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Histone modifications are now well-established mediators of transcriptional programs that distinguish cell states. How-
ever, the kinetics of histone modification and their role in mediating rapid, signal-responsive gene expression changes has
been little studied on a genome-wide scale. Vascular endothelial growth factor A (VEGFA), a major regulator of an-
giogenesis, triggers changes in transcriptional activity of human umbilical vein endothelial cells (HUVECs). Here, we used
chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) to measure genome-wide changes in
histone H3 acetylation at lysine 27 (H3K27ac), a marker of active enhancers, in unstimulated HUVECs and HUVECs
stimulated with VEGFA for 1, 4, and 12 h. We show that sites with the greatest H3K27ac change upon stimulation were
associated tightly with EP300, a histone acetyltransferase. Using the variation of H3K27ac as a novel epigenetic signature,
we identified transcriptional regulatory elements that are functionally linked to angiogenesis, participate in rapid
VEGFA-stimulated changes in chromatin conformation, and mediate VEGFA-induced transcriptional responses. Dy-
namic H3K27ac deposition and associated changes in chromatin conformation required EP300 activity instead of altered
nucleosome occupancy or changes in DNase I hypersensitivity. EP300 activity was also required for a subset of dynamic
H3K27ac sites to loop into proximity of promoters. Our study identified thousands of endothelial, VEGFA-responsive
enhancers, demonstrating that an epigenetic signature based on the variation of a chromatin feature is a productive
approach to define signal-responsive genomic elements. Further, our study implicates global epigenetic modifications in
rapid, signal-responsive transcriptional regulation.

[Supplemental material is available for this article.]

Genome-wide profiling of chromatin components between dif-

ferent cell types has demonstrated that transcriptional regulatory

elements are decorated by characteristic patterns of post-translational

histone modifications and other chromatin features and that these

features contribute to cell type-specific gene regulation (Heintzman

et al. 2007; Ernst et al. 2011; Kharchenko et al. 2011; Bonn et al.

2012). Such epigenetic signatures have been used to functionally

annotate transcriptional regulatory elements that distinguish dif-

ferent cell types. For example, active enhancers, genomic elements

that stimulate gene transcription, are marked by acetylation of his-

tone H3 at lysine 27 (H3K27ac) (Creyghton et al. 2010; Kharchenko

et al. 2011; Rada-Iglesias et al. 2011; Zentner et al. 2011), the presence

of the chromatin regulator EP300 (Visel et al. 2009; Creyghton et al.

2010), hypersensitivity to nuclease digestion (Boyle et al. 2008),

and expression of RNA transcripts known as eRNAs (Kim et al. 2010;

Wang et al. 2011). However, much less is known about how

chromatin signatures change during rapid cellular responses to ex-

tracellular cues and the effectiveness of epigenetic profiles in iden-

tifying transcriptional elements that mediate signal-responsive

changes in gene expression.

We studied rapid, signal-responsive changes in chromatin

features using vascular endothelial growth factor A (VEGFA)-

stimulated endothelial cells as a model system. Blood vessels

nourish nearly every organ. Their growth is tightly regulated, and

inadequate, excessive, or abnormal blood vessel growth is linked to

a panoply of diseases, including ischemic heart disease, blinding

eye diseases, and cancer (Carmeliet and Jain 2011). A central regu-

lator of blood vessel growth is vascular endothelial growth factor A.

In response to VEGFA signaling, endothelial cells dramatically

change their phenotype and gene expression profile (Schweighofer

et al. 2009). Intracellular signaling downstream from VEGFA has

been studied in depth, but relatively less is known about the tran-

scriptional regulatory elements that respond to VEGFA signaling.

We profiled activating chromatin epigenetic marks in a 12-h

time course of endothelial cell stimulation by VEGFA. We show

that temporal variation of H3K27ac is a novel epigenetic signature

that identifies VEGFA-regulated enhancers and predicts VEGFA-

responsive gene expression. Our work further shows that the
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catalytic activity of EP300 is required for dynamic changes in

H3K27ac occupancy, altered chromatin architecture, and regula-

tion of gene expression by VEGFA.

Results

VEGFA-induced changes in H3K27ac

To study transcriptional and epigenetic regulation during angio-

genesis, we measured H3K27ac chromatin occupancy genome-

wide in human umbilical vein endothelial cells (HUVECs) treated

for 0 (unstimulated), 1, 4, and 12 h with VEGFA (Supplemental

Table 1). Overall, our ChIP-seq data correlated with H3K27ac in

ENCODE data sets, with some differences likely attributable to

differences in growth conditions (Supplemental Fig. 1). Inspection

of the H3K27ac ChIP-seq data showed regions with substantial

changes in H3K27ac as a result of VEGFA stimulation (boxed re-

gions, Fig. 1A,B). To identify regions with VEGFA-induced variation

in H3K27ac, we calculated the H3K27ac signal-normalized vari-

ance (variance score) for 200-bp sliding windows across the 12-h

time course. This approach captured thousands of regions with

substantial VEGFA-induced variation (Fig. 1C). Out of sites with

a log2 variance score greater than 3, we selected those near eight

genes implicated in angiogenesis for validation by ChIP-qPCR. Sites

near six genes were successfully assayed, and, in all six cases, the

ChIP-qPCR results were consistent with the ChIP-seq data (Fig. 1D).

