
*For correspondence:

peter_park@hms.harvard.edu

(PJP); Christopher.Walsh@

childrens.harvard.edu (CAW)

†These authors contributed

equally to this work

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 19

Received: 11 November 2015

Accepted: 01 February 2016

Published: 22 February 2016

Reviewing editor: Sean R Eddy,

Howard Hughes Medical

Institute, Harvard University,

United States

Copyright Evrony et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Resolving rates of mutation in the brain
using single-neuron genomics
Gilad D Evrony1,2,3,4,5†, Eunjung Lee6,7†, Peter J Park6,7*,

Christopher A Walsh1,2,3,4,5*

1Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston
Children’s Hospital, Boston, United States; 2Howard Hughes Medical Institute,
Boston Children’s Hospital, Boston, United States; 3Department of Neurology,
Harvard Medical School, Boston, United States; 4Department of Pediatrics, Harvard
Medical School, Boston, United States; 5Broad Institute of MIT and Harvard,
Cambridge, United States; 6Department of Biomedical Informatics, Harvard Medical
School, Boston, United States; 7Division of Genetics, Brigham and Women’s
Hospital, Boston, United States

Abstract Whether somatic mutations contribute functional diversity to brain cells is a long-

standing question. Single-neuron genomics enables direct measurement of somatic mutation rates

in human brain and promises to answer this question. A recent study (Upton et al., 2015) reported

high rates of somatic LINE-1 element (L1) retrotransposition in the hippocampus and cerebral

cortex that would have major implications for normal brain function, and suggested that these

events preferentially impact genes important for neuronal function. We identify aspects of the

single-cell sequencing approach, bioinformatic analysis, and validation methods that led to

thousands of artifacts being interpreted as somatic mutation events. Our reanalysis supports a

mutation frequency of approximately 0.2 events per cell, which is about fifty-fold lower than

reported, confirming that L1 elements mobilize in some human neurons but indicating that L1

mosaicism is not ubiquitous. Through consideration of the challenges identified, we provide a

foundation and framework for designing single-cell genomics studies.

DOI: 10.7554/eLife.12966.001

Introduction
The mechanisms that generate the immense morphological and functional diversity of neurons in the

human brain have long been a subject of speculation and controversy. The immune system, with its

systematic genomic rearrangements such as V(D)J recombination, and the ordered generation of

random somatic mutation coupled with a selection process, have suggested appealing analogies for

generating the cellular diversity of the nervous system, and have led to searches for analogous geno-

mic diversity in the brain (Muotri and Gage, 2006). LINE-1 (L1) elements are endogenous retrotrans-

posons that transcribe an RNA copy that is reverse-transcribed into a DNA copy that can then insert

into a novel site in the genome, creating mutations capable of disrupting or modifying the expres-

sion of genes in which they insert or neighboring genes (Goodier and Kazazian, 2008). Evolution-

arily, transposon mobilization is an essential cause of the generation of species diversity

(Cordaux and Batzer, 2009), so interest in possible L1 activity during brain development was

spurred by the discovery that these elements can mobilize in neuronal progenitor cells

(Coufal et al., 2009; Muotri et al., 2005).

The importance of any mutation process, such as retrotransposon mobilization, in generating neu-

ronal diversity is constrained by the rate at which mutation takes place, since if a given type of muta-

tion occurs infrequently, it is unlikely to be a useful generator of diversity. Single-cell sequencing is a
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powerful technology that has revealed and quantified previously unknown mechanisms of somatic

mutation in the human brain, providing a first proof of principle for the systematic measurement of

somatic mutation rates in any normal human tissue (Evrony et al., 2012; McConnell et al., 2013;

Cai et al., 2014; Evrony et al., 2015; Lodato et al., 2015). Single-cell sequencing can therefore

determine the extent to which somatic mutations diversify the genomes of cells in the brain, which is

foundational to understanding their potential functional impact in normal brains and possible roles

in neuropsychiatric diseases of unknown etiology (Poduri et al., 2013). L1 mobilization has been

observed at low rates using indirect genetic techniques such as a transgenic L1 reporter in rodent

brain in vivo (Muotri et al., 2005; 2010) and human progenitor cells in vitro (Coufal et al., 2009),

while studies profiling human brain bulk DNA suggested much higher rates (Baillie et al., 2011;

Bundo et al., 2014; Coufal et al., 2009). Single-cell sequencing has been proposed as the definitive

method to resolve these disparate estimates (Erwin et al., 2014; Goodier, 2014).

A recent single-cell sequencing study (Upton et al., 2015) reported high rates of somatic L1 ret-

rotransposition in the hippocampus (13.7 per neuron on average) and cerebral cortex (16.3 per neu-

ron), and suggested that L1 retrotransposition was "ubiquitous". Such a high rate of

retrotransposition could present it as a possibly essential event in neurogenesis and would have

major implications for brain function. Here we describe experimental artifacts that elevated the

study’s apparent rate of somatic retrotransposition by >50-fold. Reanalysis of their data while filter-

ing these artifacts generates a consensus that retrotransposition does occur in developing brain but

at a much lower rate consistent with prior single-cell studies (Evrony et al., 2012; Evrony et al.,

2015), thereby constraining the range of possible functional roles for retrotransposition in the brain.

eLife digest The human brain harbors perhaps the most diverse collection of cells among any

organ in the body, consisting of neurons and other cells with many different shapes and behaviors.

The mechanisms that create this diversity have been a long-standing area of investigation. While

neurons can become more diverse through changes in the activity of genes during development and

in response to experiences, it has been speculated that genetic differences among neurons may also

play a role.

The complete set of genes found in an individual is known as its genome. It is often assumed that

each cell in an individual’s brain has an identical genome. However, mutations accumulate in cells

during the lifetime of an individual such that every brain cell may in fact contain a unique set of

genetic mutations. The extent and types of such genetic mutations have only recently become

accessible using techniques that can examine the genomes of single-cells. Some of these genetic

differences may result from the activity of short sections of DNA called retrotransposons, which can

copy themselves and move to a different place in the genome. This can introduce genetic mutations

that alter how the cell works.

Multiple studies have shown that retrotransposon-related mutations are present in human brain

cells. Indeed, in 2015 a group of researchers suggested that every neuron in two brain regions

called the cortex and the hippocampus contains as many as 16 retrotransposon-related mutations

on average, which suggests that retrotransposons may play an essential role in the healthy brain.

However, these findings contrasted with previous studies that had shown much fewer mutations.

Now, Evrony, Lee et al. have analyzed the data from the 2015 study that led the previous

researchers to interpret some artifacts as retrotransposon mutations. Reanalysing the data

confirmed that these mutations do indeed occur; however, they are around 50 times less common

than had been suggested by the earlier study.

