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ABSTRACT ChIP-seq has become the primary method for identifying in vivo protein–DNA interactions on
a genome-wide scale, with nearly 800 publications involving the technique appearing in PubMed as of
December 2012. Individually and in aggregate, these data are an important and information-rich resource.
However, uncertainties about data quality confound their use by the wider research community. Recently,
the Encyclopedia of DNA Elements (ENCODE) project developed and applied metrics to objectively mea-
sure ChIP-seq data quality. The ENCODE quality analysis was useful for flagging datasets for closer in-
spection, eliminating or replacing poor data, and for driving changes in experimental pipelines. There had
been no similarly systematic quality analysis of the large and disparate body of published ChIP-seq profiles.
Here, we report a uniform analysis of vertebrate transcription factor ChIP-seq datasets in the Gene Expression
Omnibus (GEO) repository as of April 1, 2012. The majority (55%) of datasets scored as being highly successful,
but a substantial minority (20%) were of apparently poor quality, and another �25% were of intermediate
quality. We discuss how different uses of ChIP-seq data are affected by specific aspects of data quality, and we
highlight exceptional instances for which the metric values should not be taken at face value. Unexpectedly, we
discovered that a significant subset of control datasets (i.e., no immunoprecipitation and mock immunopre-
cipitation samples) display an enrichment structure similar to successful ChIP-seq data. This can, in turn, affect
peak calling and data interpretation. Published datasets identified here as high-quality comprise a large group
that users can draw on for large-scale integrated analysis. In the future, ChIP-seq quality assessment similar to
that used here could guide experimentalists at early stages in a study, provide useful input in the publication
process, and be used to stratify ChIP-seq data for different community-wide uses.
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Chromatin immunoprecipitation (ChIP) (Gilmour and Lis 1984;
Gilmour and Lis 1985; Solomon et al. 1988) experiments identify
sites of occupancy by specific transcription factors (TFs), cofactors, and
other chromatin-associated proteins as well as histone modifications.
Such proteins are concentrated at specific loci via direct binding to
DNA or by indirect binding mediated by other proteins or RNA
molecules. In most ChIP protocols, proteins are first cross-linked to
DNA, most often using formaldehyde. The fixed chromatin is sheared,
and an antibody specific for the protein or histone modification of
interest is used to retrieve protein:DNA complexes from which the
DNA segments are released and then assayed. The assay was first
applied to individual TF/promoter complexes by using qPCR to detect
enrichment over specific DNA segments (Hecht et al. 1996). Subsequent
adaptations extended it to large sets of promoters or other genomic
regions by using microarrays (ChIP-on-Chip/ChIP-Chip) (Ren et al.
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2000; Iyer et al. 2001; Lieb et al. 2001; Horak and Snyder 2002;
Weinmann et al. 2002). Ultimately, the entire genome became acces-
sible with the advent of high-throughput sequencing and the devel-
opment of ChIP-seq (Johnson et al. 2007; Barski et al. 2007;
Mikkelsen et al. 2007; Robertson et al. 2007).

In all cases, preferential enrichment of a given immunoprecipitated
DNA segment is detected and quantified by comparing it with a control
experiment in which there is no specific antibody enrichment step.
These controls can be generated from sonicated DNA before immuno-
precipitation (input) or a mock immunoprecipitation with an unrelated
antibody (IgG). Sequencing-based ChIP has become the method of
choice because it enables genome-wide coverage, even for large
genomes, and because of its superior signal-to-noise characteristics
compared to alternative methods. Since its initial development,
ChIP-seq has been used in hundreds of publications (778 in PubMed
as of December 18, 2012), including by the ENCODE consortium
(ENCODE Project Consortium 2011; ENCODE Project Consortium
2012), to map occupancy over 100 human TFs and cofactors in a di-
verse collection of cell lines (Gerstein et al. 2012; Wang et al. 2012).

A basic question for any ChIP-seq experiment is, how successful
was it? It has taken several years for the field to develop objective ways
to quantify key aspects of success in immunoprecipitation enrichment,
library building, and final sequencing. Poor datasets that have high
false-negative rates in peak calling are a predictable pitfall that has
significant downstream consequences for some kinds of biological and
computational analyses. For example, when lower-quality datasets are
used for integrative analyses that are sensitive to false-negative rates,
incorrect inferences and conclusions become likely (see Discussion). In
estimating data quality, the traditional approach of visual inspection at
a limited number of sites (often previously well-characterized using
low-throughput approaches) is inefficient, subjective, and ultimately
can be deceptive. It is also possible (and commonly observed in prac-
tice) that sites, the biological importance of which has been defined by
independent functional assays, can decrease to below the sensitivity
threshold of a poor or mediocre ChIP-seq experiment. Moreover, there
is no current way to predict, a priori, the number of sites in the genome
that should be detectable for a given factor and cell type. Most TFs
studied thus far reproducibly occupy thousands to tens of thousands of
sites (ENCODE Project Consortium 2012; Landt et al. 2012). Thus,
a dataset for which several thousand sites have been called might in fact
be capturing a minority of true positive interactions, or it might en-
compass virtually all biologically pertinent sites. To help address the
problem of data assessment as part of the ENCODE project, we and
others developed a set of ChIP-seq quality control (QC) metrics and
guidelines (Landt et al. 2012) that were adopted and applied to all of its
datasets. Substandard datasets were consequently replaced, flagged as
substandard, and/or removed from analysis (ENCODE Project Con-
sortium 2012; Landt et al. 2012).

Incorporating published datasets into an ongoing study can bring
new biological insights and avoid unnecessary duplication of work.
Variable quality of published data can be a significant barrier to these
uses of existing data. They are the products of work from many
different laboratories with invaluable expertise in specific biological
systems, but they also use many variations of ChIP-seq experimental
protocols and bioinformatics treatments. The extent and nature of the
variations have not been assessed globally and systematically. In this
work, we examined the GEO submission series containing vertebrate
TF ChIP-seq datasets and found that �20% of datasets scored as
being of low quality, with an additional �25% exhibiting intermediate
ChIP enrichment. We also noticed that approximately one-third of
studies have control datasets with a high degree of read clustering that

is normally expected only in ChIP-seq datasets. This was observed
more often for the IgG control design than for input DNA controls.
These and related observations argue for data quality measures rou-
tine characterization and reporting of ChIP-seq data quality measures.