A dynamic VEGFA-regulated H3K27ac signature is tightly
linked to EP300 chromatin occupancy

The transcriptional coactivator EP300 acetylates histones (Ogryzko

et al. 1996) and occupies tissue-specific enhancers (Visel et al.

2009). To define the relationship of EP300 chromatin occupancy

to dynamic H3K27ac sites, we measured EP300 chromatin occu-

pancy during the VEGFA stimulation time course by ChIP-seq. The

EP300 ChIP-seq data were reproducible between independent

biological duplicates (Pearson r > 0.92) (Supplemental Fig. 2A).

Comparison to publicly available ENCODE EP300 occupancy data

for the immortalized B-cell cell line GM12878 (Reddy et al. 2012)

indicated that EP300 binding was largely cell type-specific (Sup-

plemental Fig. 2B). Next, from the VEGFA time course data, we

calculated the distance from EP300 sites to neighboring H3K27ac

Figure 1. VEGFA-stimulated dynamic changes in H3K27ac occupancy. (A,B) Browser views of H3K27ac and EP300 ChIP-seq enrichment at HLX and
NR4A1 at four time points following VEGFA stimulation. Note areas with varying H3K27ac occupancy in response to VEGFA (boxed regions). Bracketed
regions are enlarged in portions of panel C. (C ) H3K27ac variance score histogram. VEGFA-stimulated significant changes in H3K27ac regions during the
12-h time course. The plot only includes regions with a log2 variance score greater than or equal to 2. (D) Chip-qPCR validation of VEGFA-induced changes
in H3K27ac occupancy. Browser views show ChIP-seq enrichment, and lower plots indicate H3K27ac ChIP-qPCR using numbered amplicons indicated in
the browser views. Underlined numbers indicate regions where ChIP-seq predicted VEGFA-stimulated H3K27ac occupancy change, while regions without
underline are adjacent controls. Horizontal scale bars: (blue) 1 kb, (green) 0.5 kb.
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sites, stratified by their H3K27ac variance score. Interestingly, most

of the regions with the greatest H3K27ac variance scores occurred

within 2 kb of EP300 sites, while less variant H3K27ac sites tended

to be further from EP300 (Fig. 2A; Supplemental Fig. 3). This result

supported a tight relationship between EP300 and dynamic but

not static H3K27ac marks.

The enrichment of EP300 near dynamic H3K27ac sites sug-

gested that EP300 is functionally involved in deposition of H3K27ac

in response to VEGFA stimulation. To test the functional re-

quirement for EP300 in VEGFA-stimulated deposition of H3K27ac,

we measured the effect of EP300 knockdown on H3K27ac chro-

matin occupancy. siRNA EP300 knockdown (Supplemental Fig. 4)

blocked VEGFA-stimulated deposition of H3K27ac at NR4A1, HLX,

and KDR (Fig. 2B; Supplemental Fig. 5A). To determine if EP300

histone acetyltransferase catalytic activity, as opposed to other

functions mediated by EP300 (e.g., coactivator complex formation

through protein-protein interactions), is required for VEGFA-stim-

ulated H3K27ac, we inhibited EP300 enzymatic activity using the

small molecule C646 (Bowers et al. 2010). Pretreatment of HUVEC

cells for 30 min with C646 blocked VEGFA-stimulated deposition of

H3K27ac (Fig. 2C; Supplemental Fig. 5B).

We next interrogated the extent to which EP300 activity is re-

quired for dynamic H3K27ac deposition genome-wide by performing

H3K27ac ChIP-seq on cells pretreated with C646 and then stimulated

with VEGFA for 0, 1, and 4 h. The cells became unhealthy by 12 h,

precluding analysis at this time point. This experiment demonstrated

that EP300 inhibition caused widespread reduction in H3K27ac

variation induced by VEGFA (Fig. 2D; Supplemental Fig. 5C,D).

However, some VEGFA-stimulated changes in H3K27ac persisted,

indicating that additional mechanisms also contribute to H3K27ac

changes induced by VEGFA. Overall, these data indicate a key role of

EP300 in contributing to H3K27 acetylation induced by VEGFA.

Changes in nucleosome positioning were previously reported

to underlie rapid changes in the occupancy profile of histone H3

dimethylated at lysine 4 (H3K4me2) (He et al. 2010). We tested the

hypothesis that changes in nucleosome occupancy contribute to

the observed dynamic changes in H3K27ac by measuring total

histone H3 and H3K4me2 occupancy at six dynamic H3K27ac sites

(Fig. 2E; Supplemental Fig. 6). We did not observe significant

changes in histone H3 or H3K4me2 occupancy at any of these

sites, indicating that acetylation of histone H3 rather than shifts in

its position cause altered H3K27ac occupancy.