This suggests that retrotranspons are more likely to be occasional sources of rare variation or

disease, rather than essential contributors to normal brain activity in humans. Further work is needed

to examine the rate of these and other types of mutations in different cell types and brain regions,

and at different developmental stages. However, to ensure that these studies are robust and

reliable, Evrony, Lee et al. also outline a framework to aid the design and analysis of future studies.

DOI: 10.7554/eLife.12966.002
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Our discussion of the challenges in single-cell sequencing may provide a useful framework for the

design and analysis of single-cell genomics studies.

Results

Single-cell L1 PCR validation
Upton et al. isolated single neuronal cells from postmortem human brains and amplified their

genomes using the MALBAC method (Zong et al., 2012). They then profiled human-specific L1 ele-

ments (L1Hs) using their RC-seq method (Shukla et al., 2013; Upton et al., 2015) that captures and

amplifies both the 5’ and 3’ ends of L1Hs elements via oligonucleotide hybridization and PCR, hence

providing sequence data that identify L1Hs insertion sites in the genome.

Although whole genome amplification methods have remarkable abilities to amplify picogram

quantities of DNA from a single cell into microgram quantities, chimeric DNA molecules falsely link-

ing unrelated DNA fragments are well known to arise during single-cell genome amplification

(Macaulay and Voet, 2014). Chimera artifacts also arise during ligation and PCR steps of sequenc-

ing library preparation (Kircher et al., 2012; Quail et al., 2008), processes integral to the RC-seq

method. Chimeric sequences can create a DNA fragment connecting a LINE element to an unrelated

portion of the genome, creating the appearance of biological LINE mobilization (Figure 1—figure

supplement 1A–B). Sequence analysis of Upton et al.’s putative PCR-validated candidates (Table S2

of Upton et al.) demonstrates that more than half of them (7 of 13) are chimera artifacts that could

not have been generated by the process of L1 mobilization (Supplementary file 1). Some chimeras

originated immediately downstream of germline L1Hs/L1Pa elements that are incapable of retro-

transposition, because the L1 elements are truncated, are from an old, inactive L1 subfamily, or con-

tain numerous inactivating mutations (Figure 1B; Supplementary file 1). In other cases, L1 5’ and 3’

junction chimeras originating from distinct L1 elements were misinterpreted as two ends of the same

L1 (Figures 1B–C; Supplementary file 1). Some candidates lack poly-A tails (Figure 1C;

Supplementary file 1), a key feature of retrotransposon insertions. Although the remaining 6/13

PCR-validated insertions lack clear evidence of being chimeras, the possibility cannot be excluded

based on the limited PCR validation performed, and they are likely also chimeras because each is

supported by only 1 or 2 sequencing reads (see below). The presence of chimeric artifacts among a

set of insertions passing limited PCR validation supports the importance of additional careful analysis

of candidate L1 sequences to help define more accurate rates of retrotransposition.

Upton et al. performed 3’ junction PCR validation for 10 RC-seq candidates for which they had

detected the 5’end, and while 3’ junction validation is technically straightforward, it failed for all 10.

Whereas the authors attribute their validation failure to poly-A tails obstructing PCR amplification,

poly-A tails do not obstruct PCR: the single-cell RC-seq method used by Upton et al. itself entails

three PCR steps in which L1 3’ junctions are amplified, and 3’ junction PCR is the standard validation

approach used in L1 studies (Ewing and Kazazian, 2010; Grandi et al., 2012; Huang et al., 2010;

Iskow et al., 2010). The failure of all 10/10 3’ junction validation attempts suggests a high preva-

lence of false-positives among RC-seq candidates detected with only 5’ junction reads, which repre-

sent 27% of all candidate insertions.

Definitive validation of somatic insertions
“Full-length” validation is the most accurate method to screen out false-positive candidate somatic

insertions. A bona fide L1 insertion creates two genome breakpoints at the insertion site, one on

each end of the insertion (5’ and 3’), while a chimera has only one breakpoint at the called insertion

site (Figure 1A). Full-length cloning validation, in which the entire L1 insertion is amplified in a single

DNA molecule spanning both breakpoints (using primers based in the genomic sequence flanking

the L1), is therefore the only way to confirm that both breakpoints are present in the same DNA mol-

ecule as a bona fide insertion, as opposed to two different chimeric molecules (Figure 1A; Fig-

ure 1—figure supplement 1). However, Upton et al. did not perform full-length cloning validation

on any insertion. Two independent chimeras can even occur by chance in two different DNA mole-

cules/copies whose non-L1 sequences overlap the same genomic locus, giving the false appearance

of a target site duplication (TSD) (Figures 1B–C; Supplementary file 1). In single-cell sequencing,
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especially when read count is not used to filter candidates (see below), full-length cloning of at least

some candidate insertions is important to exclude chimera artifacts.

Instead of full-length cloning validation (Evrony et al., 2015; Stewart et al., 2011), Upton et al.

carried out multiple 5’ junction PCR reactions per candidate using primers spaced every 500 bp

along the ~6000 bp L1. Multiple PCR reactions, each with an L1 primer matching hundreds to thou-

sands of genomic loci, introduces additional mechanisms for generating false-positives. Some candi-

dates required nested PCR with 62 PCR cycles, an extremely high level of amplification, suggesting

that the targets are chimeras present at very low level in the single-cell amplified DNA.

The MALBAC method employed by Upton et al. for single-cell genome amplification probably

precludes definitive full-length cloning validation of some insertions, suggesting it is not an ideal

method for studying retrotransposition. MALBAC produces short amplicons (0.5–1.5kb) compared

to multiple displacement amplification (MDA) (10–50 kb amplicons) (Dean et al., 2002; Zhang et al.,

2015; Zong et al., 2012), so insertions longer than ~1.5 kb (~15–30% of somatic L1 insertions in

human cancer studies [Helman et al., 2014; Lee et al., 2012; Tubio et al., 2014]) would not be effi-

ciently validated in MALBAC single cells (Figure 1—figure supplements 1A and C).

Figure 1. Chimera artifacts in RC-seq. (A) Full-length (FL) PCR using primers flanking the insertion site is necessary for definitive validation of somatic

insertions in single cells in the setting of chimeras. One breakpoint per chimera DNA molecule refers to the breakpoint of the candidate insertion being

analyzed since a DNA molecule can in principle have multiple different chimera events each involving different loci (which would be unlikely to create a

structure that would validate by FL-PCR). For most RC-seq candidates, Upton et al. did not attempt 3’ or 5’ PCR for the computationally identified

junction and only performed this for the opposite junction. (B) Top schematic illustrates one of several methods for identifying L1 chimeras in next-

generation sequencing data such as RC-seq. Bottom schematic illustrates how two independent chimeras aligning to the same locus appear to have a

TSD. (C) An example somatic insertion candidate that passed Upton et al. single-junction PCR validation but derived from two independent chimera

artifacts. Yellow region is non-L1 sequence from chromosome 3 that allows tracing of the chimera to its source. L1Pa4 is an inactive L1 subfamily

(Hancks and Kazazian, 2012). See Supplementary file 1 (’RC-seq | Somatic L1 PCR’ sheet) for analyses of all somatic candidates passing Upton et al.

