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Abstract
Structural variations are widespread in the human genome and can serve as genetic markers in clinical and evolu-
tionary studies.With the advances in the next-generation sequencing technology, recent methods allow for identifi-
cation of structural variations with unprecedented resolution and accuracy. They also provide opportunities to
discover variants that could not be detected on conventional microarray-based platforms, such as dosage-invariant
chromosomal translocations and inversions. In this review, wewill describe some of the sequencing-based algorithms
for detection of structural variations and discuss the key issues in future development.
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INTRODUCTION
The human genome contains a diverse array of

genomic variants. Among the most well-known are

single nucleotide polymorphisms (SNPs), length

polymorphisms of microsatellite sequences, and

several types of structural variations (SVs). SVs

include dosage-altering variations such as insertions

and deletions, and dosage-invariant rearrangements

such as inversions and translocations. Deletions and

insertions larger than 1 kb [1] are often collectively

referred to as copy number variations (CNVs),

while smaller (<1 kb) insertions or deletions are

referred to as indels. SNPs have long been thought

to be the most common class of genetic variations and

have been used widely in linkage and genome-wide

association studies [2]. However, it is now recognized

that other types of variations are also widespread

in human genomes [3], even in the genomes of

phenotypically normal individuals [4]. The database

of genomic variants (DGV), for instance, lists about

60 000 CNVs, 850 inversions and 30 000 indels iden-

tified in healthy individuals (http://projects.tcag.ca/

variation/; 25th March 2010 update).

The impact of SVs has been demonstrated in

a wide range of applications including disease associ-

ation studies, cancer genomics, and evolutionary

studies [5–8]. Copy number changes, especially

those involving genes sensitive to a dosage effect,

are likely candidates that may result in phenotypic

consequences. For example, initial SV studies

successfully identified common CNVs in coding

regions associated with several complex disease

phenotypes such as autoimmune and infectious

disorders [9, 10] as well as those associated with

behavioral variation [11]. Small-scale deletion or

duplication of conserved regulatory regions can

affect the function of cis-regulated genes leading

to a disease phenotype, as shown in the case of

DAX1 [12] and SOX9 [13]. In recent large-scale

disease association studies, rare but statistically

Ruibin Xi is a postdoctoral research associate at the Center for Biomedical Informatics, Harvard Medical School. He is interested in

development of computational tools for analysis of next-generation sequencing data and applications of statistics and bioinformatics

methods to cancer genetics and epigenetics.

Tae-MinKim is a postdoctoral research associate at the Center for Biomedical Informatics, Harvard Medical School. He is interested

in developing bioinformatics methods for cancer and population genetics.

Peter Park is an Assistant Professor at Children’s Hospital Boston and Harvard Medical School. His laboratory focuses on compu-

tational analysis of high-throughput genomic data and its applications to cancer genomics and epigenomics.

Corresponding author. Peter J. Park, Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, 4th Floor, Boston,

MA 02115, USA. Tel: 617-432-7373; Fax: 617-432-0693; E-mail: peter_park@harvard.edu

BRIEFINGS IN FUNCTIONAL GENOMICS. VOL 9. NO 5. 405^415 doi:10.1093/bfgp/elq025

� The Author 2011. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/article/9/5-6/405/182244 by guest on 28 M

arch 2023



significant SVs were identified for complex diseases

such as autism and early onset obesity [14, 15]. With

the identified SVs encompassing or near the

disease-susceptibility genes, these studies not only

provide potential disease markers but also elucidate

the genetic architecture of genomic disorders and

complex disease traits.

Until recently, microarray-based platforms were

widely used to identify CNVs. Two pioneering

studies used bacterial artificial chromosome (BAC)

and oligonucleotide-based microarray comparative

genomic hybridization (array-CGH) [16, 17]; the

first generation genome-wide human CNV map

was also constructed using these platforms [18].