Temporal clustering of H3K27ac variation defined groups
of chromatin regions with distinct function annotations
and enriched transcription factor motifs

To investigate the significance of EP300-associated variation in

H3K27ac, we focused on the subset of H3K27ac sites within 2 kb of

EP300 with the highest variance scores (upper 20th percentile) (see

Methods; Supplemental Table 2; Supplemental Fig. 3). Hierarchical

clustering showed that H3K27ac enrichment at these sites fol-

lowed three predominant temporal patterns (Fig. 3A). We labeled

these clusters as H1 (peak H3K27ac signal at 1 h; 4689 regions),

H4-12 (peak H3K27ac signal at 4–12 h; 3947 regions), and H0 (de-

creased H3K27ac signal at 4–12 h; 3601 regions). Plotting H3K27ac

signal intensity for each region illustrated the significant dynamic

changes of H3K27ac binding in each temporal cluster (Fig. 3B;

Supplemental Fig. 7A). Cluster H4-12 was particularly interesting,

because it showed initial depletion of H3K27ac signal at the peak

center at 0 and 1 h and subsequent ‘‘filling-in’’ of the depleted re-

gion at 4 and 12 h (Fig. 3B; Supplemental Fig. 7A).

Our genome-wide analysis of the effect of the EP300 inhibitor

C646 on VEGFA-stimulated H3K27 acetylation showed a mecha-

nistic requirement for EP300 at the majority of sites. We, therefore,

examined the C646 effect on the H1, H4-12, and H0 clusters in

detail. Consistent with its essential role in VEGFA-stimulated de-

position of H3K27ac, C646 strongly blunted H3K27ac accumula-

tion in the H1 and H4-12 clusters (Fig. 3C; Supplemental Fig. 7B).

Interestingly, the down-regulation of H3K27ac seen in the H0

cluster was also blunted by C646, suggesting secondary effects on

counter-regulatory mechanisms that remove H3K27ac marks.

When the regions were centered on EP300 enrichment, ag-

gregation plots of H3K27ac signal showed that maximal H3K27ac

signal variation occurred adjacent to, rather than overlapping,

EP300 (Fig. 3D). Prior work showed that the chromatin landscape

at most transcription factor binding sites is asymmetric. When we

applied an algorithm for function strand segregation (Kundaje

et al. 2012), we found that H3K27ac and EP300 occupancy were

both asymmetric in the H1, H4-12, and H0 clusters (Supplemental

Fig. 7C). Interestingly, the distribution of H3K27ac and EP300 with

respect to the peak center was largely concordant, consistent with

a mechanistic role of EP300 in establishing the H3K27ac marks.

EP300 aggregation plots showed that EP300 binding also

changed during the VEGFA-stimulation time course (Fig. 3E). We

confirmed VEGFA-stimulated enrichment of EP300 by ChIP-qPCR

(Supplemental Fig. 7D). For cluster H4-12, on average, EP300 bind-

ing increased before H3K27ac occupancy. At cluster H1, these events

appear to occur concurrently, suggesting that either the sequence of

events differs at 1 h or that the data did not contain sufficient

temporal resolution to order events peaking at this early time point.

For cluster H0 with decreasing H3K27ac signal, EP300 signal in-

creased at 1 h, but H3K27ac signal did not (Fig. 3B–E; Supplemental

Fig. 7D), suggesting that other factors, such as increased HDAC ac-

tivity, impeded H3K27ac deposition at these regions.

We further characterized the location and function of the dy-

namic, EP300-associated H3K27ac sites. Most of these sites were lo-

cated distal to transcriptional start sites (TSSs) of genes, consistent

with the reported predominant location of EP300 (Visel et al. 2009;

Creyghton et al. 2010). However, a significantly greater proportion of

sites in cluster H1 were located in promoters, near gene TSSs (P-value <

10�46), while a significantly greater proportion of sites in cluster H4-12

were located in intergenic regions (P-value < 10�10) (Fig. 4A). Dynamic,

EP300-associated H3K27ac sites were associated with 8454 adjacent

genes. The majority of these genes did not overlap between temporal

H3K27ac clusters (Fig. 4B). Gene Ontology (GO) analysis showed that

these different gene sets have distinct functional properties (Fig. 4C).

Both of the late-responding clusters, H4-12 and H0, were strongly

enriched for terms related to vascular development, endothelial dif-

ferentiation, and angiogenesis. In contrast, the early-responding

H1 cluster was enriched for terms related to cell morphology, protein

metabolism, response to oxygen levels, and TGFbeta receptor signal-

ing, which are relevant to cellular stress responses in many cells types,

including endothelial cells. Collectively, our data indicate that each

temporal cluster of dynamic EP300-associated H3K27ac sites was

linked to regulation of varying aspects of cellular function.

To identify transcription factors that regulate EP300 re-

cruitment and VEGFA-regulated H3K27 acetylation, we searched

for overrepresented transcription factor binding motifs among

sequences at EP300 peaks in each cluster. De novo motif discovery

revealed highly significant enrichment of ETS, FOX, AP1, STAT,

and SP1 families in all three clusters. To further validate the motif

discovery results, we performed ChIP-seq for ETS1 and found that

51% of EP300-bound regions were co-occupied by ETS1 (Fig. 4E).
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Our analysis also identified transcription factor motifs that

occurred in one or two of the H3K27ac clusters. The motif of ATF

and CREB1, mediators of immediate early responses in multiple

cell types (Altarejos and Montminy 2011), was significantly

enriched in the H1 cluster. Also notable was overrepresentation of

the SMAD binding motif in the H1 cluster, where we observed

enrichment for the TGFbeta receptor signaling pathway (Fig.