MATERIALS AND METHODS

Sequencing read alignment
Raw sequencing reads for all non-ENCODE GEO series containing
ChIP-seq datasets against TFs and chromatin-modifying proteins
(submitted before April 1, 2012) were downloaded from GEO in SRA
format and converted to FASTQ format using the fastq-dump
program in the sratoolkit (version 2.1.9). Reads were aligned using
Bowtie (Langmead et al. 2009) version 0.12.7 with the following set-
ting: “-v 2 -t -k 2 -m 1 –best–strata,” which– allows for two mis-
matches relative to the reference and only retains unique alignments.
Human datasets were mapped against the male set of chromosomes
(excluding all random chromosomes and haplotypes) for version hg19
of the human genome; the mm9 version of the mouse genome was
used for mouse data, rn5 was used for rat data, danRer7 was used for
zebrafish data, susScr2 was used for pig data, and xenTro3 was used
for the clawed frog Xaenopus tropicalis data, and all assemblies were
downloaded from the UCSC genome browser (Kent at al. 2002).

ChIP quality assessment
ChIP quality assessment was performed on both ChIP and input
datasets using the general strategy described by Landt et al. (2012).
Because a library may score as an “unsuccessful ChIP” for reasons
other than IP failure (e.g. being performed in a knockout background,
in si/shRNA-treated cells, or in conditions under which the factor is
not expressed or not bound to DNA), the following additional criteria
were used to determine whether each library is expected to score
positively in the QC assessment:

1. All experiments claimed to be successful by authors are expected
to exhibit high level of read clustering.

2. All inputs (sonicated DNA and IgG mock IPs) are expected to
exhibit minimal read clustering (QC tag of 22 or 21).

3. All ChIP-seq experiments performed in a knockout background
for the factor are expected to exhibit minimal read clustering (QC
tag of 22 or 21).

4. Because knockdown efficiency varies and because it is unknown
what protein levels would be sufficiently high for the factor to be
successfully ChIP-ed, ChIP-seq experiments performed in cells
treated with si/shRNAs targeting the factor are set aside as
“unknown” and assessed for library complexity and sequencing
depth but not for ChIP quality.

5. Experiments against factors known to bind to DNA on some
stimulus performed in unstimulated cells are also tagged as
“unknown” because lower-level binding in unstimulated cells
cannot be ruled out (and is, in fact, often observed).

6. Experiments performed in conditions that may result in the fac-
tor not binding to DNA (time courses, knockdowns, or knock-
outs for other factors that may affect binding of the targeted
factor) are also tagged as “unknown.”

7. Other experiments not matching any of these categories are
expected to exhibit high levels of read clustering.

Cross-correlation analysis was performed using version 1.10.1 of
SPP (Kharchenko et al. 2008) and the following parameter: “2s =
0:2:400.” QC scores were assigned based on the relative strand
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correlation (RSC) values (integers ranging from 22 to 22, RSC 2 {0,
0.25} ⇒ QC ) 22, RSC 2 {0.25, 0.50} ⇒ QC ) 21, RSC 2 {0.50,
1.00} ⇒ QC ) 0, RSC 2 {1, 1.50} ⇒ QC ) +1, RSC $ 1.5 ⇒ QC )
+2, with 22 corresponding to minimal read clustering and 2 corre-
sponding to a highly clustered library) and used as a measure of ChIP
quality. These scores capture the extent of read clustering in a ChIP-seq
experiment in organisms whose genomes have similar size and structure
to those of mammals. We point out that these scores may not be
appropriate in genomes with very different size and/or structure. This
motivated us to discard data from nonvertebrate model organisms for
this analysis. Different values than those used here for RSC or normal-
ized strand correlation (NSC) coefficients may be needed for such
genomes, and this is a topic for future investigation. Cross-correlation
plots were manually examined to ensure no artifactual QC scores were
included because of size selection issues (such as, for example, a library
being fragmented to an average size close to the read length and con-
fusing the automated fragment peak assignment). In general, we rec-
ommend manual examination of cross-correlation plots in all cases.
This presents a deeper and more detailed view of the characteristics
of the dataset because the cross-correlation profile provides not only
information regarding ChIP enrichment but also regarding the frag-
ment length distribution in the datasets. For example, a dataset might
exhibit periodicity in the distribution of fragment size lengths, present-
ing itself as numerous smaller peaks along the curve (often seen when
chromatin is enzymatically digested rather than sonicated), or it can
deviate from the standard unimodal pattern (aside from the phantom
peak) indicating issues with size selection. The code for running
SPP and assigning QC scores is available at https://code.google.com/p/
phantompeakqualtools/.

MyoD and myogenin ChIP-seq peak calling
MyoD and myogenin datasets were generated by the Wold laboratory
and are available under GEO accession number GSE44824. We note
that the apparent weakness of the “myogenin 2” ChIP dataset is most
likely attributable to undersequencing and would be elevated to high-
quality status if sequenced deeper; undersequencing is one possible
reason for suboptimal quality metrics (A. Kundaje et al., unpublished
data). Reads were mapped as described above and peaks were called
using ERANGE3.2 (Johnson et al. 2007) with the following settings:
“2minimum 2 2ratio 3 2shift learn 2revbackground 2listPeak.”
ChIP-seq peak calls were counted as overlapping if their summits were
within 200 bp of each other. Read mapping statistics and QC metrics
for these datasets can be found in Supporting Information, Table S2.