PCR validation. See also Figure 1—figure supplement 1.

DOI: 10.7554/eLife.12966.003

The following figure supplement is available for figure 1:

Figure supplement 1. Overview of single-cell L1 profiling methods and chimeras in the context of genome amplification, analysis, and PCR validation

DOI: 10.7554/eLife.12966.004
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The many chimeras among ‘validated’ somatic insertions come about because Upton et al. relied

solely on computational analysis of contig sequences (assembled from short sequencing reads) to fil-

ter chimeras and labeled most remaining candidates as putative somatic insertions. However,

sequence analysis of short contigs that do not span the full length of insertions can identify chimeras

but cannot rule them out. For example, 5’ junction chimeras originating from inside an L1 element or

3’ junction chimeras originating from within the poly-A tail cannot be distinguished from true inser-

tion breakpoints by sequence analysis alone and require further experiments (i.e., full-length cloning)

(Figure 1A). Furthermore, even some chimeras that can be identified computationally were not fil-

tered: one recurrent type of chimera artifact accounts for 16% of their candidates detected only at a

5’ junction (Supplementary file 1; see example candidate chr11:112602973). Further analyses, as

well as long-read sequencing (e.g., PacBio), may reveal additional ways to remove chimeras compu-

tationally by sequence analysis alone; but with short-read sequencing, even ideal sequence-based fil-

tering algorithms cannot filter chimeras originating from within L1.

L1 and chimera read count distributions
A core principle of next-generation sequencing analysis is the use of read counts to distinguish true

mutations from artifacts that inevitably arise during DNA sequencing (Robasky et al., 2014;

Sims et al., 2014). Multiple reads supporting a mutation serves the same role as replication does in

any scientific experiment, increasing the confidence that the finding is not an artifact. This is espe-

cially important in single-cell sequencing where chimeric DNA artifacts are more prevalent than in

standard sequencing (Macaulay and Voet, 2014). Essentially all major mutation-detection algo-

rithms use the signal strength (read count and often other parameters) of known true mutations and

false-positive events to predict the likelihood that individual candidate mutations are real and to

determine a signal cutoff (Chen et al., 2009; Cibulskis et al., 2013; DePristo et al., 2011;

Mills et al., 2011; 1000 Genomes Project Consortium, 2012). However, Upton et al. did not

employ a read count filter or signal model and therefore considered candidate insertions supported

by only a single read as equivalent to the smaller number of candidates with higher read support. As

a result, 97% (4634/4759) of their single-cell insertion calls were supported by a single Illumina

sequencing read and 99.6% by 1 or 2 reads; 94% of their >320,000 candidates from ’bulk’ DNA

were also supported by only 1 read (Figure 2A).

Upton et al.’s rationale for not using read counts in their analysis is their suggestion that in their

single-cell RC-seq method, chimeras appear at higher read counts than true insertions such that

nearly all true insertions would be detected by only 1 read. This proposal can be tested using the

read count distribution of a ’gold standard’ mutation set. In single-cell samples, somatic insertions

should appear at the same signal level distribution as germline known non-reference L1 insertions

(KNR), which are population-polymorphic L1 insertions absent from the reference human genome

but identified in prior L1 studies. Germline KNR insertions share the same sequence characteristics

as somatic insertions (Helman et al., 2014; Lee et al., 2012; Tubio et al., 2014) and bear no distin-

guishing feature that would lead to different read counts. Therefore, KNR insertions can be used to

directly test Upton et al.’s model that true insertions preferentially appear at lower read counts than

chimeras.

Using RC-seq single-cell germline KNR insertion data provided by the authors upon request, we

found that KNR insertions were detected by much higher read counts than candidate somatic inser-

tions. In single-cell RC-seq samples, 53%, 24% and 20% of the 4049 calls of high-confidence gold-

standard KNR insertions were detected with �3, �20 and �40 reads per sample, respectively; only

32% were detected with only 1 read (Figure 2A; Figure 2—figure supplement 1A). In contrast,

97% (4634/4759) of single-cell somatic insertion candidates were detected with only 1 read and only

0.4% (20/4759) with �3 reads (Figure 2A). The strikingly higher read depths of gold-standard germ-

line KNR L1 insertions relative to somatic insertion candidates in the same experiment is consistent

with the vast majority of claimed somatic insertions not corresponding to bona fide insertions.

Analysis of RC-seq L1 junction detection rates provides additional evidence that nearly all somatic

candidates are false-positives (Figure 2B). 11% of single-cell KNR insertion calls were detected at

both L1 (5’ and 3’) junctions, whereas >250-fold less— only 0.04% (2/4682)— of single-cell somatic

insertion candidates were detected at both junctions. Sequence analysis shows 8 of the 12 hippo-

campal single-cell somatic candidates detected at both junctions (including candidates in which each

junction was detected in a different sample) are chimera artifacts (Supplementary file 1). The
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Figure 2. RC-seq read count distributions and junction detection rates of somatic insertion candidates are inconsistent with known true germline

insertions. (A) RC-seq read count distributions of bulk and single-cell germline known non-reference (KNR) insertion and somatic candidate calls (see

’Materials and methods’). Inset schematics and labels ’a’ to ’d’ illustrate key findings. Label ’a’ (inset schematic) points to the subset of KNR insertions

appearing at low read counts in single-cells, distinct from the distribution of KNR insertions in bulk samples, due to dropout/non-uniformity at length

scales < 30 kb inherent to MALBAC amplification (Appendix 2). These factors are also responsible for the broader distribution of higher read count

KNR insertions (label ’b’) in single-cell versus bulk samples. Areas labeled ’c’ in the top and bottom graphs highlight the population of single-cell KNR

insertions at high read counts that is absent from single-cell somatic candidates. KNR insertions present in a single copy per cell (chrX insertions in male

samples) show the same pattern (Figure 2—figure supplement 1A). Instead, single-cell somatic candidates appear at very low read counts (label ’d’,

inset schematic). The likely bona fide insertion detected in two single cells on chromosome 6 is labeled and appears at high read count relative to other

somatic candidates. Purple dashed line indicates threshold of > 2 reads used for calculation of somatic retrotransposition rates. See also Figure 2—

figure supplement 1. (B) L1 junction detection rates in bulk and single-cell RC-seq (see ’Materials and methods’). Fewer KNR insertions are detected at

both (5’ and 3’) junctions in single-cell versus bulk samples due to MALBAC amplification dropout/non-uniformity. A significantly lower fraction of

single-cell somatic candidates are detected at both junctions relative to single-cell KNR insertions, confirming the vast majority of somatic candidates

are false-positives.