4D). We found overrepresentation of GATA and TEAD binding

motifs (Fig. 4D; Supplemental Table 3) in the H0 and H4-12 clus-

ters, while the binding motif of RBP/J, the nuclear target of Notch

signaling, was enriched in the H0 and H1

clusters (Fig. 4D; Supplemental Table 3).

These results suggest that members of

these transcription factor families are

important in orchestrating EP300 re-

cruitment and H3K27ac deposition in

response to VEGFA stimulation.

Enrichment of TF motifs at dynamic

H3K27ac sites suggested that these TFs

recruit EP300 and thereby contribute to

changes in H3K27ac. To test this hy-

pothesis, we knocked down ETS1 or

C-JUN (a component of the AP1 hetero-

dimer) and measured the effect on dy-

namic H3K27ac sites directly bound

by these factors. Validation experiments

demonstrated efficient ETS1 or C-JUN

knockdown in HUVECs after siRNA trans-

fection (Supplemental Fig. 8A,B,E,F) and

corresponding reduction of ETS1 or JUN

(also known as c-Jun) occupancy of tested

dynamic H3K27ac sites (two sites tested

per factor) (Supplemental Fig. 8C,G). This

reduction of ETS1 or JUN binding attenu-

ated H3K27ac changes at these sites in

response to VEGFA (Supplemental Fig.

8D,H). These results suggest that TFs with

enriched motifs are functionally important

in mediating dynamic H3K27ac changes

in response to VEGFA.

The dynamic H3K27ac signature
defines VEGFA-responsive
transcriptional regulatory elements

Active transcriptional regulatory ele-

ments are characterized by hypersensi-

tivity to digestion by DNase I (Xi et al.

2007). To further investigate whether dy-

namic, EP300-associated H3K27ac sites

are activating transcriptional regulatory

elements, we performed genome-wide

measurement of DNase I hypersensitivity

during the VEGFA-stimulation time course

using DNase-seq (Boyle et al. 2008). Bi-

ological duplicate samples showed that the

technique is highly reproducible (Supple-

mental Fig. 9A). Dynamic, EP300-associ-

ated H3K27ac loci were DNase I hyper-

sensitive (Fig. 5A), consistent with their

function as active transcriptional regula-

tory elements. Interestingly, on average,

these regions did not change signifi-

cantly in their sensitivity to DNase I di-

gestion during the VEGFA-stimulation

time course (Fig. 5A; Supplemental Fig.

9B–D), suggesting that most of these

C

Figure 2. (Legend on next page)
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sites are already ‘‘open’’ and poised to respond to VEGFA stimu-

lation. These data are consistent with our observation that H3K27

acetylation was not associated with changes in nucleosome oc-

cupancy (Fig. 2D; Supplemental Fig. 6).

Active enhancers are also characterized by production of

transcripts known as eRNAs (Kim et al. 2010). To further charac-

terize the dynamic, EP300-associated H3K27ac loci and confirm

their enhancer activity, we measured eRNA transcript levels from

the activating clusters (H1 and H4-12) by qRT-PCR (Fig. 5B; Sup-

plemental Fig. 10A), testing 11 regions distal to gene bodies. In

regions belonging to cluster H1, eRNA was strongly up-regulated

at 1 h and then decreased at 4 and 12 h. In regions belonging to

cluster H4-12, eRNA was up-regulated to maximal levels by 1 h

and was sustained through hours 4 and 12. As controls, we mea-

sured eRNA transcripts from nearby regions with H3K27ac en-

richment that did not change during the VEGFA time course.

Although some control regions also

showed VEGFA-stimulated changes in

transcript level, their number and overall

fold increase were less than at H3K27ac

dynamic regions (Supplemental Fig. 10A).

H4-12 cluster regions showed in-

creased EP300 recruitment and eRNA ac-

tivity at 1 h, whereas H3K27ac did not

increase until 4–12 h. To determine if

EP300 activity was required for VEGFA-

stimulated increases in eRNA, we blocked

EP300 activity with C646 and measured

eRNA levels. We found that acute EP300

Figure 2. Dynamic H3K27ac regions were associated with EP300. (A) Distance relationship of
H3K27ac sites to nearest EP300-occupied region as a function of H3K27ac variance score. The H3K27ac
regions with the highest variance score were predominantly located within 2 kb of EP300. (B,C) EP300 is
required for dynamic H3K27 acetylation. ChIP-qPCR of H3K27ac in HUVEC cells treated with VEGFA and
EP300 siRNA (B) or small molecule EP300 acetyltransferase inhibitor C646 (C ). Two dynamic H3K27ac
regions near each of the indicated four genes were tested (see also Supplemental Fig. 5A,B). (D) C646
pretreatment suppresses H3K27ac change at highly variant sites. We considered genomic windows with
a log2 variance score of at least 2 and at least the sum of 10 reads across all four time points. We
recalculated the variance score for each site under VEGFA stimulation in the absence or presence of C646
for hours 0, 1, and 4. The histogram shows that C646 reduced the variance score at the vast majority of
sites. (E) Chip-qPCR of H3K4me2 and total histone H3 binding at three dynamic H3K27ac sites showed
that altered nucleosome positioning is unlikely to account for VEGFA-stimulated changes in H3K27ac.
Numbered chromatin regions are indicated in Fig. 1D.

