap. This filtering reduces false discovery rate in our
CNYV calls. To reduce false omission rate (an unobserved site
being a real CNV) and thus improve our comparison accu-
racy, we used only those CNVs with population frequency
lower than 50% (using the ‘nr_frequency’ column).
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Datasets tested

We evaluated our method using data generated from
TCGA, Samsung Genome Institute and previous studies
(18-21) (Supplementary Table S1). The TCGA data we
downloaded from cgHub (http://cghub.ucsc.edu/) included
106 WGS pairs (cancer and matched normal tissue or
blood) from stomach and colorectal cancer patients, 984
WES pairs from 10 cancer types and 108 RNA-seq pro-
files from stomach and colon cancer samples. All TCGA
data are available for download by users with data ac-
cess approval at the NCI Genomic Data Commons Por-
tal (https://gdc-portal.nci.nih.gov/); its accession number at
the Database of Genotypes and Phenotypes (dbGaP) is
phs000178.v8.p7. More information about TCGA can be
found at http://cancergenome.nih.gov. The data generated
from the Samsung Genome Institute included 14 pairs of
lymphoma WGS, 68 pairs of breast cancer WES, 53 pro-
files of RNA-seq and 85 profiles of panel-sequencing from
34 patients of 5 cancer types (brain, kidney, colon, breast
and lung cancers). The panel sequencing captured ~80-400
cancer-associated genes at sequencing depth of >800X from
cancer (primary and metastasis tumors, or biopsies of mul-
tiple regions of the tumor) and normal tissue samples. We
also tested our method using two single-cell WGS datasets:
(1) 36 high-coverage (average depth ~42X) single-neuronal
WGS profiles from three post-mortem brains of neurotyp-
ical individuals (16, 10 and 10 cells for each individual)
(20), and (i1) 89 single-cell WGS data (0.01-0.3X) from two
glioblastoma patients (39 profile from BT325 and 50 from
BT340) (18). One profile (SRR1779165) was removed be-
cause its coverage was too low (0.0001X) to examine SNPs.
We also analyzed ChIP-seq profiles for CTCF, H3K4mel,
H3K4me3, H3K27ac, H3K27me3, H3K36me3 and SAl
from eigth healthy individuals (GM18505, GM18486,
GM19099, GM2255, GM18951, GM19193, GM18526,
GM19240) downloaded from SRA (http://www.ncbi.nlm.
nih.gov/sra; SRP030041) (19). Each individual had input
DNA and two or three replicate ChIP-seq profiles for each
histone mark or transcription factor. All except one individ-
ual had RNA-seq profiles.

In addition to all the Illumina data above, we tested our
method on Ion Torrent data. Specifically, the exome data
files from the two individuals (NA12878 and NA24631)
were downloaded from the Genome In a Bottle Consor-
tium consortium site (ftp:/ftp-trace.ncbi.nih.gov/giab/ftp/
data/) (21). The BAM files were subsampled to simulate
lower-coverage data using Samtools v1.2. Variants were
then called on these sub-sampled BAM files with Torrent
Variant Caller 5.0-2 at default settings, except that the min-
imum coverage for SNP calling was set to 1.

RESULTS AND DISCUSSION

Robust separation of VAF correlations between matched and
unmatched pairs

When the two pre-computed distributions of VAF corre-
lation coefficients for matched versus unmatched pairs are
far apart, our prediction becomes more reliable. To empiri-
cally estimate the distribution of VAF correlations, we used
the germline WGS data from 40 TCGA stomach cancer pa-
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tients (22), with subsampling at multiple depths starting at
0.01X. The VAF correlations of matched pairs were clearly
separable from those of unmatched pairs for depths as low
as 0.5X (Figure 3A). To determine whether VAF correla-
tions of related individuals (parent-child or siblings) differ
from those of the same individuals, we examined 36 WES
profiles obtained from ten families. The VAF correlations
of the related pairs (parent-child and sibling pairs) were dis-
tinct from those of the matched pairs for depths as low as
3X (Figure 3A).

To understand the factors that may affect the VAF corre-
lation distribution, we performed simulations to analyze the
effects of several parameters such as the number of SNPs
used, read depth and the fraction of homozygous SNPs (sece
‘Materials and Methods’ section). The distributions of sim-
ulated VAF correlations for matched and unrelated sample
pairs showed a clear separation at a depth as low as 0.5X
(Figure 3B and C). The matched and family pairs could also
be easily distinguished even at very low depth.