DOI: 10.7554/eLife.12966.005

The following figure supplement is available for figure 2:

Figure supplement 1. Read count distributions of known germline insertions in different L1 profiling methods.

DOI: 10.7554/eLife.12966.006
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remainder cannot be excluded as chimeras without full-length PCR validation. Furthermore, RC-seq

bulk somatic candidates have a non-canonical distribution of large TSD sizes, inconsistent with nearly

all prior L1 research (Appendix 1). Analysis of 10 randomly selected candidates with large (>50 bp)

TSDs found all were chimera artifacts (Supplementary file 1).

Corrected RC-seq somatic insertion rates
A more plausible RC-seq somatic insertion rate can be calculated using a read count threshold cali-

brated to germline high-confidence KNR insertions as a gold standard. A read count threshold of >

2 optimizes sensitivity and specificity, maintaining detection of 53% of true positive KNR insertion

calls across all single cells (Figure 2A) and a per-cell KNR detection sensitivity of 24% (Figure 3A),

while excluding ~99.6% of false-positive calls (see ’Materials and methods’). Only 20 somatic inser-

tion candidates supported by >2 reads were detected across all 170 cells, and 12 of these were chi-

meras upon further sequence analysis (Supplementary file 1). The remaining 8 candidates yield a

sensitivity-corrected somatic insertion rate estimate of 0.19 per cell, with no significant difference in

rates between cell types (hippocampal neurons and glia, cortical neurons, and AGS hippocampal

neurons) (p = 0.98, ANOVA) (Figure 3B). 95% of single cells did not have any somatic insertion can-

didates (excluding chimeras) supported by >2 sequencing reads. These RC-seq somatic insertion

rates are quite consistent with rates previously estimated by L1 insertion profiling (L1-IP) in single

cortical and caudate neurons (0.07 ± 0.15 (SD); p = 0.54, ANOVA) (Evrony et al., 2012), and using

single-neuron whole-genome sequencing (0.18 ± 0.47 (SD); p = 0.37, ANOVA) (Evrony et al., 2015),

suggesting a notable consensus by three methods confirming that somatic L1 insertions are present

in human brain, but fewer than one per average genome.

Notably, 2 of the 8 somatic insertion candidates detected following read count filtering corre-

spond to a single, likely bona fide L1Hs insertion in neuron #11 (12 reads) and glial cell #2 (6 reads)

from the hippocampus of individual 45 (Supplementary file 1). This intergenic insertion shows RC-

seq reads capturing both 5’ and 3’ junctions bearing all the hallmarks of a true retrotransposition

event: a TSD, poly-A tail, and a 3’ transduction that traces its source to a population-polymorphic

(KNR) L1 on chromosome 2 that was identified in a prior L1 profiling study (Iskow et al., 2010). This

same somatic insertion was also detected in glial cells #7 and #8 of the individual, each with 2 reads.

Upton et al. highlighted this insertion for its detection in multiple cells but did not note its high-sig-

nal level—this candidate had the 5th and 9th highest read counts of all 4759 somatic candidate calls

(Figure 2A). This clonal retrotransposon event also showed >1 read in all 4 cells in which it was

detected and was detected at both 5’ and 3’ junctions. The basic signal characteristics of this one

clear somatic insertion event make it dramatically different from those of the thousands of other

somatic insertions proposed by Upton et al. (Figures 2A–B).

Single-cell MALBAC performance
MALBAC-amplified single cells profiled by RC-seq had reduced performance relative to bulk RC-seq

in terms of gold-standard KNR insertion read counts and junction detection rates (Figures 2A–B),

and had significantly lower sensitivity for KNR insertions (higher dropout) than L1 profiling of MDA-

amplified single cells (Figure 3A; Figure 3—figure supplement 1). We therefore further studied the

quality of Upton et al.’s single cells and the performance of the MALBAC method (Zong et al.,

2012) that the authors used for single-cell genome amplification.

Analysis of Upton et al.’s pre-RC-seq whole-genome sequencing of MALBAC-amplified single

cells shows that at genomic scales < 50 kb (high-resolution view), which includes the size range of

retrotransposons and single-nucleotide variants (SNV), there are systematic ~1 kb peaks of high

genome amplification separated by troughs of low amplification or complete dropout (Figure 4A).

These peaks and troughs often occur in the same locations as in MALBAC single cells from an unre-

lated study by Zong et al. (2012) (Figure 4A), suggesting that this non-uniformity in genome ampli-

fication is inherent to MALBAC. In contrast, MDA single cells show significantly better uniformity of

genome amplification at these size scales (Figure 4A). The non-uniformity of MALBAC at genomic

scales encompassing the size range of retrotransposon elements likely explains the subset of true

KNR insertions appearing at low read counts (Figure 2A) and the low sensitivity (high allelic dropout)

of single-cell RC-seq (Figure 3A). It also explains MALBAC’s lower overall breadth of genome-wide
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Figure 3. RC-seq sensitivity for gold-standard true insertions and corrected RC-seq somatic insertion rates. (A) Average sensitivity of single-cell RC-seq

for gold-standard KNR insertions at different read count thresholds. Sensitivity of single-cell L1-IP (Evrony et al., 2012) and single-cell WGS

(Evrony et al., 2015) are shown for comparison. Note, the average number of uniquely mapped reads in the targeted enrichment methods of L1-IP

and RC-seq are 3.2 and 16.7 million reads, respectively, so L1-IP achieves higher sensitivity than RC-seq with fewer reads even with a more liberal read

count threshold for RC-seq. Gold-standard KNR insertions are defined for each single-cell method as in Figures 2A and Figure 2—figure supplement

1B–C. Error bars ± SD. As illustrated in the schematic on the left, Sm is the number of single cells in the study (i.e. mA+mB+...), and Sn is the number of

gold-standard KNR insertions used to calculate sensitivity across the profiled individuals (i.e. nA+nB+...; as seen in the schematic, Sn increases as more

individuals are profiled). See also Figure 3—figure supplement 1. (B) Average RC-seq somatic insertion rates per cell. These are pre-PCR validation

rates, since Upton et al. did not attempt PCR validation for these somatic candidates. The percentage of cells without any candidates (above the

threshold of >2 reads and after excluding chimeras) is shown. See Supplementary file 1 ("RC-seq | Somatic L1 >2 reads" sheet) for analysis of all

somatic candidate sequences. Error bars ± SD.

DOI: 10.7554/eLife.12966.007

The following figure supplement is available for figure 3:

Figure supplement 1. Single-cell sensitivity of L1-profilng methods for gold-standard germline KNR insertions.