Figure 3. Dynamic, EP300-associated H3K27ac regions grouped into three temporal clusters. (A) Hierarchical clustering heat map of dynamic EP300-
associated H3K27ac variants. Cluster names and number of regions per cluster are indicated in the adjacent colored bar. (B,C) Tag density map of dynamic
H3K27ac clusters during VEGFA stimulation time course, without (B) or with (C ) the EP300 inhibitor C646. Each row represents a 4-kb region centered on
a dynamic H3K27ac site. The same color scale was applied within each cluster. Note the loss of VEGFA-induced changes of H3K27 acetylation. (D)
H3K27ac aggregation plots, centered on nearby EP300 peaks. Maximal H3K27ac density occurred adjacent to EP300 peak centers. (E) EP300 aggregation
plots, centered on EP300 peaks within 2 kb of dynamic H3K27ac regions.

A dynamic H3K27ac enhancer signature

Genome Research 921
www.genome.org

 Cold Spring Harbor Laboratory Press on March 30, 2023 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


inhibition blocked VEGFA-stimulated up-regulation of eRNA (Fig.

5B; Supplemental Fig. 10B). In the H1 cluster, our experiments were

unable to resolve temporal differences in EP300 recruitment, eRNA

activity, and H3K27ac binding, which concurrently peaked at 1 h.

Nevertheless, EP300 inhibition also blocked eRNA up-regulation at

H1 regions, suggesting a similar role of EP300 in this cluster. Our

results suggest that EP300 recruitment and acetylase activity are

required for eRNA synthesis and precedes H3K27 acetylation.

Since the dynamic EP300-associated H3K27ac loci had chro-

matin features of transcriptional regulatory regions, we used lu-

ciferase reporter assays to measure the transcriptional activity of

1- to 2-kb regions centered on 38 dynamic EP300-associated

H3K27ac loci. An equal number of loci were arbitrarily selected

from each cluster, and tested regions were further subdivided into

those located in promoter or nonpromoter regions. After reporter

plasmid transfection, HUVECs were treated with VEGFA or vehi-

cle. Luciferase activity measurements showed that dynamic,

EP300-associated H3K27ac regions belonging to H1 and H4-12

clusters activated transcription in response to VEGFA, while re-

gions from the H0 cluster did not (Fig. 5C,D). Regions belonging to

the H1 cluster activated luciferase expression by 4 h, and expres-

sion then returned to baseline levels at 12 h. In contrast, regions

from the H4-12 cluster increased luciferase activity at 4 h and

maintained this through 12 h. Regions from promoter and non-

promoter regions behaved similarly (Fig. 5C,D). These data in-

dicate that regions in H1 and H4-12 clusters function as VEGFA-

responsive transcriptional enhancers, while those in the H0

cluster with decreasing H3K27ac signal did not. Together, the

DNase hypersensitivity, eRNA, and luciferase assays support

VEGFA-responsive transcriptional enhancer activity of dynamic,

EP300-associated H3K27ac regions.

We next investigated the relationship of dynamic, EP300-

associated H3K27ac loci to gene expression. We profiled gene

transcript levels at 0, 1, 4, and 12 h after VEGFA stimulation by

RNA-seq (Supplemental Fig. 11A). As expected, gene expression

was highly dynamic following VEGFA stimulation, with 495 genes

differentially expressed in at least one time point (Q-value < 0.05)

(Supplemental Fig. 11A; Supplemental Table 4.). The RNA-seq data

was validated by qRT-PCR and was generally concordant with

previously reported microarray gene expression profiling data for

HUVECs stimulated with VEGFA for 0 and 1 h (Supplemental

Fig. 11B,C; Schweighofer et al. 2009) and ENCODE HUVEC RNA-

seq data (Supplemental Fig. 12). To evaluate the effect of the

dynamic H3K27ac loci on VEGFA-regulated gene expression, we

examined expression of genes that were differentially expressed

and within 100 kb of dynamic, EP300-associated H3K27ac sites

(Fig. 6A). For genes associated with the H1 cluster, transcript levels

were significantly higher at 1 and 4 h compared to 0 h, and

returned to baseline by 12 h. For genes associated with the H4-12

cluster, expression increased by 1 h, became further increased by

4 h, and was sustained through 12 h. Expression of H0-associated

genes was slightly but significantly increased at 1 h but returned to

baseline levels at 4 and 12 h. Thus, each cluster of H3K27ac vari-

ation was associated with a corresponding temporal pattern of al-

tered gene expression. These data further support the activity of

the dynamic H3K27ac loci in the H1 and H4-12 clusters as tran-

scriptional enhancers.

Dynamic H3K27sites and EP300 participate
in VEGFA-stimulated chromatin looping

Enhancers are thought to stimulate transcription from promoters

by forming chromatin loops (Tolhuis et al. 2002). We investigated

whether VEGFA rapidly stimulated chromatin looping at dynamic,

EP300-associated H3K27ac loci. The Mediator complex has been

implicated in the formation of chromatin loops (Kagey et al. 2010).