Performance of NGSCheckMate

We evaluated the performance of the method for WGS,
WES, targeted sequencing for selected loci (‘panel-seq’),
RNA-seq and ChIP-seq. The testing data included 160
WGS, ~1000 WES, ~170 RNA-seq, 85 panel-seq, ~130
ChIP-seq and ~130 single-cell WGS data files (Table 1; see
‘dataset’ in ‘Materials and Methods’ section for details).
The majority of WGS, WES and RNA-seq files were ob-
tained from the TCGA project; the rest of these files (in-
cluding panel-seq) were obtained from various projects at
the Samsung Genome Institute. The ChIP-seq files for input
DNA, histone modifications and transcription factors from
eight individuals were obtained from a published study (19).
Single-cell WGS files from post-mortem human brains of
three neurologically normal individuals and two glioblas-
toma patients were obtained from two previous studies
(18,20).

Within-platform comparisons. For each test pair, we se-
lected files from the same individual (‘matched’) or from dif-
ferent individuals (‘unmatched’). We applied NGSCheck-
Mate to all of the test pairs to predict whether each pair was
from the same individual or not. We compared the predic-
tions to our known labels and calculated the accuracy as the
percentage of correctly predicted pairs. The number of pos-
sible unmatched pairs is larger than the number of matched
pairs, so we generated up to ten sets of randomly selected
unmatched pairs of similar size to matched pairs and re-
ported the average accuracy across the multiple unmatched
pair sets.

For WGS, WES and RNA-seq data, both alignment-free
(FASTQ input files) and alignment-based (BAM or VCF
input files) methods correctly predicted all pairs when the
sequencing depth was at least 0.5X (Figure 3D and Table 1).
Genotyping individual SNPs at a shallow sequencing depth
is unreliable, but NGSCheckMate achieved a high degree of
accuracy in matching samples by combining signals (vari-
ant allelic frequencies) from a large number of SNPs. Not
surprisingly, the performance diminished at a very shallow
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Figure 3. Classification based on VAF correlations. (A) Depth-dependent VAF correlations derived from WGS and WES datasets for different types of
sample pairs: identical, related (parent-child or siblings) and unrelated. The LOESS regression lines are shown. Family pairs were tested only for depths
>0.5X. (B) VAF correlations based on simulation, with different shape parameters (r) of a negative binomial model for the read depth distribution, numbers
of SNPs used (12K versus 20K), and percentages of alternative homozygous SNPs (see ‘Materials and Methods’ section). A binomial distribution was
assumed for the distribution of alternative allele reads (see ‘Materials and Methods’ section). The top and bottom 5% of simulated VAF correlations are
plotted as shaded areas around each line. VAF correlations of parent-child pairs (green) are hidden in the figure because they overlap those of sibling pairs
(purple). VAF correlations using 12K (solid lines) and 20K SNPs (dotted lines) are also indistinguishable (nearly superimposed in the figure). (C) The
distributions of simulated VAF correlations in (B) at the depth of 0.5X are shown in vertical lines representing the top and bottom 5% VAF correlation
values. (D) Accuracy at various sequencing depths for WGS data. The original and down-sampled datasets of 66 TCGA colorectal pairs and 36 single-
neurons from three post-mortem brains were tested.

Table 1. NGSCheckMate performance

Test pairs
#matched, Accuracy
Data type Dataset (pair type) Sequencing depth1 Individual Sample #unmatched (%)2
WGS (BAM) TCGA colorectal (cancer versus normal) >30X, down-sampling (0.5-30X) 66 132 66, 66 100
down-sampling (0.01-0.2X) 55.3-99.2
WGS (BAM, FASTQ) non-TCGA lymphoma (cancer versus normal)  30-60X, down-sampling (0.5-30X) 14 28 14, 28 100, 100
WES (BAM) TCGA 9 cancer types (cancer versus normal) ~100X 421 842 421,421 100
TCGA kidney (cancer versus normal) ~100X, down-sampling (0.5-30X) 50 100 50, 50 100
‘WES (FASTQ) non-TCGA breast (cancer versus normal) ~60X, down-sampling (0.5-10X) 68 136 68, 68 100
RNA-seq (BAM) TCGA colorectal (cancer versus normal) ~65X, down-sampling (0.5-10X) 19 38 19,19 100
Single-cell WGS (BAM) single-neuron ~42X, down-sampling (0.5-10X) 3 36 210, 210 100
glioblastoma (cancer—cancer) 0.01-0.3X 2 89 45,45 87.8
Chip-seq (BAM, FASTQ) within marks 5.4(2.2-19.0) 8 119 72,72 97.6,97.7
input versus mark input DNA 2.3 (2.1-2.9) 8 127 133,133 98.5,99.8
Panel-seq (BAM, FASTQ) cancer versus normal, multiple regions, 40 (20-119) 5,18, 11 12,48, 25 92,87 98.3,99.4
primary versus metastasis
RNA-seq versus WES (BAM) TCGA stomach (cancer or normal DNA RNA-seq (~70X) WES (~100X) 65 201 132,132 100
versus cancer RNA)
RNA-seq versus WES (FASTQ) non-TCGA breast cancer (cancer or normal RNA-seq (~25X) WES (~60X), 53 159 106, 106 100
DNA versus cancer RNA) down-sampling for both datasets (0.5-10X)
RNA- versus ChIP-seq (BAM, FASTQ) RNA-seq versus ChIP-seq (all marks) RNA-seq (~5X) ChIP-seq (described 7 119 231,231 99, 98.9
above)