RESULTS

Dataset collection, data processing, and quality metrics
We downloaded all GEO series containing ChIP-seq datasets for
vertebrate TFs or chromatin-modifying and remodeling proteins,
along with their corresponding control libraries, submitted before
April 1, 2012. We excluded ENCODE datasets because they have
previously been subjected to this quality assessment (ENCODE Pro-
ject Consortium 2012). We provide here a summary of ENCODE TF
ChIP-seq data quality from the two main production groups in Figure
S9 and Figure S10 (Landt et al. 2012).

For several reasons, we also excluded histone modifications and RNA
Polymerase II datasets. First, in our experience, ChIP-seq against these
targets is very robust to experimental variation and the success rate is
reliably high (provided the antibody reagents used are of high quality).
Second, an especially large proportion of published data are for histone
marks. The effect of including all of these in the survey is to obscure or

skew what is happening in the information-rich sample set that includes
diverse TFs and cofactors. Finally, the currently available QCmetrics were
designed and are best suited for TF data that produce highly localized
“point-source” occupancy (as they quantify the extent of read clustering
in the genome). This means that the metrics themselves need to be
interpreted differently if they are applied to, for example, repressive his-
tone marks such as H3K9me3 and H3K27me3, which form large “broad-
source” regions of enrichment (Pepke et al. 2009). Arguably, these data
will need their own metrics and this will be a challenge for the future.

The final collection of datasets contained 191 GEO series
containing a total of 917 ChIP-seq and 292 control libraries. Except
for a limited number of cases in which a GEO series was associated
with multiple publications, two or three GEO series were associated
with the same publication, or a GEO series has not yet been used in
a publication, and there is a one-to-one relationship between GEO
series and published articles in the literature (Robertson et al. 2007;
Chen et al. 2008; Marson et al. 2008; Bilodeau et al. 2009; Cheng et al.
2009; De Santa et al. 2009; Lister et al. 2009; Nishiyama et al. 2009;
Visel et al. 2009; Welboren et al. 2009; Wilson et al. 2009; Yu et al.
2009; Yuan et al. 2009; Barish et al. 2010; Blow et al. 2010; Blow et al.
2010; Cao et al. 2010; Chi et al. 2010; Chia et al. 2010; Chicas
et al. 2010; Corbo et al. 2010; Cuddapah et al. 2009; Durant et al.
2010; Fortschegger et al. 2010; Gotea et al. 2010; Gu et al. 2010; Han
et al. 2010; Heinz et al. 2010; Heng et al. 2010; Ho et al. 2009;
Hollenhorst et al. 2009; Hu et al. 2010; Johannes et al. 2010; Jung
et al. 2010; Kagey et al. 2010; Kassouf et al. 2010; Kim et al. 2010;
Kong et al. 2010; Kouwenhoven et al. 2010; Krebs et al. 2010; Kunarso
et al. 2010; Kwon et al. 2009; Law et al. 2010; Lee et al. 2010; Lefterova
et al. 2010; Li et al. 2010; Lin et al. 2010; Liu et al. 2010; Ma et al. 2010;
MacIsaac et al. 2010; Mahony et al. 2010; Martinez et al. 2010; Palii
et al. 2010; Qi et al. 2010; Rada-Iglesias et al. 2010; Rahl et al. 2010;
Ramagopalan et al. 2010; Ramos et al. 2010; Schlesinger et al. 2010;
Schnetz et al. 2010; Sehat et al. 2010; Steger et al. 2010; Tallack et al.
2010; Tang et al. 2010; Vermeulen et al. 2010; Verzi et al. 2010; Vivar
et al. 2010; Wei et al. 2010; Woodfield et al. 2010; Yang et al. 2010;
Yao et al. 2010; Yu et al. 2010; An et al. 2011; Ang et al. 2011;
Bergsland et al. 2011; Bernt et al. 2011; Botcheva et al. 2011; Brown
et al. 2011; Bugge et al. 2011; Ceol et al. 2011; Ceschin et al. 2011;
Costessi et al. 2011; Ebert et al. 2011; Fang et al. 2011; Handoko et al.
2011; He et al. 2011; Heikkinen et al. 2011; Holmstrom et al. 2011;
Horiuchi et al. 2011; Hu et al. 2011; Joseph et al. 2010; Kim et al. 2011;
Klisch et al. 2011; Koeppel et al. 2011; Kong et al. 2011; Little et al.
2011; Liu et al. 2011; Lo et al. 2011; Marban et al. 2011; Mazzoni
et al. 2011; McManus et al. 2011; Mendoza-Parra et al. 2011; Meyer
et al. 2012; Miyazaki et al. 2011; Mullen et al. 2011; Mullican et al. 2011;
Nakayamada et al. 2011; Nitzsche et al. 2011; Norton et al. 2011;
Novershtern et al. 2011; Quenneville et al. 2011; Rao et al. 2011; Rey
et al. 2011; Sahu et al. 2011; Schmitz et al. 2011; Seitz et al. 2011;
Shen et al. 2011; Shukla et al. 2011; Siersbæk et al. 2011; Smeenk
et al. 2011; Smith et al. 2011; Soccio et al. 2011; Stadler et al. 2011;
Sun et al. 2011; Tan et al. 2011a; Tan et al. 2011b; Teo et al. 2011;
Tijssen et al. 2011; Tiwari et al. 2011a; Tiwari et al. 2011b; Trompouki
et al. 2011; van Heeringen et al. 2011; Verzi et al. 2011; Wang et al.
2011a; Wang et al. 2011b; Wei et al. 2011; Whyte et al. 2011; Wu et al.
2011a; Wu et al. 2011b; Xu et al. 2011; Yang et al. 2011; Yildirim
et al. 2011; Yoon et al. 2011; Zhang et al. 2011; Zhao et al. 2011a; Zhao
et al. 2011b; Avvakumov et al. 2012; Barish et al. 2012; Boergesen et al.
2012; Bugge et al. 2012; Canella et al. 2012; Cardamone et al.
2012; Cheng et al. 2012; Chlon et al. 2012; Cho et al. 2012; Doré
et al. 2012; Fan et al. 2012; Feng et al. 2011; Fong et al. 2012; Gao et al.
2012; Gowher et al. 2012; Hunkapiller et al. 2012; Hutchins et al. 2012; Li
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et al. 2012; Lu et al. 2012; Miller et al. 2011; Ntziachristos et al. 2012;
Pehkonen et al. 2012; Ptasinska et al. 2012; Remeseiro et al. 2012;
Sadasivam et al. 2012; Sakabe et al. 2012; Schödel et al. 2012; Trowbridge
et al. 2012; Vilagos et al. 2012; Wu et al. 2012; Xiao et al. 2012; Yu