MED1 and MED12, encoding Mediator complex subunits, were

highly expressed in HUVECs (Supplemental Fig. 13A). We mea-

sured MED1 and MED12 occupancy of dynamic, EP300-associated

H3K27ac sites by ChIP-qPCR (Fig. 6B; Supplemental Fig. 13B–E). At

seven of eight loci belonging to cluster H1, MED1 and MED12

enrichment strongly increased at 1 h of VEGFA treatment, then

declined to basal levels at 4 to 12 h. In cluster H4-12, MED1 and

MED12 were enriched at most loci, but the degree of enrichment

did not change in a consistent temporal pattern following VEGFA

treatment. These results indicate that the Mediator complex is

Figure 4. Characterization of dynamic, EP300-associated H3K27ac
regions. (A) Genomic distribution of dynamic H3K27ac regions. (B) Venn
diagram of genes associated with the three clusters of dynamic H3K27ac
regions. (C ) Biological process terms were selected from the 20 most
significantly enriched for dynamic H3K27ac regions. (D) Transcription
factor families with enriched motifs found under EP300 peaks at dynamic
H3K27ac regions. Color intensity indicates significance score (see Sup-
plemental Table 3 for full table). (E) ETS1 and EP300 colocalized near
dynamic H3K27ac regions. ETS1 and EP300 tag densities are plotted in
EP300-bound regions, sorted by ETS1 tag enrichment.
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bound to dynamic, EP300-associated H3K27ac sites and suggest

that these sites may undergo VEGFA-stimulated looping.

To directly test the hypothesis that dynamic, EP300-associated

H3K27ac sites loop into proximity with promoters after VEGFA

stimulation, we used chromatin conformation capture (Dekker

et al. 2002) to study temporal changes in chromatin conformation

involving three loci with VEGFA-stimulated increases in H3K27ac.

Upstream of DUSP5, a dynamic H3K27ac site belonging to cluster

H1 became transiently associated with the promoter at 1 h (Fig. 7),

when it was maximally occupied by H3K27ac, EP300, and MED1/

12, and maximally transcribed as eRNA. At later time points, the

association of these regions declined, coincident with decreased

EP300 and MED1/12 occupancy, and decreased eRNA transcrip-

tion. Upstream of KDR (encoding VEGFR2, a VEGFA receptor),

dynamic H3K27ac sites belonging to cluster H4-12 became asso-

ciated with the promoter within 1 h of VEGFA stimulation (Fig. 7).

This correlated with its time course of EP300 and MED1/12 occu-

pancy and eRNA transcription but preceded its maximal occu-

pancy by H3K27ac. Similar observations were made at a second

dynamic H3K27ac site from cluster H4-12 located upstream of the

endothelial gene CD34 (Fig. 7). Thus, at these sites, VEGFA stim-

ulation rapidly altered chromatin conformation and stimulated

eRNA transcription, and these events preceded deposition of

H3K27ac.

To probe the requirement of EP300 in chromatin looping, we

repeated the chromatin conformation capture experiments in the

presence of the EP300 inhibitor C646 (Fig. 7). C646 blocked

VEGFA-stimulated chromatin looping, thereby establishing the

importance of EP300 in establishing chromatin loops. Consistent

with a key role of EP300 acetyltransferase activity in mediating

VEGFA-stimulated chromatin changes and activation of gene

transcription, C646 potently blocked up-regulation of genes nor-

mally induced by VEGFA, including DUSP5, KDR, NR4A1, and

CD34 (Fig. 7E).

Discussion
Epigenetic signatures define transcriptional regulatory elements

that underlie the distinct gene expression programs of different

cell types, and these signatures have been used to annotate cell

type-specific functional elements (Heintzman et al. 2007; Ernst

et al. 2011; Kharchenko et al. 2011; Bonn et al. 2012). However, less

is known about how the chromatin landscape responds to tran-

sient environmental cues. To gain insights into this area, we

studied changes in H3K27 acetylation that occur within 12 h of

endothelial cell stimulation with VEGFA, a major regulator of an-

giogenesis. We showed that VEGFA induces rapid changes in

H3K27ac at thousands of genomic loci. We demonstrated that

dynamic changes in H3K27ac define VEGFA-regulated transcrip-

tional regulatory elements. These regions had characteristics of

activity-regulated enhancers: they were tightly linked to EP300

chromatin occupancy, had functional annotations linked to

blood vessel development, were transcribed as VEGFA-stimulated

eRNAs, and engaged in VEGFA-regulated chromatin looping and

gene expression. These regions with dynamic H3K27ac exhibited

VEGFA-stimulated transcriptional activity in both luciferase assays

and in HUVEC gene expression profiles, and EP300 inhibition

blocked VEGFA-induced changes in H3K27ac and gene expression.

Thus, our study indicates that the epigenome is an integral par-

ticipant in signal-induced transcriptional responses.