However, BAC-based approaches cannot detect

small CNVs or accurately map the boundaries of

CNVs due to the large size of BACs [19]. Even for

the newer oligonucleotide-based arrays containing

more than 1 million probes, the resolution is still

limited to 10–20 kb [20, 21]. Array-CGH also has

several technical limitations, including intrinsic noise

due to cross-hybridization and a limited dynamic

range, and cannot detect dosage-invariant changes

such as chromosomal translocations or inversions.

As an alternative to hybridization-based methods,

Sanger sequencing was also applied to identify gen-

omic variants in normal individual genomes, for ex-

ample using fosmid libraries [22, 23]. But the low

throughput and high cost of Sanger sequencing

imposed severe limitations on the number and size

of detected SVs. For example, Kidd et al. [23]

sequenced about 1 billion base pairs per individual

for genome-wide SV discovery and identified about

4000 SVs for eight individuals. This level of sequen-

cing by the Sanger method was too expensive and

time-consuming for general use.

Next-generation sequencing (NGS) has enabled

cost-effective, high-throughput sequencing [24].

The NGS platforms, first Roche 454 and later

Illumina/Solexa Genome Analyzer and Applied

Biosystems (ABI) SOLiD, generate orders of magni-

tude more sequences than the standard gel capillary-

based technology. For instance, HiSeq2000, the

latest model from Illumina, allows the researchers

to obtain 30� coverage data for two human gen-

omes in a single run. The NGS technology has been

employed in all major areas of genetics and genom-

ics. Among the major consoritum projects enabled

by this technology are the 1000 genome project

(http://www.1000genomes.org/), which aims to

provide a comprehensive catalog of human genetic

variation by sequencing a large number of people,

and The Cancer Genome Atlas (TCGA) project

(http://cancergenome.nih.gov/), which aims to gen-

erate a multi-dimensional genomic characterization

of major tumor types.

These NGS platforms have also been used to

examine SV. In a pioneering SV study using NGS,

Korbel et al. [25] sequenced over 5 billion base pairs

from two human genomes using the Roche 454 plat-

form and identified 892 indels, 122 inverstions and

283 translocations. Since then, many have investi-

gated SVs using NGS data with various algorithms.

Most current SV detection algorithms adopt the

‘comparison-versus-reference’ strategy, in which

they first align the short sequencing reads from the

genome of interest to a known reference genome

and then analyze the mapping signatures that could

indicate SVs.

One simple feature to consider is the tag density

along the genomic coordinates. Regions with more

reads than expected would indicate copy gains in the

sequenced genome, and vice versa for copy losses.

The signature left by dosage-invariant SVs are more

complex and generally cannot be detected by

single-end sequencing used for tag counting. In the

past year or two, however, the paired-end sequen-

cing technology and protocols have become mature

enough to be commonly used for detection of SVs.

Briefly, paired-end reads (called ‘mate pairs’ when

there is a long insertion in between) are generated

by sequencing from both ends of the DNA library

fragments whose sizes are approximately known

(insert size). Some paired-end sequencing protocols

involve circularization of the DNA segments that can

generate paired-end reads with a larger insert size

(usually several kilobase). The other way is to directly

sequence both ends of the size-selected DNA frag-

ments, generating paired-end reads with tighter

insert size. The advantage of a large insert size in

the first technique is that it is better at detecting

large SVs. The second technique, on the other

hand, provides higher resolution and is more power-

ful for detecting smaller SVs.

In this article, we will review currently available

SV-detecting algorithms that utilize NGS data

(Table 1). These algorithms can be classified into

two types according to the read-mapping signatures

they use: algorithms that search for regions with

abnormal tag counts and algorithms that survey the

configurations of the paired-end mappings (PEMs).

In the following, we will discuss these two classes of
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algorithms in two separate sections. Then, we will

address the future research directions and conclude

the article.