DOI: 10.7554/eLife.12966.008
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Figure 4. MDA and MALBAC single-cell genome amplification uniformity. (A) High-resolution coverage plots of MDA single neurons (Evrony et al.,

2015) and MALBAC single cells from Zong et al. (2012) and Upton et al. (2015). MALBAC samples show significant non-uniformity with systematic

high peaks (stars) and troughs of genome amplification. MALBAC single neurons from Upton et al. were pooled from hippocampus (n = 92 cells) and

cortex (n = 35 cells) of normal individuals to produce high-coverage samples for the plots. Pooling eliminates stochastic noise of individual cells but

preserves systematic non-uniformity inherent to MALBAC. Area shown is chr2:155,815,550–155,848,725 encompassing the region of one of the single-

cell RC-seq somatic L1 candidates detected with both 5’ and 3’ junctions (chr2:155,823,436). Red lines mark off-scale peaks. (B) Low-resolution (~500 kb

bin) genome-wide coverage plots of representative single cells from the above studies. MALBAC single cells from Zong et al. have significantly better

uniformity at these scales than MDA single neurons as measured by median absolute pairwise deviation (MAPD) and median absolute deviation from

Figure 4 continued on next page
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coverage at nucleotide resolution (i.e. higher locus dropout) relative to MDA (Figure 4—figure sup-

plement 2A).

At larger genomic scales of ~500 kb bins (low-resolution view), MALBAC single cells from Upton

et al. show significantly lower quality and higher variability among individual cells than both MAL-

BAC-amplified single cells from Zong et al. and MDA-amplified single neurons (Figure 4B; Fig-

ure 4—figure supplement 1A–B). Pooling of all 92 normal hippocampus single neurons from Upton

et al. shows performance commensurate with MALBAC single cells from Zong et al. (Figure 4B; Fig-

ure 4—figure supplement 1A–B), indicating that the low quality of Upton et al.’s single cells may

be due to stochastic factors preceding MALBAC, such as poor tissue quality, rather than MALBAC

itself. Of note, at these genomic scales, MALBAC single cells from Zong et al. have high reproduc-

ibility and better uniformity of genome coverage than MDA (Figure 4B; Figure 4—figure supple-

ment 1A–B) (Evrony et al., 2015), enabling MALBAC’s better performance in detection of large

copy number variants (Hou et al., 2013). Power spectral density measuring amplification uniformity

across all genomic scales confirmed better uniformity of MALBAC at large genomic scales (> 30 kb)

and better uniformity of MDA at small genomic scales (< 30 kb) (Figure 4C) (Evrony et al., 2015;

Zhang et al., 2015). The above and additional analyses are discussed further in Appendix 2. Alto-

gether, these results: a) suggest MALBAC and low quality single cells as contributors to single-cell

RC-seq sensitivity loss; b) emphasize the importance of single-cell quality control at genomic scales

relevant to the studied mutation type; and c) confirm that MALBAC and MDA each have advantages

at different genomic scales and for different mutation types but that MALBAC is not especially well-

suited for retrotransposon studies.

Discussion
Here, we have shown that L1 mosaicism is not "ubiquitous” in the hippocampus and that somatic

insertion rates in the recent paper by Upton et al. were elevated > 50-fold due to the informatic

analysis and a lack of definitive validation.

Read counts of true insertions versus chimeras
To justify not using a read count filter, Upton et al. state that “in single-cell RC-seq libraries, putative

chimeras are disproportionately likely to amplify efficiently and accrue high read

depth” (Upton et al., 2015). In other words, they are suggesting that their method preferentially

amplifies noise (chimeric sequences) instead of signal (true insertions). We could find no precedent

Figure 4 continued

the median (MDAD) scores (lower scores indicate higher uniformity) (Cai et al., 2014; Evrony et al., 2015). In contrast, individual MALBAC single cells

from Upton et al. have significantly lower quality than both MALBAC single cells from Zong et al. and MDA single neurons. Pooling of all 92 normal

hippocampus single neurons from Upton et al. achieves high uniformity (low MAPD/MDAD scores), indicating the low quality of individual single cells

from Upton et al. is due to stochastic noise, likely from factors preceding MALBAC amplification. Note, high-coverage MALBAC and MDA samples

from Zong et al. and Evrony et al. were subsampled to a lower read depth similar to read depth of Upton et al. samples, confirming prior analyses

showing uniformity quality metrics are not affected by sequencing depth in low resolution analyses (Evrony et al., 2015). (C) Power spectral density (y-

axis), which reflects the degree of read depth variability (uniformity) as a function of genomic spatial frequency (x-axis). Higher spatial frequencies (right

side of x-axis) reflect smaller genomic scales (i.e. higher resolution, as in Figure 4A), and lower spatial frequencies (left side of x-axis) reflect larger

genomic scales (i.e. lower resolution, as in Figure 4B). Plots show differences in MDA and MALBAC genome amplification uniformity across genomic

scales: MDA single cells have greater read depth variability at larger genomic scales than MALBAC single cells [label I], while MALBAC has greater read

depth variability at smaller genomic scales < 30 kb [label II] (i.e. scale of SNVs, small indels, retrotransposons; frequencies > ~3.5�10–5 bp), consistent

with high-resolution coverage plots (Figure 4A). MALBAC single cells from Upton et al. were pooled to obtain high-coverage samples for the analysis.

Plots for individual 1465 and SW480 samples were calculated in Evrony et al. (2015) and are presented again for comparison to Upton et al. samples.

Additional unrelated bulk sample NA12877 is plotted for comparison. See Appendix 2 for additional details, Figure 4—figure supplement 1 for

average MAPD/MDAD scores of single cells and additional coverage plots, and Figure 4—figure supplement 2 for basic genome coverage statistics.

DOI: 10.7554/eLife.12966.009

The following figure supplements are available for figure 4:

Figure supplement 1. MDA and MALBAC single-cell quality and low-resolution genome-wide amplification uniformity.

DOI: 10.7554/eLife.12966.010

Figure supplement 2. MDA and MALBAC genome coverage.

DOI: 10.7554/eLife.12966.011
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or chemical explanation for why PCR or next-generation sequencing would preferentially amplify chi-

meras, since there are no sequence features distinguishing chimeras from true insertions in small

DNA fragments that would cause preferential overamplification of the former in single-cell RC-seq.

In fact, prior single-neuron sequencing studies and chimera rates of Illumina libraries and MALBAC

show directly that chimeras are not preferentially amplified relative to true genomic sequence frag-

ments and true insertions (Appendix 3; Figure 2—figure supplement 1B–C; Figure 3—figure sup-

plement 1).