I'For WGS, WES and RNA-seq, the average mean depth is shown. For Panel-seq and ChIP-seq, the average of the mean non-zero depths across the SNPs with at least one mapped read is shown with its
range in parentheses.
2Accuracy estimates for the alignment-based and the alignment-free method are separated by a comma.
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depth (<0.5X), as noise starts to dominate the correlation
(Figure 3D).

We tested our method on two single-cell WGS datasets
(18,20) to discriminate single cells from different individu-
als. One dataset consisted of high-coverage (~42X) 36 WGS
profiles of single neuronal genomes from three postmortem
brains. Our method on this whole genome amplified dataset
showed comparable performance to the typical unamplified
WGS datasets, achieving 100% accuracy at a sequencing
depth >0.5X (Figure 3D and Table 1). The other dataset
consisted of 89 WGS profiles of single cancer cells from two
glioblastoma patients (39 and 50 cells from each patient),
sequenced at a very low depth (0.01-0.3X) to characterize
CNV at the single cell level. Our evaluation showed 87.8%
accuracy in grouping the cells, with all misclassification er-
rors due to a few cells with especially shallow sequencing
depth (<0.15X).

In predicting whether two ChIP-seq profiles (histone
modification or transcription factor) were from the same in-
dividual, the accuracy was 97.6% for the alignment-based
method and 97.7% for the alignment-free method (Table
1 for across mark and Supplementary Table S2 for per
mark performance). We also tested whether input DNA and
ChIP-seq profiles were from the same individual, and ob-
tained 98.5 and 99.8% accuracy for the alignment-based
and the alignment-free method, respectively. Although only
a tiny fraction of the genome is covered in most ChIP-seq
profiles, they still covered a sufficient number of SNPs to
allow for accurate prediction.

Finally, the panel-seq platform covered a subset of
cancer-associated genes (80-400 genes) with very high
coverage (>800X). The 85 samples we tested included
cancer/normal tissue pairs, primary tumor/metastasis
pairs and multiple regions of the same tumors. NGSCheck-
Mate correctly predicted 98.3 and 99.4% of the tested
matched and unmatched pairs, using BAM or FASTQ files,
respectively (Table 1).

Cross-platform comparisons. Many projects generate mul-
tiple types of data for each individual. For example, TCGA
has generated WGS and/or WES as well as RNA-seq data
and others from the same patient; Roadmap Epigenomics
has generated RNA-seq and ChIP-seq profiles for each tis-
sue or cell line. To show that NGSCheckMate identifies cor-
rect pairs across data types, we tested grouping RNA-seq
and WES datasets from the same individuals. Our results
showed 100% accuracy even when both datasets were down-
sampled to 0.5X (Table 1). We also tested if NGSCheck-
Mate could pair RNA-seq and ChIP-seq profiles from the
same individual. This test achieved 99 and 98.9% accuracy
for the alignment-based and the alignment-free method, re-
spectively (Table 1 and Supplementary Table S2).

Effect of allelic imbalance. We also evaluated the impact
of allelic imbalance in transcriptomic and epigenetic data
due to monoallelic expression on the performance of our
method. We collected 4227 genes with monoallelic expres-
sion from a published study (23) and removed the 4241
SNPs contained within those genes from the 21 067 SNPs.
In all cases, the performance with and without the 4241
SNPs were very similar: no difference for RNA-seq versus
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RNA-seq at all sequencing depths (100% accuracy for 0.5X
to original depth); ~0.7% difference for pairs from ChIP-
seq marks; and ~0.3% difference for RNA-seq versus ChIP-
seq. Overall, this analysis shows that allelic imbalance has
little impact on the performance of NGSCheckMate.