et al. 2012; unpublished at the time of completion of this manuscript
are the following GEO accession numbers: GSE33346, GSE33850,
GSE36561, GSE30919, GSE33128, GSE35109, GSE25426, GSE31951,
GSE26711, GSE23581, GSE26136, GSE26680, GSE15844, GSE21916,

Figure 1 Sequencing library characteristics. (A) Joint distribution of library complexity and sequencing depth for all datasets examined. Vertical
lines are drawn at 1 million, 5 million, and 12 million reads. Horizontal and vertical lines indicate quality classes discussed in the text. The upper
right domain (number of uniquely mappable reads $12 million and library complexity $0.8) passes current quality thresholds. (B) Distribution of
library complexity for ChIP-seq datasets, IgG controls, and inputs. (C) Distribution of sequencing depth for ChIP-seq datasets, IgG controls, and
sonicated inputs. (D) Fraction of ChIP-seq, IgG, and input datasets exhibiting high, medium, and low complexity. (E) Fraction of studies containing
libraries of high, medium, and low complexity (the distribution of the minimum library complexity observed is shown)
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GSE22303, and GSE29180; direct links to all GEO series can be found
in Table S1).

We discuss IgG and input controls separately because, to the best
of our knowledge, any potential general differences between the two
types of controls have not been investigated systematically in the
context of ChIP-seq (Peng et al. 2007 addressed these questions for
ChIP-Chip data; however, the nature of the background is substan-
tially different for microarrays).

We mapped all reads with uniform settings (see Materials and
Methods for details) and examined library and ChIP QC metrics for
each dataset. These criteria have already been discussed by Landt et al.
(2012), and a detailed treatment of cross-correlation is presented else-
where (Kundaje et al., unpublished data). Here, we provide a brief
overview of each.

Sequencing depth: If a ChIP-seq experiment achieves successful
immune enrichment and the resulting library adequately represents
the sample, then greater sequencing depth will produce a more
complete map of TF occupancy (Landt et al. 2012). At a greater depth,
the measurement will identify a larger number of reproducible sites
containing the corresponding DNA-binding sequence motif. Under-
sequencing of an otherwise successful library will lead to false-negative
results. It has been difficult to establish a universal minimal sequenc-
ing depth because of differences between factors. Any threshold is
going to be somewhat arbitrary but, in general, the major cost/benefit
trade-off is between sequencing individual samples more deeply and
generating more replicates; for most contemporary purposes, an in-
dependent duplicate measurement of 12 million reads arguably adds
greater overall value than a single determination with 24 million reads,
even though the higher number of reads will increase sensitivity. The
number of mapped reads less than 1–2 million for a typical TF will

usually be inadequate for capturing the complexity of an interactome
for a mammalian-size genome. Many datasets now in the public
domain were generated when sequencing throughput was lower than
it is now and costs were higher (between 2007 and 2013, sequencing
throughput has increased by approximately two orders of magnitude).
As a consequence, many early ChIP-seq libraries were sequenced to
a depth of only a few million reads. We therefore divided datasets into
sequencing bins by using thresholds of 1 million, 5 million, 12 million,
and 24 million uniquely mapped reads (taking into account sequenc-
ing depths recommended in the past by the ENCODE consortium for
TFs). Libraries having less than 1 million reads are considered severely
undersequenced, and those with more than 12 million are considered
reasonably deeply sequenced.

Library complexity: A second characteristic that influences the quality
of a ChIP-seq measurement is the sequence fragment diversity of the
sequencing library. This is often referred to as library complexity,
and low complexity is undesirable, although we note that much
better IP enrichment than what is now obtained could, in the future,
lead to very high-quality datasets with low library complexity.
Currently, low-complexity libraries mainly result from experimental
deficiencies: either too few starting molecules at the end of the
immunoprecipitation step or inefficient steps in subsequent library
building. As a result, the same starting molecules are sequenced
repeatedly. Very-low-complexity libraries will not contain enough
information to effectively sample the true positive occupancy sites
and they distort the signal position and intensity. This can confuse
peak callers (especially if the algorithm does not collapse pre-
sumptive PCR duplicates), leading to peak calling artifacts (Landt
et al. 2012). We calculate the following metric as an indicator of
library complexity (Landt et al. 2012):

Library  complexity ¼ Number  positions  in  the  genome  with  uniquely mappable  reads  in  dataset
Number  uniquely mappable  reads  in  dataset

(1)

Estimated in this simple way, library complexity is expected to
decrease eventually with increased sequencing depth because even
highly complex libraries become exhausted by very deep sequencing.
Reduced apparent complexity would also be observed with extremely
successful ChIP-seq experiments for TFs that bind to the genome in
a highly discriminative fashion to a limited number of locations. In
such libraries, the majority of reads would originate from the limited
genomic subspace around binding sites, resulting in low library com-
plexity. With current methods, this is a largely theoretical consider-
ation; in practice, in most ChIP-seq libraries only a minority of reads
originates from factor-bound sites, with the rest (the majority) rep-
resenting genomic background. Because the majority of libraries we
examined were in the sequencing depth range over which these values
represent library complexity reasonably well (Figure 1A and Figure
S2), we separated datasets into the following complexity groups: high
complexity (apparent library complexity $.8); medium to low com-
plexity (apparent library complexity between 0.5 and 0.8); and very
low complexity (apparent library complexity #.5). We also note that
in substantially smaller genomes, the apparent library complexity is
expected to be lower because the number of positions from which
sequencing library fragments can originate is smaller.