Indeed, the use of read counts for mutation analysis is integral to one of the prime purposes of

single-cell sequencing, a technology whose development was motivated by two goals: (a) tracking

which somatic mutations are present together in the same cells to enable lineage tracing; and (b)

achieving higher signal to noise ratios for somatic mutations, i.e. true mutation to false-positive read

count ratios. In single-cell sequencing, somatic mutations appear on average at the same signal level

as germline heterozygous mutations (i.e. 50% of reads at the locus), while the fraction of false variant

reads at a locus (e.g. sequencing errors, library PCR mutations, chimeras) is the same on average

regardless of the number of cells sequenced. Accordingly, decreasing the number of cells pooled

for sequencing increases the signal to noise ratio of somatic mutations (see Figure 5 for a simplified

mathematical framework for single-cell sequencing). Therefore, calling mutations supported by only

a single sequencing read is counter to a key feature and objective of single-cell sequencing. Further-

more, although Upton et al. present qPCR experiments as additional evidence for their findings, it is

important that the originators of that qPCR method consider single-cell analysis as definitive

(Erwin et al., 2014), and qPCR results are affected by target L1 specificity (Appendix 4).

Finally, we emphasize that the bioinformatic and validation approach led to the inflated somatic

insertion rate, but not the RC-seq L1 hybridization capture method itself. Our analysis suggests that

RC-seq capture, if used with an appropriate single-cell amplification method, careful signal modeling

based on true insertions, and rigorous PCR validation, would likely enable cost-effective, high-

throughput retrotransposon profiling comparing favorably with other methods such as L1-IP.

Somatic retrotransposition rates in the brain
The corrected RC-seq retrotransposition rate is significant as it aligns to a wholly different regime of

potential functional roles for retrotransposition in the brain (rare normal variation and rare disease)

rather than a "ubiquitous" role. This corrected rate is consistent with rates measured in vitro in neu-

ronal progenitors (Coufal et al., 2009) and is consistent with the absence of significant somatic L1

insertions in brain tumors (Helman et al., 2014; Iskow et al., 2010; Lee et al., 2012). These rates

do not rule out that there may be rare individuals in whom a somatic L1 insertion affects a gene in

enough cells to cause a sub-clinical or overt phenotype, or that elevated L1 rates may occur in partic-

ular individuals or disease states. Future single-neuron genomic studies will resolve the rates and

mosaicism frequencies of all classes of somatic mutation across the diversity of cell types, regions,

and developmental timepoints in the brain.

Single-cell genomic analysis has enabled the first systematic measurement of somatic mutation

rates in the body but entails additional challenges spanning molecular biology to bioinformatics. Our

findings suggest the following elements may aid future single-cell genomics studies: a) choosing a

single-cell amplification method suitable for the studied mutation type; b) objective metrics evaluat-

ing genome amplification coverage, uniformity, dropout, and chimera rates at spatial scales and

genomic elements relevant to the mutation type; c) use of gold-standard germline mutations and

chimera rates to build a signal model for calling mutations; and d) stringent validation experiments.

Retrotransposons offer unique advantages as a starting point for developing single-cell genomics

methods due to their characteristic sequence signatures allowing definitive validation even when

present in only one cell. The lessons learned from the study of somatic retrotransposition are there-

fore broadly applicable for the nascent field of single-cell genomics.

Materials and methods

Data sources
Sequencing data of single-cell whole-genome sequencing (WGS) experiments from Upton et al.

were obtained from the European Nucleotide Archive with accession PRJEB5239. Single-cell RC-seq
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Figure 5. A mathematical framework for single-cell sequencing. (A) In bulk sequencing, a somatic mutation present in k out of n cells pooled together

for sequencing (i.e. mosaicism of k/n), with read coverage D at the mutation locus, will be detected on average in k/n�D/2 reads with a variance

depending on sampling error; i.e. the number of reads detecting the mutation correlates linearly with the percent mosaicism. In contrast, germline

heterozygous and homozygous variants are present in D/2 and D reads, respectively. Due to sequencing artifacts and sequencing errors, a mutation

must be detected above a threshold number of reads, T, which also depends on the sequencing depth, D, since errors occur at rates, e, that are a

constant fraction on average of the total number of reads (T=z�e�D; z is a constant chosen based on desired detection sensitivity and specificity). The

fraction of error reads, e, is a constant on average that is independent of total sequencing depth, D, because library artifacts and sequencing errors

occur at rates that are independent of total sequencing depth. The threshold, T, can be reduced with methods reducing sequencing error, but errors

are still present in any current sequencing technology. Combining equations simplifies to k/n � 2�z�e. This means that the mosaicism of a somatic

mutation must be at least twice the sequencing error rate (or more, depending on the confidence factor) for detection to be possible in bulk DNA

sequencing, regardless of sequencing depth. Below a certain level of mosaicism that depends on the sequencing error rate, detection is unlikely. Note:

for simplicity, the height of the histograms (# of mutations) is scaled to the same height, and the equations do not include variance terms. (B) In single-

cell sequencing, somatic mutations are present at the same signal level on average as germline heterozygous variants (i.e. D/2, since k/n = 1), enabling

detection of low mosaicism mutations that would otherwise be below detection thresholds of bulk sequencing due to sequencing error. Due to whole

genome amplification, single-cell sequencing also leads to greater variance in mutation and error signal level distributions (non-uniform amplification

and dropout) and entails additional artifacts not present in bulk sequencing, which increases the noise level, e’, but still a lower level on average than

true heterozygous mutations. However, the signal distribution of artifacts may still overlap that of true mutations, necessitating careful bioinformatics

and modeling of error and true mutation signals along with rigorous validation. Note, for simplicity, the equations here do not include variance terms

and bioinformatic modeling usually includes additional parameters other than read count illustrated here. Single-cell sequencing does not achieve

increased sensitivity for somatic mutations without cost, because to detect a given mutation with k/n mosaicism, more than n/k single cells may need to

be sequenced. The benefit of single-cell sequencing is not to reduce sequencing costs, but rather its ability to overcome limitations due to sequencing

error rates on the minimum mosaicism detectable and maintaining information as to which somatic mutations are found within the same cell, which

enables lineage tracing.

DOI: 10.7554/eLife.12966.012
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somatic candidate data (including sequences) and bulk RC-seq KNR insertion data were obtained

from Upton et al. supplemental tables (2015). Single-cell RC-seq KNR (germline polymorphic) inser-

tion data (read counts and junction detection rates) and bulk RC-seq somatic L1 candidate data

were provided by Geoffrey Faulkner upon request.

Sequencing data of single cells from Evrony et al. (2015) and Zong et al. (2012) used in MDA

and MALBAC performance analyses were obtained from those studies as described in Evrony et al.

(2015).

High-coverage bulk DNA sequencing of individual N12877 shown in power spectral analysis

(Figure 4C) was obtained from the NCBI Sequence Read Archive with accession ERX069504.

RC-seq candidate sequence analysis
RC-seq insertion candidate sequences were analyzed with the aid of standard tools, including the

UCSC genome browser (Kent et al., 2002), Blat (Kent, 2002), NCBI BLAST (http://blast.ncbi.nlm.

nih.gov/Blast.cgi), RepeatMasker (Smit et al., 2010), RepBase (Jurka et al., 2005), ClustalW2

(Larkin et al., 2007), and L1Xplorer (Penzkofer et al., 2005).