ALGORIGHMS BASEDON TAG
DENSITY
Most of the tag density-based algorithms assume that

the sequence reads are single-end reads, though they

may also be applied to paired-end data. The general

strategy of these algorithms is to search for genomic

regions whose tag counts are significantly different

from the expected counts. In an ideal case, if a ‘con-

trol’ genome is available, the expected number is

estimated from that genome. If there is no such

genome, an assumption has to be made on the

expected distribution of reads (see below). These

tag density-based algorithms perform best at detect-

ing large CNVs. As the CNV size increases, both

sensitivity and specificity of the algorithms increase.

However, these algorithms generally can only detect

dosage-altering SVs such as indels and CNVs and

cannot detect dosage-invariant SVs such as inversions

and translocations.

Methods using depth of coverage
In a method based on depth of coverage (DOC), a

genome is usually partitioned into non-overlapping

windows and the tag counts in the windows

are taken as a measure of DOC. Candidate SVs

are usually determined as consecutive genomic win-

dows in which the observed DOC is substantially

different from the expected. The basic assumption

of DOC-based methods is that the sequencing

reads are randomly sampled with equal probability

from any location on the sequenced genome. Thus,

after aligning these reads to the reference genome,

the read density of a given genomic window should

be proportional to the local copy number.

DOC-based methods are more cost-effective com-

pared with the methods that need a control genome.

However, significantly high or low read density is

not necessarily caused by copy number changes

since many other factors impact the local tag density.

For example, current NGS platforms have GC-bias

[26], some genomic regions are also more open and

thus are fragmented more easily, and mappability of

short reads is not constant across the genome [27].

These factors can affect local sequencing depth in the

absence of actual copy number differences. The

effect due to variation in mappability can be cor-

rected computationally but other effects are more

difficult to mitigate.

Many investigators have used DOC-based meth-

ods for SV discoveries [28–32]. For example, Yoon

et al. [32] developed an algorithm called event-wise

testing (EWT) for SV identification based on DOC.

Their algorithm first counts tags in 100bp windows,

corrects the tag counts for GC content and uses the

adjusted tag count as the measure of DOC. Then,

the authors convert the adjusted tag counts to

Z-statistics and assign an upper-tail (for duplication)

and a lower-tail (for deletion) P-value to each

window. An interval consisting of l windows is

called an unusual event for duplication (deletion) if

all upper-tail (lower-tail) P-values of its l windows

Table 1: SVdetection algorithms

Algorithm Data
type

Control Insertion Deletion Inversion Inter-
chromosomal
translocation

Intra-
chromosomal
translocation

Copy
change

Reference

EWT Single end No 3 (>100bp) 3 (>100bp) 3 32
MrFast Single end No 3 3 3 30
CNV-seq Single end Yes 3 3 3 35
Seg-seq Single end Yes 3 3 3 33
rSW-seq Single end Yes 3 3 3 34
VariationHunter Paired end No 3 3 3 37, 38
MoDIL Paired end No 3 (10^50bp) 3 (10^50bp) 39
BreakDancer Paired end No 3 3 3 3 3 41
PEMer Paired end No 3 3 3 3 3 42
GASV Paired end No 3 3 3 3 3 43
HYDRA Paired end No 3 3 3 3 3 40
Pindel Paired end No 3 (1^20bp) 3 (1^10bp) 50
NovelSeq Paired end No 3 (novel insertion) 36
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are less than a specified threshold. This threshold

is constant for the intervals of the same size, but it

increases as the interval gets larger (increase in l).
Lastly, EWT reports these events after some post-

processing. The authors claimed that, for their 30�

coverage data, the use of 100bp window allowed

them to approximate the distribution of tag count

by normal distribution without sacrificing too much

resolution. But the choice of window size for data

sets with different coverage was not discussed.

Without a control genome, however, this approach

has limited power to detect small insertions and

deletions.