We developed a novel epigenetic signature based on the

signal-induced variation of H3K27ac chromatin occupancy. Using

this signature, we identified thousands of novel endothelial,

VEGFA-responsive transcriptional regulatory elements and the

transcription factor families that are likely to regulate them. These

Figure 5. Dynamic H3K27ac regions had functional properties of
transcriptional regulatory regions. (A) DNase-seq showed that dynamic,
EP300-associated sites are hypersensitive to DNase I digestion, but the
sensitivity did not change substantially during the VEGFA stimulation time
course. DNase signal is plotted as reads per 10�6 mapped reads. (B) eRNA
expression from dynamic H3K27ac regions with or without EP300 in-
hibition by C646. Each bar represents the average of 5–6 different regions
(individual data are shown in Supplemental Fig. 7). (*) P < 0.05. (C,D)
Luciferase activity of dynamic H3K27ac regions at promoter and non-
promoter sites. Luciferase activity was expressed relative to the activity mea-
sured at time 0. n = 5–8 per group. Line, bar, and whiskers represent median,
quartiles, and min-max values, respectively.
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regulatory elements were associated with genes that regulate an-

giogenesis and could be separated into distinct functional groups

based upon their temporal variation of H3K27 acetylation. These

data will provide an important resource for future studies of the

transcriptional regulation of angiogenesis, although we note that

this study was performed in cultured venous endothelial cells and

that other VEGFA-responsive endothelial enhancers active in other

endothelial cell types or active in vivo were likely not detected in

this system. More broadly, we anticipate that application of our

epigenetic signature based upon signal-induced chromatin feature

variation to other biological systems will enhance annotation of

activity-regulated functional elements genome-wide.

Previous studies suggested that nucleosome dynamics de-

fine activity-regulated transcriptional enhancers (He et al. 2010;

Bonn et al. 2012). However, our data suggest that rapid changes

in H3K27ac were not due to changes in chromatin accessibility/

nucleosome occupancy. Rather, dynamic H3K27 acetylation was

closely associated with EP300, and, indeed, EP300 and its acetyl-

transferase activity were required to write these marks. These data

indicate that epigenetic enzymatic activity is also an important

factor that establishes activity-regulated transcriptional enhancers.

Our experiments highlight the crucial role of EP300 in

mediating signal-responsive changes in H3K27ac and gene

expression. EP300 is a histone acetyltransferase that was pre-

viously reported to occupy tissue-specific transcriptional en-

hancers (Visel et al. 2009). Our data show the proximity of regions

occupied by EP300 and regions with VEGFA-stimulated variation

in H3K27ac. Inhibition of VEGFA-induced H3K27ac accumula-

tion by EP300 antagonists supports the causal role of EP300 in dy-

namic variation of H3K27ac occupancy. Furthermore, EP300 in-

hibition dramatically blocked gene expression changes induced by

VEGFA. These data directly demonstrate the key role of EP300 in

executing VEGFA-induced transcriptional responses and suggest

more broadly that EP300 is required for signal-induced changes in

histone acetylation and gene expression.

To identify transcription factors that

participate in the VEGFA transcriptional

response and recruit EP300 to dynamic

H3K27ac sites, we found transcription

factor motifs enriched in EP300-bound

regions. ETS, FOX, AP1, and STAT tran-

scription factor motifs were enriched in

all three clusters, suggesting that members

of these transcription factor families

broadly participate in VEGFA-driven tran-

scriptional changes. The key role of several

ETS factors in angiogenesis was reviewed

recently (Randi et al. 2009). We directly

confirmed ETS1 occupancy of most EP300-

bound regions, validating the motif anal-

ysis and providing a resource for further

study of the role of ETS1 in angiogenesis

and VEGFA-induced gene expression

changes. The extensive overlap between

EP300 and ETS1 binding suggests that

ETS1 may contribute to EP300 recruit-

ment. Consistent with this hypothesis,

ETS1 knockdown blocked VEGFA-induced

H3K27ac changes at ETS1-bound loci.

Compared to ETS, relatively less is known

about the role of FOX, AP1, and STAT

transcription factor family members as

effectors of VEGFA signaling. Our data identify regions potentially

regulated by these factors downstream from VEGFA. Recently, FOX

transcription factors were reported to interact with ETS factors

to regulate vasculogenesis, and similar interactions may also con-

tribute to angiogenesis (De Val et al. 2008). Our data also indicate

that AP1 is an important transcriptional effector of VEGFA. Al-

though this role of AP1 has not been studied, AP1 is well-positioned

in intracellular signaling pathways to act in this capacity: AP1 is

a major nuclear target of MAPK signaling, which is robustly acti-

vated downstream from VEGFA (D’Angelo et al. 1995).

We also identified transcription factor motifs that were

enriched in a subset of dynamic H3K27ac clusters, suggesting

a link to specific temporal patterns of H3K27 acetylation and to

specific functional pathways. In the early-responding H1 cluster,

we detected significant enrichment for the ATF1/CREB1 (activat-

ing transcription factor 1 and cyclic-AMP response element bind-

ing protein 1) motifs (Fig. 4D; Supplemental Table 3). These tran-

scription factors mediate immediate early responses, which

predominate the functional terms linked to the H1 cluster. GATA

and TEAD motifs were overrepresented in the H4-12 and H0

clusters. GATA2 has been implicated as a key regulator of endo-

thelial gene transcription (Linnemann et al. 2011), and Tead4 (also

known as RTEF-1 and TEF-3) was recently reported to be required

for VEGFA-stimulated angiogenesis (Liu et al. 2011). GATA2 and

Tead4 likely contribute to endothelial cell-specific functional term

enrichment in the H4-12 and H0 clusters. GATA factors are also

crucial in regulating hematopoiesis. However, GO terms related to

blood development were not overrepresented in the H4-12 or H0

cluster, suggesting that the GATA motifs identified by our analysis

are selectively active in endothelial cells. The H0 and H1 clusters,

which share a decline of H3K27ac at 4–12 h, were both enriched for

the binding motif of RBP/J, the nuclear target of Notch signaling.