Cross-correlation analysis of read clustering and ChIP enrichment:
Because the majority of sequencing reads in a ChIP-seq library

represent nonspecific genomic backgrounds, these reads are expected
to be distributed randomly over the genome, to a first approximation.
In contrast, reads originating from specific occupancy events cluster
around the sites of protein–DNA interactions, where they are distrib-
uted in a characteristic asymmetric pattern on the plus and minus
strands (Kharchenko et al. 2008). Cross-correlation analysis is an ef-
fective way of measuring the extent of this clustering. It also captures
additional global features of the data, such as the average fragment
length and fragment length distribution (Kharchenko et al. 2008;
Landt et al. 2012). Specifically, the read coverage profiles on the two
strands are shifted relative to the other over a range of shift values
and the correlation between the profiles is calculated at each shift
(Kharchenko et al. 2008). The resulting plot has one (“phantom”) peak
corresponding to the read length and another peak corresponding to
the average fragment length; the height of the fragment-length peak is
highly informative of the extent of read clustering in the library and, in
turn, of the success of a ChIP-seq experiment. This feature is best
captured by the NSC and RSC metrics discussed by Landt et al. (2012).

We applied SPP (Kharchenko et al. 2008) to perform cross-correlation
analysis for all libraries in our survey. We then used the RSC cross-
correlation metric to assign integer QC tag values in the {22, 2} range
to datasets, with QC values of 2 corresponding to very highly clustered
(and most likely, also successful) datasets and QC values of 22 to
datasets exhibiting no to minimal read clustering; negative values are
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expected for input datasets. The RSC metric captures well the extent of
read enrichment in vertebrate genomes similar in size and structure to
humans, which this study focuses on. We provide representative
examples of cross-correlation plots for each of the five QC categories
in Figure S1A, and we use these tags as convenient general proxies for
ChIP quality throughout the following analysis. We note that the
discretization thresholds are not intended to be absolute determinants
of quality, but they do enable one to rapidly scan very large numbers
of datasets. In practice, examining the cross-correlation plots and the
continuously distributed NSC and RSC values and using those to-
gether with information about sequencing depth and library complex-
ity are always more informative and can provide valuable nuances for
understanding specific datasets. Direct examination of plots allows
one to detect datasets with odd cross-correlation profiles (we show
a few representative examples in Figure S11). It is possible in theory
for low-complexity libraries to produce artificially high cross-correla-
tion scores if stacks of reads on opposite strands are located close to
each other in regions of enrichment; however, the Pearson correlation
between library complexity scores and RSC values in the collection of
ChIP datasets surveyed here was 0.0084, indicating that such cases do
not feature significantly in this analysis.

An additional major component of the ChIP-seq QC pipeline
developed by the ENCODE consortium is reproducibility analysis of
replicates, based on the irreproducible discovery rate (IDR) statistic (Li
et al. 2011). However, because many of the studies we surveyed did
not have replicates, we only evaluated datasets on the level of indi-
vidual experiments. Single dataset evaluation is almost always a valu-
able precursor to evaluation of replicates because, typically, a second
replicate is generated after a successful first one. The full list of data-
sets, mapping, and QC statistics is provided in Table S1.

Sequencing depth and library complexity
Figure 1A shows the distribution of sequencing depth and library
complexity for ChIP-seq and control datasets. The upper right do-
main, bounded by 12 million reads per sample and a complexity value
of 0.8, is an arbitrary but useful definition of high quality according to
these measures. A majority of datasets had reasonably good complex-
ity and severely undersequenced libraries were rare (Figure 1C).
A minority (38.8%) of datasets had more than 12 million mapped
reads; however, as discussed, this is not unexpected, because a large
fraction of the datasets we surveyed were generated in times of sig-

nificantly higher sequencing cost and lower throughput. Strikingly, the
median complexity of IgG control datasets was less than 0.8 and
considerably lower than that of either ChIP-seq or sonicated input
libraries (Figure 1B). This is not a result of IgG datasets having been
sequenced much more deeply than the other two groups; in fact, the
median sequencing depth of IgG controls is lower (Figure S2). The
concern that some individual IgG inputs might provide insufficient
DNA mass to build highly complex libraries has been raised before
(Landt et al. 2012), and our observations are consistent with this,
although it is not a characteristic of all IgG controls.

Slightly more than half (54.3%) of ChIP-seq datasets had library
complexity more than 0.8, whereas very-low-complexity (, 0.5) librar-
ies comprised 12.9% of datasets; the fraction of very-low-complexity
libraries was higher and lower for IgG and input datasets, respectively
(Figure 1D). Because most GEO series contained multiple libraries, we
also asked, how common is the presence of low-complexity libraries in
individual studies? Figure 1E shows the distribution of the minimum
library complexity in each such series (for all types of datasets). One-
quarter (25.4%) of all studies contained very-low-complexity libraries.

Cross-correlation quality assessment of
ChIP-seq datasets
Next, we examined the distribution of SPP QC scores for ChIP-seq
datasets. Before doing this, we excluded a minority of datasets for
which there was a good reason to think high ChIP enrichment should
not be expected. For example, experiments executed in knockouts,
knockdowns, or settings in which the factor is not expressed are not
expected to produce a high-scoring measurement. And in a few cases,
the factor in question might be known to bind to only a small number
of sites in the genome; this has been proposed, for example, for some
ZNF TFs and Pol3 and its associated factors (Landt et al. 2012). Our
detailed criteria for inclusion are described in Materials and Methods.