Algorithms using case versus control data
set
The SV detection algorithms that utilize the reads

from a control genome suffer less from the sequen-

cing biases such as those introduced by variable GC

content of genomic fragments, since one could reas-

onably assume that these biases for case and control

genome are similar and that they should be cancelled

out when the case is compared with the control. The

general strategy of this class of algorithms is to look

for the genomic regions in which there are signifi-

cantly more (or fewer) case reads than the control

reads (Figure 1). This strategy can be used for iden-

tification of disease-related genomic variants (e.g.

comparison of tumor genome versus matched

normal genome) [33, 34] as well as for comparison

between normal genomes for SV screening [35]. The

disadvantage of sequencing a control genome of

course is that it doubles the cost.

One common method for analyzing case/control

sequencing data is to partition the genome into small

windows of fixed size and use multiple testing pro-

cedures to find the windows in which the case

genome has significantly greater or fewer reads

than the control. The choice of the window size is

essential for this method. Too large a window would

sacrifice the resolution; too small a window would

not give enough power for detecting low copy

change regions. Xie and Tammi [35] proposed an

algorithm CNV-seq to calculate the best window

size given a significance level, a log2 copy ratio

threshold and the coverage of the data. Their algo-

rithm models the number of short reads in a genomic

region as following a Poisson distribution. When the

best window size is determined, CNV-seq identifies

the windows in which copy ratios between the case

and control are significantly different from 1. Since

CNV-seq linearly scans the genome using sliding

windows of fixed size, it is computationally fast.

The estimation of parameters in the Poisson model

used by CNV-seq essentially assumes a uniform dis-

tribution of the tags on the reference genome and

that the only factor that affects the distribution of the

tags is the copy number. Therefore, a Poisson distri-

bution alone is too simple a model for the distribu-

tion of tags and more sophisticated statistical models

are required.

The algorithms based on a multiple testing pro-

cedure such as CNV-seq usually only identify win-

dows with significant differences in tag counts. One

has to use a further window-merging step to estimate

the breakpoint positions and distinguish focal CNVs

from the surrounding large CNVs. Having fixed-size

windows would miss some small but significant copy

change regions. Chiang et al. [33] instead adopted

another strategy and proposed an algorithm called

SegSeq. They focused on the identification of break-

points rather than CNV regions. Similar to

CNV-seq, SegSeq also assumes the numbers of

tumor (case) and normal (control) reads in a given

genomic region follow Poisson distributions. Given a

position that has at least one tumor read, SegSeq

compares its left and right neighboring windows

and calculates a P-value of copy-ratio change based

on the Poisson model. If the P-value is less than a

pre-specified significance level Pini, the position will

be viewed as a potential breakpoint. Notably, the

neighboring windows are chosen to contain a fixed

number of normal reads (default is 400 normal

reads). As a result, the window size will be smaller

Figure 1: CNVdetection using single-end reads with a
control (reference) genome. The triangles represent
mapped read positions along the case and control gen-
omes. Regions in which the tag counts are different
with statistical significance are identified as potential
CNVs.
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(larger) in the genomic regions with more (less)

normal reads. Then, SegSeq iteratively compares

the segments demarcated by the candidate break-

points and joins the segments that are not signifi-

cantly different at a new significant level Pmerg The

P-value in the merging step is calculated based on the

total number of tumor and normal reads in the

segments rather than the reads in the local windows,

and hence it is generally different from the P-value

calculated in the local change point identification

step. The advantages of SegSeq include its ability

of detecting focal CNV events embedded in a

larger CNV event and its precise estimation of break-

points. But, the P-value is also computed based on

Poisson model and hence factors other than copy

number change can result in a highly significant

P-value. SegSeq also has three parameters that

require tuning and the results can be sensitive to

the parameters.