Interestingly, VEGFA signaling activates the Notch pathway, which,

in turn, antagonizes VEGFA action in an auto-regulatory loop

(Hellstrom et al. 2007; Holderfield and Hughes 2008). Collectively,

Figure 6. VEGFA-increased gene expression and mediator binding associated with dynamic H3K27ac
loci in H1 and H4-12 clusters. (A) Fold change of differentially expressed genes within 100 kb of dynamic
H3K27ac loci belonging to the indicated clusters, compared to 0 h. Line, boxes, and whiskers are as in
Fig. 5A,B. Notches are a function of the interquartile difference and inversely related to the square root of
the sample size. (***) P < 0.0001, (**) P < 0.001. (NS) Not significant. (B) MED1 ChIP-qPCR of dynamic
H3K27ac loci belonging to H1 or H4-12 clusters.
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these data suggest that distinct transcription factor families con-

tribute to the different temporal and functional properties of the

H0, H1, and H4-12 clusters.

In addition to its role in depositing H3K27ac, EP300 catalytic

activity was required for VEGFA-induced chromatin looping. To

our knowledge, the requirement of EP300 in chromatin looping

has not been reported previously. Furthermore, the time course

data, surprisingly, suggest that, for members of the H4-12 cluster,

eRNA expression and chromatin looping occur prior to up-regu-

lation of H3K27ac, yet are dependent on EP300 catalytic activity.

Further work is required to establish the mechanism(s) through

which EP300 acetyltransferase activity promotes eRNA expression

and chromatin looping and how the interplay between these

chromatin properties regulates gene transcription.

Methods
Detailed descriptions of cell culture, ChIP-seq, RNA-seq, DNase-
seq, chromatin conformation capture, luciferase assays, and their
integrative analysis are provided in the Supplemental Material.
Primary HUVEC cells were cultured overnight in EBM2 with 0.5%
FBS, then treated with 50 mg/mL VEGFA for 0, 1, 4, and 12 h.
Chromatin occupancy analysis was performed by ChIP-seq and

ChIP-qPCR following established protocols (Lee et al. 2006), with
minor modifications. Antibodies are listed in Supplemental
Table 5. Polyadenylated RNA expression was profiled by mRNA-
seq as described (Christodoulou et al. 2011), with minor modi-
fications. DNase-seq was performed as described (Song and
Crawford 2010), with modifications to library construction to
permit multiplex sequencing. Chromatin conformation capture
was performed as described (Hagege et al. 2007). Luciferase as-
says were performed using 1–2 kb genomic regions cloned up-
stream of luciferase. Primers used in this study are listed in
Supplemental Table 6.

ChIP-seq and DNase-seq reads were mapped with Bowtie
(Langmead et al. 2009) (summarized in Supplemental Table 5).
EP300 peaks were called using SPP (Kharchenko et al. 2008).
DNase-seq peaks were called using F-seq as described (Boyle et al.
2008). H3K27ac ChIP-seq enrichment over input in 200-bp
windows, tiled at 50-bp intervals, were calculated across the ge-
nome. The H3K27ac variance score for each window was calcu-
lated as log2 of the variance of H3K27ac in the window over time,
divided by the mean of H3K27ac in the window. Windows with
low mean signal were discarded. For each EP300 site, we identi-
fied the H3K27ac region within 2 kb with greatest variance score.
Of these regions, the top 20th percentile was defined as dy-
namic, EP300-associate H3K27ac regions. RNA-seq and differ-
ential expression analysis was performed using Cufflinks and

Figure 7. Promoter contact with dynamic H3K27ac loci in H1 and H4-12 clusters was stimulated by VEGFA and required EP300 activity. (A–D)
Chromatin confirmation capture of dynamic H3K27ac sites (red lines) near DUSP5, NR4A1, KDR, and CD34. (Black boxes) Regions of H3K27ac enrichment;
chromatin looping was attenuated by pretreatment of HUVEC cells with C646 for 30 min. (Red lines) Dynamic H3K27ac sites. (Gray bars) Promoter anchor
primers and fragments graphed to the right. (Vertical black lines) Cutting sites of restriction enzyme used for chromatin conformation capture. (*) P < 0.05.
(E) EP300 acetyltransferase activity was required for activation of gene expression downstream from VEGFA. Gene expression was measured by qRT-PCR
during VEGFA stimulation in the presence or absence of the EP300 inhibitor C646.
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Cuffdiff (Trapnell et al. 2010). Motif discovery was performed using
DREME (Bailey 2011), and motifs were annotated with TomTom
(Gupta et al. 2007).

Data access
All sequencing data were deposited in the NCBI Gene Expression
Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) under ac-
cession number GSE41166. The data are also available through the
Cardiovascular Development Consortium at https://b2b.hci.utah.
edu/gnomex/.
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