Figure 2A shows the QC score distribution for all ChIP-seq data-
sets we retained. Strikingly, only 55% (482 out of 876) of datasets had
QC scores of 1 or 2, i.e., they were likely to be highly successful. An
additional 24.5% (215 out of 876) had a score of 0, indicating that they
were of intermediate quality, and 20.4% (179 out of 876) had low-
quality scores of21 and22. Sometimes multiple replicates for a factor
were submitted but only one scored poorly, so we also compiled
a second set of ChIP-seq experiments that only included the best
available replicate for each factor and condition (Figure 2B). This

Figure 2 ChIP QC assessment summary. The numbers
in each box indicate the total number of datasets/
studies belonging to it. SPP QC scores of +1 and +2
indicate a high degree of read clustering in a dataset.
(A) Distribution of SPP QC scores for all ChIP-seq
datasets examined. (B) Distribution of SPP QC scores
for the best replicates for a factor/condition combina-
tion in each study. (C) Distribution of the maximum SPP
QC scores for all ChIP-seq datasets in a study.

214 | G. K. Marinov et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/4/2/209/6028810 by guest on 30 M

arch 2023

http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.113.008680/-/DC1/FigureS1.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.113.008680/-/DC1/FigureS11.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.113.008680/-/DC1/TableS1.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.113.008680/-/DC1/FigureS2.pdf


set included 322 datasets (59%) with QC scores of 2 or 1. The fraction
of intermediate-quality or low-scoring datasets in this group decreased
as expected. However, the decrease was modest with 18% (97 out of
541) of the best available replicates scoring21 or22, and 22.5% (122
out of 541) scoring 0.

We then examined the distribution of the maximum QC score for
each study, regardless of the target identity (Figure 3C). The fraction
of low scores decreased further, though only 70.4% of studies (131 out
of 186) had a score of 1 or 2 for their best experiment. Finally, we
compiled a list of the top-scoring datasets from all studies that assayed
only a single TF; 19.7% (19 out of 96) of these studies had scores of
21 or22, 25% (24 of 96) had a score of 0, and 55.2% (53 of 96) were
marked as likely to be successful, with scores of 1 and 2 (Figure S3C).

Read clustering in control datasets
Control datasets serve the important purpose of helping to distinguish
read enrichment attributable to the immunoprecipitation step from

artifactual read clustering attributable to other experimental factors, both
known and unknown. It is, for example, well-appreciated that differential
chromatin shearing efficiency can lead to the overrepresentation of
areas of open chromatin (usually immediately surrounding transcribed
promoters) in sequencing libraries. This has been termed the “Sono-
seq” effect when attributed to sonication (Auerbach et al. 2009). In
addition, unknown copy number variants relative to the reference ge-
nome or sequence composition biases can give false-positive occupancy
calls. In particular, specifics of the amplification step in sequencing plat-
forms can introduce bias due to GC content (Ho et al. 2011).

In general, control datasets are not expected to exhibit a pattern
of significant read clustering similar in strength to that of successful
ChIP-seq datasets. In our own practice, under standard cross-linking
protocols, most do not. However, we noticed that a minority of control
datasets produce positive ChIP QCmetric scores along with prominent
cross-correlation peaks. Figure S1B shows examples of cross-correlation
plots for individual control datasets with all possible QC scores, from

Figure 3 Assessment of read cluster-
ing in control datasets. The numbers in
each box indicate the total number of
datasets/studies belonging to it. SPP
QC scores of 1 and 2 indicate a high
degree of read clustering in a dataset.
(A) Distribution of SPP QC scores for all
control datasets (IgG + input), IgG/
mock IP controls (IgG), and sonicated
inputs (inputs). (B) Fraction of studies
containing highly clustered inputs. The
distribution of the maximum SPP QC
score for all inputs in a dataset is
shown. (C) Examples of a highly clus-
tered input [mouse liver, upper two
tracks, (MacIsaac et al. 2010), QC
score of 2] and an input that does
not show high extent of read clustering
[mouse liver, lower two tracks (Soccio
et al. 2011), QC score of 21). The pro-
moter of theMASTL gene is shown. All
tracks are shown to the same scale and
reads mapping to the plus and minus
strands are displayed separately for bet-
ter visualization of the cross-correlation
between the two.
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22 to 2, and Figure 3C shows a browser snapshot of a region with
strong read enrichment in a highly clustered (QC score of 2) input
library. No such enrichment was observed in a different control library
from a similar biological source having a QC score of 21.

We asked how general this phenomenon is by examining the
distribution of QC scores of both IgG and input control datasets
(Figure 3A). Surprisingly, only 53.6% (156 out of 291) of control
datasets had QC scores of 22 or 21 and 25% (73 of 291) had a score
of 0, whereas 21.3% (62 of 291) exhibited a very high degree of read
clustering and received scores of 1 or 2. The highly clustered inputs
were notably more common among IgG controls than among input
chromatin controls (Figure 3A). Moreover, high read clustering was
more often found in low-complexity libraries (which are themselves
more common among IgG controls) (Figure S4, A and B).

We also examined how widespread control sample clustering is on
the level of individual GEO series/studies to see if the phenomenon is
restricted to a few larger studies. Figure 3B shows the distribution of the
maximal control sample QC score for all studies. Of the studies for
which control datasets were available, 32.8% (45 of 123) contained at
least one highly clustered control with a score of 1 or 2, and 29.2% (40
of 123) contained a control with a score of 0. Thus, control datasets
surprisingly often exhibit a high extent of read clustering similar to
that of ChIP-seq datasets. This is even more striking considering that
formaldehyde-assisted isolation of regulatory elements (FAIRE-seq) data
(an assay that is based on the preferential enrichment of open chromatin in
sonicated DNA and aims to achieve high read clustering) from ENCODE
usually have QC scores between 22 and 0, Moreover, the Sono-seq
datasets published by Auerbach et al. (2009) all have scores of 22.