ALGORITHMS FOR SV DETECTION
USING PEM
The general strategy for SV detection using PEMs

is to align the paired-end reads from a sequenced

genome onto the reference genome and look for

‘discordant’ PEMs that may indicate the presence

of SVs nearby. A concordant or discordant mapping

of the two ends of a paired-end read is determined

by their mapped orientations and by comparing their

mapped distances with the known insert size. This

strategy was first carried out on a large-scale by

Tuzun et al. [22] and has been adopted by most SV

detection algorithms using PEMs. Advantages of

PEM-based methods include the ability to detect

dosage-invariant SVs, higher sensitivity for detecting

smaller SVs, and the precision of localizing the

breakpoint. But these algorithms have limited

power in detecting insertions larger than the insert

size. In the following, we will first discuss the

configurations of PEMs at the presence of various

types of SVs and then review the current algorithms

based on PEMs.

Configurations of discordant PEMs
Different SVs can lead to different classes of discord-

ant paired-end reads. The most obvious discordant

PEMs are those with their two ends mapped to dif-

ferent reference chromosomes (Figure 2F), most

likely reflecting an inter-chromosomal translocation.

Other types of discordant PEMs are less obvious and

require a comparison of the distance between the

two mapped positions of a read to its expected

distance based on the insert size. The target insert

size is known in a given experiment, but the actual

sizes are variable due to experimental noise. The

distribution of the distances nonetheless can be esti-

mated from the mapped distances on the reference

genome [22]. If the distance between the two ends

on the reference is significantly larger than the esti-

mated insert size, the read is likely to contain a

deletion (Figure 2A). Similarly, the pair whose

mapped distance is significantly smaller than the

insert size is likely to reflect an insertion on the

sequenced genome (Figure 2B). A paired-end read

that spans one of the breakpoints of an inversion

could be distinguished by an ‘incorrect’ orientation

of the end lying in the inversion (Figure 2C).

Tandem duplication can also lead to discordant

paired-end reads. Suppose that a paired-end read

spans the breakpoint of a tandem-duplicated region

(Figure 2D) and the insert size is relatively small.

Then, we would observe a paired-end read whose

orientations are mapped correctly but the order of

the two ends is reversed. Figure 2E shows two types

of discordant paired-end reads that can result from

an intra-chromosomal translocation. One type of

paired-end read (in deep blue) behaves as a discord-

ant paired-end read coming from a deletion, and the

other type (in light blue) as a read from a tandem

duplication. In some cases, the configurations of the

PEMs can be misleading. For example, if there is a

tandem duplication and the insert size of the

paired-end read is larger than the duplicated se-

quence, the paired-end reads that span the break-

points would have mapped distances significantly

less than the insert size (Figure 3A and B) and

hence the configuration of the PEM would be simi-

lar to the discordant PEMs from an insertion. But

this could be misleading since one may mistakenly

conclude that there is an insertion between the pair

(Figure 3A).

In practice, PEMs may have even more compli-

cated configurations than discussed above. For

example, an insertion in the sequenced genome

may not exist in the reference genome, and this

can generate a paired-end read whose one end can

be mapped to the reference genome but the other

end cannot be mapped (Figure 2G). Furthermore,

combinations of the six basic structural variants

discussed above could exist in the sequenced

genome. These more complex configurations of
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discordant PEMs would be much more difficult to

disentangle.

Algorithms for analyzing the PEMs
Many PEM-based algorithms for SV detection have