Non-Illumina platforms. We tested whether our pre-built
model derived from the Illumina sequencing platform
would be generalizable to non-Illumina sequencing data.
Using the exome sequencing data generated on the Ion
Torrent platform for two individuals, we generated multi-
ple down-sampled BAM files from each original BAM file
and confirmed that our method was able to accurately dis-
tinguish matched pairs from unmatched pairs at different
depths (0.5, 1, 2, 5 and 10X down-sampled datasets). Al-
though it would require tests on more samples and other
platforms to claim generalizability, this preliminary test
shows that the combined signals from numerous SNPs may
be robust enough to overcome heterogeneous error profiles
across platforms.

Comparison with other genotype-based methods. Some
NGS studies generate genotype calls as part of their ana-
lytical pipelines, and the genotypes instead of VAFs could
serve as features for sample-pairing QC. Thus, we tested
how our method using VAF correlation compares to two
approaches based on the genotype calls at the same ~20K
known SNPs: (i) the correlation between variant genotypes
and (ii) the fraction of concordant genotypes between two
samples. Typical genotype-calling methods such as GATK
and samtools/vcftools report only non-reference variants
(heterozygous or alternative homozygous variants). In our
comparison, we tested methods with three genotypes where
non-genotyped SNPs are considered as reference homozy-
gous variants (Supplementary Figure S4) as well as with
two non-reference genotypes only (Supplementary Figure
S5). Overall, all three measures show good separation be-
tween matched and unmatched pairs. However, the VAF
correlation shows greater separation between the correla-
tion curves than for other measures when the depth is very
low (< 0.5X and < 2.5X when using three and two geno-
types, respectively) (Supplementary Figures S5 and 6). Fur-
thermore, the VAF correlation thresholds obtained from
training WGS data (green lines) were equally applicable to
other data types, whereas the correlation thresholds for the
three genotype-based metrics were highly variable among
different data types (Supplementary Figure S5). This might
be because different types of non-WGS data types have vari-
able numbers of SNPs that have no or few mapped reads.
Our method based on VAF correlation is more robust to
variations in parameters in genotype calling and is general-
izable to other data types.

Use cases

Here, we illustrate the utility of NGSCheckMate by describ-
ing several studies in which we identified potentially misla-
beled samples.

Liver cancer WGS project. In this project, we generated
WGS (>30X) data for 21 liver cancer patients, with three
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Figure 4. Examples of sample mislabelings. (A) A dendrogram output for panel-seq data of primary colon cancer and liver metastasis samples, based on
1 - VAF correlation as the distance measure. The numbers in the sample names are the patient IDs. The red line indicates the average of VAF correlation
cutoffs used for predicting matching status of each pair; the VAF correlation cutoff used for every pair depends on the smaller of the depths for the two
input profiles. Since this is panel-sequencing data, the mean of non-zero depths was used as the reference depth to retrieve a corresponding VAF correlation
cutoff from the pre-built model (see Methods for details). Samples predicted to be mislabeled with high confidence were marked by red boxes. (B) Part of
a graph output for the TCGA lung cancer WGS (low-coverage) and WES datasets. A node represents an input file, colored by individual. A solid edge
represents a matched pair predicted by NGSCheckMate. The corresponding VAF correlation is written next to each edge. The graph indicates a mislabeling
0f 44-3396 T (tumor) WGS file. VAF Correlations between the 44-3396 T file and each of the other two 44-3396 files (tumor WES and blood WGS) did
not pass a VAF correlation cutoff for a matched pair (red dotted lines and texts).

samples per patient (cancer, adjacent normal tissue and
blood). While analyzing somatic single nucleotide variants
(SNVs), we noticed that different patients shared an unusu-
ally large number of somatic SNVs. This was unexpected,
as the majority of somatic SNVs should be specific to in-
dividual tumors. A further investigation found that a sys-
tematic sample mislabeling had occurred at the sequencing
center when the tubes were labeled. NGSCheckMate identi-
fied all of the mislabeled samples. After we resequenced the
problematic samples, NGSCheckMate produced a correct
clustering, with three samples per patient.

Metastatic colon cancer project. 'We generated targeted se-
quencing data for 21 primary colon cancers and their liver
metastasis counterparts to understand genomic alterations
that take place during metastasis. NGSCheckMate iden-
tified several unexpected sample clusters, as shown in the
dendrogram in Figure 4A. For example, patients 8 and 21
had either their primary samples or their metastasis samples
swapped with each other. There were additional samples
(e.g. patients 10 and 20) that did not show proper sample
matching. We examined these problematic samples in detail
and excluded them from further analysis when the correct
labeling could not be resolved.