We note that unless this effect is very strong and is associated with
notable genomic features such as promoters of genes, it can be difficult
to detect by the usual methods of visual inspection of signal tracks on
a genome browser. It is, however, readily apparent in cross-correlation
analysis and our results raise awareness of its existence. As mentioned,
one candidate explanation for this phenomenon is the previously
described “Sono-seq” effect. Using standard experimental protocols, this
effect has been rare in our experience; however, under more aggressive
cross-linking conditions, we have observed increased read clustering in
control samples (Figure S5). Notably, the original “Sono-seq” descrip-
tion focused on promoter regions, but we have also observed it over
distal regulatory elements, where its strength was even higher than at
promoters (Figure S5). Thus, variation in the extent of fixation, as well
as sonication, might be a substantial contributor to variation in read
clustering across the broader data collection. Another potential contrib-
uting factor is sequencing depth. Although the average sequencing
depth for highly clustered IgG and input controls is higher than that
of controls with negative QC scores (Figure S4, C and D) this by no
means explains all the clustering observed in controls. There are many
examples of more deeply sequenced input and IgG libraries with no
significant cross-correlation peaks and very few of them were sequenced
especially deeply (only eight control libraries had .4 · 107 reads not
desirable. Finally, “Sono-seq” need not be the only explanation. Whereas
a number of control datasets with QC scores of 2 exhibited higher read
coverage around promoters, others did not (Figure S6), suggesting at
least one additional source of unexplained read enrichment in control
samples. Because rich annotation of functional genomic elements out-
side promoter regions was not available for many cell types in our
survey, this phenomenon is a subject for future analyses.

DISCUSSION
We performed a systematic survey of ChIP quality for publicly
available vertebrate ChIP-seq datasets and found that more than half

score as high quality by our measures. This group comprises a set that
we believe can be used with confidence for integrative analyses. This
conclusion carries the important caveat that we could not assess the
specificity of the immune reagents used to perform the experiments.
which powerfully affects the biological meaning of the data.

A substantial minority of published datasets (between 20% and
45% of those examined) were of low or intermediate quality by our
metrics. This was true not only for individual libraries but also for the
best replicates from each study. In addition, we observed a substantial
number of low-complexity datasets and an unexpected group of highly
clustered control datasets. These observations underscore the wide-
spread variation in published ChIP-seq data. They also raised questions
about which kinds of conclusions in primary publications are more or
less sensitive to these aspects of data quality. In particular, global quality
analysis is useful for guiding subsequent re-use of published data that
require higher quality than was needed or achieved in the source study.

Data quality varied widely across “impact” levels. We separated
datasets into groups according to the 2011 Thomson Reuters Impact
Factor for the journal in which the corresponding article was pub-
lished and examined the distribution of QC scores in each group
(Figure S8). The group with highest impact factor ($25) contained
the largest fraction of datasets with a low QC score of 22 or 21. We
also examined the distribution of QC scores with respect to the year of
publication and found that the fraction of datasets with low scores has
stabilized in the past 3 yr at approximately 20% (Figure S7).

We emphasize that datasets scoring as low quality by the metrics
used here can, nevertheless, produce important biological discoveries.
For this reason, it would be an error to set a rigid “standard” that
every published dataset must meet. Instead, routine QC analysis can
make it easy to see when there is reason for concern about a given
dataset. It can also provide a first tier of guidance about what uses are
likely to be appropriate for a given dataset. As discussed previously,
the appropriate level of QC stringency depends on the specific goals of
the experiment and methods of analysis (Landt et al. 2012). In particular,
some analyses that are sensitive to false-negative results are particularly
vulnerable to inclusion of low-scoring datasets. For example, trying to
derive combinatorial TF occupancy rules is seriously compromised and
even misleading if a subset of the datasets included is suboptimal.

We illustrate this with a simple example from our own experience
(Figure 4). The MyoD and myogenin TFs are well-known regulators
of muscle differentiation (Yun andWold 1996) and C2C12 cells (Yaffe
and Saxel 1977) have been widely used to study the process because
they can be propagated in an undifferentiated myoblast state and
easily induced to differentiate into myocytes and myotubes. We have
performed several ChIP-seq experiments with these factors in differ-
entiated and undifferentiated C2C12 cells (G. DeSalvo et al., unpub-
lished data; A. Kirilusha et al., unpublished data; K. Fisher-Aylor et al.,
unpublished data), some of which have been highly successful,
whereas others were of poor or intermediate quality. Here, we exam-
ined the effect of weaker ChIP-seq datasets on combinatorial occu-
pancy analysis using a MyoD ChIP-seq dataset with very high QC
metrics and three myogenin datasets with very high, moderately good,
and very low metrics (Figure 4A). Using the best myogenin dataset,
we found a high degree of overlap between the binding sites of the two
factors (Figure 4B). When the medium-quality myogenin dataset was
used instead, a sizable group of MyoD-only sites emerged (Figure 4C)
and the erroneous conclusion that a substantial number of MyoD sites
lack myogenin binding could be reached if this was the only dataset
available for analysis. Finally, the poor-quality myogenin dataset con-
tains very few called peaks and, as a result, almost all MyoD sites show
no myogenin binding when it is used for analysis (Figure 4D).
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Recently, IDR analysis of replicate datasets (Li et al. 2011;
ENCODE Project Consortium 2012; Landt et al. 2012) emerged as a ro-
bust method for deriving lists of reproducible occupancy sites from
ChIP-seq datasets. IDR is based on differences in the consistency of
ranking (usually by signal strength as measured by read enrichment or
by statistical significance) for all identified peaks in a pair of ChIP-seq
replicates. A virtue of this approach is that it allows a statistically
robust set of binding sites to be derived largely independent of thresh-
olds and settings specific to a particular peak-calling algorithm. Ide-
ally, IDR would be used in conjunction with the quality metrics used
here (ENCODE Project Consortium 2012; Landt et al. 2012). How-
ever, replicate measurements do not exist for many of the datasets in
our survey of the historic. We expect that IDR will become common
practice as sequencing costs decline. Even when that happens, mea-
surements of the quality of individual datasets will remain important
because they capture specific information in addition to reproducibil-
ity and because IDR analysis is sensitive to the presence of poor-

quality replicates. An asymmetric pair consisting of one high-quality
and one poorer-quality dataset is dominated in IDR by the weaker
replicate, resulting in a shorter list of sites and a high false-negative
rate. Care should be exercised in such cases. Although the best ap-
proach is to obtain a second high-quality replicate, but if this is not
possible, special strategies for treating asymmetric replicates have been
devised (Landt et al. 2012).