been proposed [36–43]. These algorithms can be put

into two categories: clustering-based algorithms and

distribution-based algorithms. The idea behind

clustering-based algorithms is to classify the PEMs

as concordant and discordant pairs and then to cluster

the discordant PEMs based on the positions of the

paired-end reads. The discordant PEMs are the pairs

with incorrect orientations or the pairs with mapped

distances beyond a fixed range. For example, Tuzun

et al. [22] classified a PEM as a discordant pair if its

mapped distance is three SDs away from the mean

Figure 2: Configurations of PEMs in various types of SVs. (A) Deletion.The paired-end read spans the breakpoint
of a deletion. Thus, the mapped distance of the paired-end reads is significantly larger than the insert size.
(B) Insertion. The paired-end reads spans an insertion, and the mapped distance significantly less than the insert
size. (C) Inversion. The read pair encompasses one breakpoint of an inversion and the right end is mapped with in-
correct orientation. (D) Tandem duplication. The read pair spans the middle breakpoint of a tandem duplication.
The PEM will have correct orientation but with reverse order. (E) Intra-chromosomal translocation. Two read
pairs span the two breakpoints of an intra-chromosomal translocation with one pair having a large mapped distance
and the other having correct orientation but their ordering reversed. (F) Inter-chromosomal translocation. The
two ends of the pair are mapped to different chromosomes. (G) One-end unmapped.The sequenced genome has a
DNA segment that does not exist in the reference genome.One end of the pair is mappable but the other is not.

Figure 3: The insert size is larger than the duplicated segment in a tandem duplication. (A) The read pair spans
the middle breakpoint. This could be misleading because one may mistakenly conclude that there is an insertion
between the pair. (B) The read pair spans one of the duplicated segments.

410 Xi et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bfg/article/9/5-6/405/182244 by guest on 28 M
arch 2023



insert size, while Korbel etal. [42] used simulations to

determine the expected range of concordant PEMs.

The discordant PEMs are clustered together if they

have the same type of configuration and span the

same SV. Then, those clusters with more than a

specified number of discordant PEMs (usually two

or more) are taken as potential SVs.

The early clustering-based methods only con-

sidered uniquely mapped paired-end reads and

removed the reads that have multiple alignments

before clustering. Hence, these methods generally

cannot detect SVs in the genomic regions rich in

repeats and segmental duplications. Recently,

Hormozdiari et al. [37] proposed an algorithm called

VaraitionHunter that utilizes the multiple alignable

reads and hence allows detection of SVs in the

repeat and segemental duplication-rich regions.

VariationHunter first uses MrFast [30] to get all

possible alignments of each read. A paired-end read

will be classified as discordant if none of its multiple

mappings is concordant. Then, VariationHunter

clusters the alignments of the discordant paired-end

reads. At this step, different alignments of one

paired-end read can belong to different clusters and

therefore support different SVs. To solve this prob-

lem, Hormozdiari et al. proposed to assign a ‘best’

alignment to the discordant paired-end read via mini-

mizing the total number of implied SVs, or, in other

words, via solving the maximum parsimony structural

variation (MPSV) problem.

Since the clustering-based methods classify the

mappings as discordant PEMs based on a fixed range

of mapped distances, they can only detect relatively

large indels. For example, if the fixed range is chosen

as within 3 SDs from the mean insert size, the inser-

tion of size about 2 SDs will not be identified, since

the paired-end reads encompassing this insertion

would have mapped distances about 2 SDs away

from the mean insert size and their mappings will be

classified as concordant. To address this question, Lee

et al. [39] proposed to detect these smaller SVs based

on the distribution of the mapped distances. The idea

of their algorithm MoDIL is to compare the local

distribution of the mapped distances to the genome

wide distribution of insert sizes [called p(y)]. Given a

genomic locus i, if there were no indel nearby, the

local distribution of the mapped distance [called p(Ci)]

would be identical to the distribution p(y). However,

if there were a homozygous insertion or deletion

near the locus i, the distribution p(Ci) would be a

shift of the distribution p(y) (Figure 4A). In the case

of a heterozygous indel, the distribution p(Ci) will be a

mixture of the shifts of the distribution p(y) (with

different magnitude or direction) (Figure 4B).

The clustering-based methods and distribution-

based methods have little overlap. The clustering-

based methods are good at detecting large

translocations, inversions and relatively larger indels;

the distribution-based methods are better at detecting

smaller indels and cannot detect translocations

and inversions. Chen et al. [41] proposed to

combine the two methods and showed that they

can detect a wider range of SVs. Their algorithm

BreakDancer consists of two complementary

algorithms BreakDancerMax and BreakDancerMini.