Whole-genome sequencing read alignment
MALBAC and Illumina sequencing adaptors were trimmed from sequencing reads of Upton et al.

MALBAC single-cell WGS samples using the ’phacro’ tookit (http://sourceforge.net/projects/phacro)

(Hou et al., 2013) with default settings and the MALBAC adaptor: GTGAGTGATGGTTGAGGTC

TTGTGGAG. The phacro toolkit was created by the team that developed MALBAC specifically for

trimming MALBAC adaptors from MALBAC samples, including the 8bp degenerate ’N’ sequence

following the adaptor.

After adaptor trimming, Upton et al. WGS data was aligned to the hs37d5 human genome refer-

ence (1000 Genomes Project human genome reference based on the GRCh37 primary assembly)

with bwa (Li and Durbin, 2009) as in Evrony et al. (2015). PCR duplicates were removed as in

Evrony et al. (2015).

Whole-genome sequencing coverage and performance analyses
High resolution genome coverage plots (Figure 4A), low resolution (~500 kb bin) genome coverage

plots (Figure 4B and Figure 4—figure supplement 1), power spectral density analysis (Figure 4C),

subsampling genome coverage analysis (Figure 4—figure supplement 2A), and Lorenz curves (Fig-

ure 4—figure supplement 2A) were calculated and plotted as in Evrony et al. (2015) (results sum-

marized in Appendix 2). Plots for samples from individual 1465 and SW480 MALBAC samples in

power spectral density analysis (Figure 4C), subsampling analyses (Figure 4—figure supplement

2A), and Lorenz curves (Figure 4—figure supplement 2B) were already calculated in Evrony et al.

(2015) and are presented again in this paper to allow comparison to Upton et al. single-cell samples.

Median absolute pairwise deviation (MAPD) and median absolute deviation from the median

(MDAD) scores of single-cell quality were calculated in ~500 kb equal-read bins as in Evrony et al.

(2015).

High-resolution genome coverage plots (Figure 4A), power spectral density analysis (Figure 4C),

subsampling genome coverage analysis (Figure 4—figure supplement 2A), and Lorenz curves (Fig-

ure 4—figure supplement 2B) were calculated after pooling all single neurons from normal individ-

ual hippocampi (n = 92 cells) to create a high-coverage dataset (48x), since the WGS sequencing

depth of individual cells in Upton et al. are not sufficient for high-resolution analyses. A high-cover-

age (5x) pooled sample of all single neurons from normal individual cerebral cortex (n = 35 cells) was

also created for the high-resolution genome coverage plot (Figure 4A) and power spectral density

analysis (Figure 4C). Low-resolution genome coverage plots and analyses (Figures 4B and Fig-

ure 4—figure supplement 1) were performed for individual hippocampus single neurons and also

separately for the pooled hippocampus single-neuron sample. Low-resolution genome coverage

plots of Upton et al. single cells used the pooled cerebral cortex single-neuron sample as a copy

number reference. Note that pooling to achieve higher coverage datasets would only improve

genome coverage statistics since as samples are pooled, stochastic noise present in individual cells

cancels out, leaving systematic noise due to MALBAC and providing a view of MALBAC amplifica-

tion performance.
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Low-resolution genome coverage plots and analyses of MDA single neurons (Evrony et al.,

2015), SW480 MALBAC single cells (Zong et al., 2012), and the pooled hippocampus MALBAC sin-

gle neuron sample (Upton et al., 2015) were also calculated after subsampling these high coverage

samples to lower read depths (Figures 4B and Figure 4—figure supplement 1), confirming as in

Evrony et al. (2015) that low-resolution genome coverage plots and statistics are minimally affected

by increasing read depth > 0.1x. Therefore the results and conclusions of low-resolution genome

coverage analyses are not due to lower sequencing depth for Upton et al. single cells relative to

MALBAC and MDA samples from other studies, as the conclusions are the same after subsampling

MALBAC and MDA samples from other studies to lower read depth than Upton et al. single cells.

Chromosome X bins in low-resolution genome coverage plots of single cells from individual

CTRL-36 (female) and the pooled hippocampus single-neuron sample (which includes CTRL-36

female neurons) (Figure 4—figure supplement 1A) were corrected in each sample to the median of

all bins in chromosome X of the sample, since the pooled cortex single neurons used as a copy num-

ber reference derived from male samples so chromosome X bins would have inflated copy number

without correction. Chromosome Y bins of each CTRL-36 (female) hippocampus single neuron were

set to a log2 relative copy number of 0 so that they do not affect genome coverage statistics, since

CTRL-36 female neurons do not have a Y chromosome and complete dropout of Y-chromosome

bins would skew (i.e. make worse) genome coverage statistics. Chromosome Y bins of the pooled

hippocampus single-neuron sample were also normalized to the median of chromosome Y bins in

the sample, since this pooled sample includes CTRL-36 female neurons that do not have a Y

chromosome.

Discordant and clipped read statistics for Upton et al. single-cell WGS samples (Appendix 3) were

calculated as in Evrony et al. (2015). Discordant and clipped read statistics for MALBAC single-cell

samples from Zong et al. (2012) and MDA single-cell samples from Evrony et al. (2015) were

already calculated in Evrony et al. (2015).

Read count histograms
Read count histograms of somatic insertion candidates and germline known non-reference (KNR)

insertions (Figure 2A and Figure 2—figure supplement 1), which are insertions detected in prior L1

profiling studies that are absent from the human genome reference, were constructed as described

below for each L1 profiling method. Upton et al. acknowledge the importance of KNR gold-standard

insertions by using them to estimate the sensitivity of their method, but they did not present the dis-

tribution of KNR insertion read counts in single cells, which is essential data for calling somatic inser-

tion candidates and evaluating candidate veracity.

Read count histograms plot the per sample read counts of candidates and insertions, not their

total read count across all samples, which controls for the number of samples profiled per individual

and for candidates/insertions present in multiple samples (necessary for comparing germline KNR

insertions that are present in many samples to somatic candidates).

RC-seq KNR read count histograms (Figure 2A and Figure 2—figure supplement 1A): Single-

cell RC-seq KNR read counts were obtained from data provided by Geoffrey Faulkner upon request.

Bulk RC-seq KNR read counts were obtained from the ’Polymorphic L1’ sheet of Table S2 in

Upton et al. (2015). The gold-standard set of germline KNR insertions plotted for single cells in

Figure 2A and Figure 2—figure supplement 1A consists of insertions identified in prior non RC-seq

L1 profiling studies (i.e. insertions with a prior study annotated in the ’Database?’ column of Upton

et al. tables) that were detected with � 40 reads in both bulk samples of the individual (considering

detection only in bulk samples corresponding to the individual from whom the single cell derived).