The most perplexing observation was that a subset of control
datasets have extensive read clustering in the same range as successful
ChIP-seq experiments. In our own practice, we have rarely encoun-
tered such libraries and, to the best of our knowledge, there has been
no extensive treatment of this issue or its influence on data analysis
in the literature. The phenomenon occurred more frequently in
IgG controls than in input chromatin controls, although it is by no
means limited to the former. In theory, an IgG control should be
a superior representation of the true background noise in a ChIP-seq
sample because it incorporates biases introduced by the entire

Figure 4 Effect of suboptimal datasets
on combinatorial occupancy analysis.
The muscle-regulatory factors MyoD
and myogenin were assayed in
C2C12 myocytes at 60 hr after differ-
entiation. Shown are a single, highly
successful MyoD ChIP-seq dataset and
three myogenin ChIP-seq datasets,
one of which is similarly highly success-
ful (“myogenin 1”), a second weaker
one (“myogenin 2”), and a third one
that is an experimental failure (“myo-
genin 3”). (A) Quality control metrics.
(B, C, D) The extent of overlap of
MyoD and myogenin-binding sites as
determined using each of the three
myogenin datasets (see Materials and
Methods for data processing details).
MyoD and myogenin are mostly found
to bind to the same sites when inter-
actome determinations of comparable
strength are used. (B) A sizable group
of apparently MyoD-only sites emerges
when the medium-strength myogenin
dataset is used because of a large
number of false-negative myogenin
calls. (C) Finally, the unsuccessful myo-
genin ChIP reveals that most MyoD are
not shared by myogenin. (D) Numbers
listed in the red blocks corresponding
to each set of peak calls indicate size.
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immunoprecipitation process, in addition to any enrichments or
biases created by chromatin shearing. Using this logic, a simple
interpretation is that high read clustering in these controls correctly
identifies artifacts in the IP process. When high background sample
clustering is observed in control sample, we suggest that it merits
immediate investigation of its replicability and its impact on peak-
calling for the corresponding ChIP. samples. The fact that we also
observed a large number of IgG controls (Figure 3A) that showed no
such clustering, argues that this is not a general feature.

A crucial issue is the extent to which clustering in controls is also
present as experimental noise in ChIP libraries from the same
material. In other words, how well-matched are the control samples
with the corrresponding experimental samples, and how robust are
the controls? For example, a very strong Sono-seq effect in a control
sample is expected to give ChIP-seq libraries with high read clustering
that is a combination of true ChIP (antibody-specific) signal plus
Sono-seq-derived noise that covers promotors and enhancers in a non-
specific manner. Whereas most contemporary peak callers normalize
for enrichment in controls, very strong background noise will dimin-
ish the signal-to-noise ratio and adversely affect sensitivity. How se-
verely this affects the results will depend on the overlap between true
factor occupancy sites and regions of artifactual read enrichment (for
some factors this overlap may be negligible because they do not bind
to Sono-seq regions); on the magnitude of the Sono-seq effect; and on
the strength of the ChIP itself (sufficiently strong determinations are
not greatly affected). Conversely, if a ChIP-seq library has a strong
Sono-seq component and peak calling is performed against an imper-
fectly matched “control” sample in which the Sono-seq effect is of
significantly lower magnitude, false-positive peak calls will increase.
Unfortunately, in practice such cases are difficult to detect. They are
not flagged directly by current quality metrics and are best detected by
analyses specific to each study and factor, including specific motif
enrichment. especially when little is known about the expected true-
positive rates. Similar reasoning applies if the noise source is some-
thing other than Sono-seq.

Uniform retrospective quality assessment is resource-intensive and
will not be practically feasible because the number of ChIP-seq
datasets is growing exponentially. Retrospective analysis also comes
too late to influence the experiments themselves or to contribute to
the review process. A reasonable path forward would be to incorporate
routine data quality assessment into experimental analysis, review
for publication, and submission to public repositories, as a matter of
community practice. However, our results also strongly caution
against the blind and arbitrary application of our metrics (or others)
in the absence of experimental and biological context. The character of
the metrics used here reflects contemporary technology and the
quality scale has been calibrated based on factors and co-factors most
studied to date. We have seen that it is possible for good datasets to
receive low QC scores in certain special situations (e.g., very few sites
of occupancy in the genome). It is also possible for some poor or
mediocre datasets to receive high QC scores. For example, this can
happen as a side-product of strongly clustered backgrounds of the
kind discussed above. Some examples of datasets in which this might
be the case are shown in Figure S11. For factors that ChIP extremely
well, even datasets that are substantially suboptimal score highly. For
example, CTCF ChIP-seq datasets routinely identify 35,000–40,000
reproducible binding sites and have QC scores of 2; a dataset that
identifies only 15,000 sites is suboptimal given that knowledge; yet it
will still receive a positive QC score. For these reasons, the current
quality metrics are best used in the context of what is known about the
factor, the biological system, and the questions being asked.

Despite important nuances of interpretation, we suggest that using
ChIP quality metrics and making the results readily accessible will
facilitate better-informed data use by the wider community. An
important adjunct to routine QC annotation would be the ability, in
major public data repositories, to flag and explain the exceptional
cases for which QC scores should not be taken at face value. Finally,
quality metrics themselves will continue to improve as the field’s un-
derstanding of data structure, experimental artifacts, and the under-
lying biology all become more sophisticated. Provisions will be needed
for incorporating such advances into routine dataset annotation while
still achieving comparability through time.
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