BreakDancerMax is a clustering-based algorithm

Figure 4: Local distribution of mapped distances of the paired-end reads. (A) A homozygous deletion. The distri-
bution is shifted to right, where the gray curve is the global distribution of the mapped distance. (B) A heterozygous
deletion. The distribution is a mixture of two distributions and therefore is a bimodal distribution.
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and is designed for detecting larger translocations,

inversions and larger indels, and BreakDancerMini

is designed to detect small indels that cannot be

identified by BreakDancerMax. Given that no

single algorithm is likely to detect all types of SVs

equally well, a judicious combination of multiple

complimentary methods is likely to be a fruitful

approach.

DISCUSSION
The performance of these algorithms depends on the

accuracy and completeness of the aligned reads in

representing the underlying structure of SVs. There

are at least four major issues associated with the

current NGS data sets. The first is the elevated

sequencing error rate of NGS platforms, which is

still higher than the conventional Sanger sequencing,

especially at the first one or two positions and

increasing exponentially near the end of the read.

The sequencing errors cause a substantial loss of

reads during alignment [26]. Second, given the

short length of the sequenced bases, many reads do

not map uniquely to the genome. In particular,

nearly half of the human genome consists of repeti-

tive sequences but the reads from the repeat-rich

regions that align to multiple locations are typically

ignored. Thus, SVs in these regions are often not

effectively represented by uniquely alignable reads.

Instead of ignoring the reads with multiple align-

ments, it is also possible to build various models

to assign a ‘best’ position to these reads and use

them for SV discovery, as done, for example, in

VariationHunter and MoDIL. But the effect of

these strategies has not been carefully evaluated so

far. The short length of the reads also results in

uneven mappability of regions along the genome as

described earlier. Third, as also described in the con-

text of tag counting methods, certain regions of the

genomes are represented at a higher rate than others,

while others are the opposite. This is due to the GC

bias in sequencing steps [26], amplification errors (if

used), and an uneven likelihood of fragmentation

along the genome. Finally, many of the data sets

do not have sufficient coverage to infer all SVs

with statistical significance. The depth of sequencing

necessary for reasonable values of sensitivity and spe-

cificity has not been examined so far. With low

coverage data sets, the sensitivity of the SV detection

is limited, and algorithms for SV detction in this

context such as the one developed by Lee et al.
[44] will be important for studies with large cohorts.

There are also a number of situations in which it is

difficult to infer the correct genomic configuration.

For example, if the sequenced genome contains a

large insertion (larger than the read length and insert

size) that does not exist in the reference genome, the

short reads sequenced from this region will be

unalignable. In this case, de novo genome assembly

might be required to obtain the individual’s specific

sequences that do not exist in the reference genome.

A number of genome assembler using short reads have

been proposed [45, 46]; however, it is still difficult to

reconstruct a repeat-rich, diploid human genome

using short reads from current NGS platforms.

Recently, Hajirasouliha et al. [36] proposed an algo-

rithm called NovelSeq to identify long novel inser-

tions based on de novo assembly of unmapped reads.

The unmapped reads are first classified into ‘both-end

unmapped’ reads and only ‘one-end unmapped’

reads. The one-end unmapped reads are further clus-

tered according to the mapped position and strand of

the mapped ends. Then, denovo assembly is performed

on the both-end unmapped reads and each cluster of

one-end unmapped reads, making the computational

time significantly reduced compared with performing

denovo assembly on all the reads. At last, the assembled

contigs are reported as potential novel sequence in-

sertions in the genome.