Low-coverage WGS data in TCGA (stomach). TCGA
provided low-coverage WGS data for a subset of patients
for structural variation analysis. We analyzed the sample
pairing for those patients with stomach cancer. Among the
242 BAM files in the stomach cancer dataset, NGSCheck-
Mate identified one potentially mislabeled BAM file (a
blood sample from patient TCGA-CG-4301) that did not
match the two other BAM files labeled as coming from
the same patient. In fact, TCGA had previously identified
~10% of their stomach cancer samples as mislabeled at the
TCGA aliquot distribution site by comparing their geno-
types called by GATK, after an investigation was triggered

by the detection of several identical fusions in different can-
cer patient samples. All mislabeled files had been redacted
from the TCGA data repository (cgHub) except for the file
that NGSCheckMate identified as mislabeled.

Low-coverage WGS data in TCGA (lung and other cancer
types). We also examined the TCGA lung adenocarci-
noma WGS dataset. Among the 252 BAM files at cgHub,
NGSCheckMate detected several potentially problematic
files. To investigate this problem further, we ran NGSCheck-
Mate on a larger dataset that included both WGS and WES
data from the same individuals. In Figure 4B, we illustrate
the case in which the tumor WGS file from individual 44—
3396 matched with three WGS and two WES files, all from
individual 44-5645, instead of matching to the tumor WES
or blood WGS files from individual 44-3396. This result
strongly suggested that the tumor WGS file labeled ‘44—
3396’ is likely to be from individual 44-5645. Additional
analysis based on germline CNV also supported this hy-
pothesis (Supplementary Figure S2).

We also performed a comprehensive screening for sam-
pling swapping in additional 2316 TCGA low-coverage
WGS BAM files across 14 cancer types and identified poten-
tial sample mislabelings in 5 additional cancer types (Sup-
plementary Table S3). We are currently investigating these
cases with the data generation group and are seeking a way
to annotate data quality on the new TCGA data portal.

Speed and memory requirements

Since a large number of files may need to be checked, speed
and low memory usage for the algorithm are important.
Read alignment to generate BAM files may take hours or
even days for large FASTQ files. Once the BAM files are
available, the next time-consuming step in the alignment-
based module is SAMtools mpileup. For a 30X WGS BAM
file, the mpileup process takes about an hour to generate
a VCEF file for 21 067 SNPs using Intel(R) Xeon(R) CPU
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L5640 2.27GHz with 1 core and 4 GB memory. However,
this can be sped up considerably by breaking up the BAM
file into smaller pieces and running mpileup on them in par-
allel. Fora WES BAM file (or other BAM files of similar file
size), the mpileup process takes less than one minute using
the same SNP set. Once VCF files are generated, pairwise
correlation coefficients can easily be generated; for example,
80 WGS VCF files can be processed in ~3 minutes using less
than 200 MBs of memory.

To avoid the alignment step all together, we also devel-
oped an alignment-free module (see ‘Materials and Meth-
ods’ section). Here, the slow step is reading the input
FASTQ files, but we provide a parallelization option using
multiple cores where each core reads a different partition
of a FASTQ input file. To further reduce run time, we offer
an option to randomly subsample reads, given our perfor-
mance evaluation that showed similar performance at lower
depths down to 2X. Our tests show that the run time is near-
linear with respect to both the number of cores and the total
number of subsampled reads (Supplementary Figure S3).
Our benchmarking test for a pair of RNA-seq FASTQ files
(17 million 101 bp reads) took less than one minute with a
read subsampling to ~2X and a single core. Our test for a
pair of WGS FASTQ files (~300 million 101 bp reads) took
11 minutes with a read subsampling to ~2X and 8 cores.
The memory used was less than 40MB in both cases.

CONCLUSION

We have developed NGSCheckMate to identify datasets
that belong to the same individual and have demon-
strated its effectiveness in identifying potentially misla-
beled datasets within and across diverse data types. It
achieves excellent performance even for datasets with se-
quencing depths as low as 0.5X and with limited genomic
coverage such as targeted sequencing and ChIP-seq data.
The alignment-free version is also available for mislabel-
ing detection early in an analysis pipeline. We recom-
mend NGSCheckMate as an important part of the analy-
sis pipeline in studies that involve multiple samples/files per
subject.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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