Furthermore, if a read is sampled across the break-

point of a deletion (Figure 5A) or across a small

insertion (Figure 5B), that read also is not alignable

to the reference. In this case, a split mapping could

be employed, in which the read encompassing a

breakpoint may be split correctly and mapped to

Figure 5: Split mapping. (A) The read that spans the
breakpoint of a deletion can be split andmapped to two
positions on the reference genome. (B) The read that
contains a small insertion is mapped to the reference
genome afterremoving the small insertion.
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different positions (Figure 5). A recent study [47]

successfully identified fusion genes using split map-

ping of single-end read data. Although the single-

end-based approaches are clearly not as effective as

the paired-end-based methods in general [48], meth-

ods initially developed for single-end reads can still

be applied in some contexts, including the detection

of splicing events in RNA-seq data [49]. Recently,

Ye et al. [50] showed that if one end of the mate pair

can be uniquely mapped to the reference genome

but the other cannot be mapped, one can align the

unmappable end onto the reference genome using

split mapping and identify small indels. With one end

already mapped and insert size known, the search

space for split mapping for the other end becomes

much smaller and the mapping can be done efficient-

ly. It is of note that as the read length becomes

longer, the PEM-based strategies will be applicable

to single-end data, i.e., one can take the two ends of

a single read, treat and analyze them as a paired-end

read. In this case, the insert size is known exactly and

the determination of the discordant pairs would be

straightforward. Therefore, this method should give

more precise prediction of deletions and insertions,

and have a lower false positive rate.

For the PEM-based methods, the insert size is an

important parameter for SV detection. With the

same sequencing coverage, a larger insert size will

give higher physical coverage and hence will be

more cost-effective in detecting larger events. But,

a smaller insert size will be more sensitive at detecting

smaller events and in localizing breakpoints. Bashir

et al. [51] studied the insert size effect for the gene

fusion detection using PEMs, but more extensive

investigations on this topic are necessary in other

contexts. Other than single-end and paired-end

sequencing, Ritz et al. [52] proposed an algorithm

that uses strobe sequencing technology developed

by Pacific Biosciences to detect SVs. This sequencing

technology, though not widely available yet, can

generate ‘strobe reads’ consisting of multiple subreads

from a single DNA fragment. A strobe read with two

subreads is similar to a paired-end read, but a strobe

read with multiple subreads contains more informa-

tion about the genome than a paired-end read.

Therefore, strobe reads should allow one to detect

SVs with higher sensitivity and lower false positives,

as was shown in [52].

The tag density based methods and PEM-based

methods are two complementary approaches. While

the tag density based methods are better at detecting

larger dosage-altering SVs, the PEM-based methods

are better at smaller SV and dosage-invariant detec-

tion. Volik et al. [29] and Campbell et al. [31] used

both approaches for SV detection, but they only

applied them independently and did not combine

them to achieve higher specificity or to increase

the precision of breakpoints. As very long reads

and paired-end sequencing are becoming technically

feasible on many platforms, a method that combines

the two complementary approaches can make more

confident SV calls than the methods based only on

one approach, e.g. verifying a putative deletion dis-

covered by a PEM-based method by tag density in

that region. Finally, it is important to note that there

are many inefficiencies and a lack of rigor in these

methods. Given the rapid developments in sequen-

cing technology, these methods will have to be con-

tinually modified and improved in order to learn

more about SVs and their consequences.

Key Points

� SVs constitute a substantial fraction of genetic variation in
human genome, which may serve as valuable genetic markers in
clinical and evolutionary studies.

� NGS provides opportunities for genome-wide SV assay with
higher resolution and larger categories of variations than the
conventionalmicroarray-basedmethods.

� Current SVdetection algorithmsusingNGS data canbe categor-
ized according to the read-mapping signatures they use: tag
density-based algorithms and PEM-based algorithms The tag
density-based methods such as EWT, CNV-seq and SegSeq
measure copynumber changesby the observedversus expected
read counts (compared with a control genome or a model of
underlying tag distribution) in windows along chromosomes
and identify the regions with abnormal tag counts as potential
CNVs. The PEM-based methods, including VariationHunter,
MoDIL, BreakDancer and PEMer, make the SV calls by analyzing
the configurations of the discordant PEMs.
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