Insertions that were detected only in a prior RC-seq study ("Published RC-seq?’ column) but not in a

prior non RC-seq study (empty ’Database?’ column) were not included in Figure 2A and Figure 2—

figure supplement 1A since it is preferable to define a gold standard set of true mutations detected

by independent methods. Nevertheless, read count histograms that also include KNR insertions that

were identified only in prior RC-seq studies produced nearly identical histograms (data not shown).

Therefore, whether or not KNR insertions found only in prior RC-seq studies are included has negligi-

ble effect. Bulk KNR insertion read count histograms in Figure 2A and Figure 2—figure supplement

1A show KNR insertions detected at any read count (i.e. � 1 read), since there is no independent

gold-standard reference as to which KNR insertions are present in bulk samples of the profiled indi-

viduals, and using a � 40 read cutoff would mask the underlying read count distribution by showing
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only insertions appearing at high read counts. In any case, the key comparison for evaluating RC-seq

somatic candidate veracity is between single-cell KNR insertions and single-cell somatic candidates,

not between single-cell KNR insertions and bulk KNR insertions. The latter comparison is useful for

assessing the quality of single cells versus bulk samples and the effect of MALBAC amplification.

Note that germline KNR insertion dropouts in single cells (read counts of 0 for germline KNR

insertions in single cells of an individual known to have the KNR insertion based on bulk samples) are

not included in the read count histograms since single-cell dropout rates affect both KNR insertions

and somatic insertions. While for KNR insertions the true state (presence/absence) in each cell is

known, the true state is unknown for somatic insertions. Therefore, in order to compare germline

KNR insertion and somatic candidate read count distributions, KNR dropout calls must be excluded.

Also, note that the read count distribution of gold-standard KNR insertions in single-cell RC-seq

is bimodal (Figure 2A), with a population of high read count calls and a population of low read

count calls. Although KNR insertions appear at lower read depth in single cell RC-seq relative to

bulk RC-seq samples and show a bimodal distribution with ~1/3 of calls detected by only one read

(Figure 2A), this does not affect the conclusion that the vast majority of single-cell RC-seq somatic

insertion candidates are false-positives: only 20 of the 4759 somatic candidates were detected with

> 2 reads across all 170 single cells and half of true somatic insertions are expected to be detected

at this level based on KNR insertion read counts. However, it does predict that ~1/3 of true somatic

insertions would be detected with 1 read. This bimodal distribution of KNR read counts in single-cell

RC-seq is due to, both: a) high variability (non-uniformity) in single-cell MALBAC genome amplifica-

tion at the length scale of L1 insertions (data not shown; and see Evrony et al. (2015): Note S1,

’Coverage variability analyses’ section, Figure S6, and Figure S7, as well as Zhang et al. (2015) for

details of non-uniformity at small length scales < 30 kb inherent to MALBAC); and b) allelic dropout

stemming from low-quality of Upton et al. single neurons. The MAPD (median absolute pairwise

deviation) metric reflects uniformity of genome coverage at large genomic scales (~500 kb bins),

with lower MAPD scores indicating better uniformity. Upton et al. single neurons have mean MAPD

scores of 0.53 ± 0.16 (SD), compared to MAPD 0.18 ± 0.06 for MALBAC-amplified single cells from

Zong et al. (2012) and MAPD 0.33 ± 0.06 for MDA-amplified single neurons from Evrony et al.

(2015).

Furthermore, the lower overall read counts of KNR insertions in single cells relative to bulk sam-

ples is also partly due to ~3fold lower total reads per sample on average for single-cell samples ver-

sus bulk samples. This highlights a further issue when read count filters are not used, in that there is

no normalization for different total reads per sample.

Somatic insertions are present in a single copy in the genome (i.e. heterozygous or hemizygous)

in cells harboring the mutation. Most germline KNR insertions (~75%) are present in a single copy

per cell as well, since most are in the heterozygous state in individuals of the population. This sup-

ports the use of KNR insertions as a reference for the expected read count distribution (and signal

distribution of other parameters) of somatic insertions. The evidence that most KNR insertions that

are present in an individual are heterozygous is based on measured allele frequencies and genotypes

of KNR insertions in prior population studies of L1 polymorphism: a) In the 1000 Genomes project

studying mobile element polymorphism (Stewart et al., 2011), genotyping of a large number of L1

KNR insertions (see Table S4 in that study) found an average heterozygosity of 0.85 in individuals

harboring the insertions (i.e. number of individuals heterozygous/(number heterozygous + number

homozygous) for each KNR insertion, averaged across all KNR insertions). The average allele fre-

quency of these insertions was 0.26; b) In Iskow et al. (2010), the average allele frequencies of KNR

insertions found by dideoxy sequencing was 0.22 (table S1 in that study) and < 0.2 for insertions

found by 454 sequencing (Figure 2F in that study), corresponding to a heterozygosity rate for KNR

insertions of at least 0.88 in individuals harboring each insertion (i.e., allele frequency p = 0.22; het-

erozygosity in individuals with the insertion = 2pq/(p2+2pq)) assuming insertions are in Hardy-Wein-

berg equilibrium. Prior studies have shown L1 insertion genotypes are almost always consistent with

Hardy-Weinberg equilibrium (Badge et al., 2003; Myers et al., 2002; Seleme et al., 2006); c) Ewing

and Kazazian (2011) also analyzed the 1000 genomes data and found a KNR insertion allele fre-

quency < 0.2 (Figure 1B in that study), corresponding to an average heterozygosity >0.89 for KNR

insertions present in an individual; d) Huang et al. (2010) estimate an allele frequency of chromo-

some X KNR insertions of 0.58 and an allele frequency of 0.38 for a set of KNR insertions identified

by whole-genome profiling, corresponding to an average heterozygosity of 0.59 and 0.77,
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respectively in individuals harboring the insertions; d) 75% (105/140) of the KNR insertions detected

in individual 1465 in Evrony et al. (2015) (gold-standard KNR insertions detected in both bulk sam-

ples of the individual) are heterozygous or hemizygous (Evrony et al., 2015); e) in dbRIP

(Wang et al., 2006), the average heterozygosity of polymorphic insertions among individuals with

the insertion is 0.46 (with an average allele frequency of 0.59). This shows that most KNR insertions

in an individual are heterozygous and present in a single copy per cell. We also plotted the RC-seq

read count histograms of a pure set of single-copy KNR insertions– those found on chromosome X

in male samples– and found a similar distribution of read counts as the full KNR set, with most inser-

tions still detected by multiple reads in single cells: 65%, 12%, and 11% were detected with �3, �20

and �40 reads per sample (Figure 2—figure supplement 1A).

RC-seq somatic candidate read count histogram (Figure 2A): Single-cell RC-seq somatic candi-

date read counts were obtained from the ’Somatic L1’ sheet of Table S2 in Upton et al. (2015). Bulk

RC-seq somatic candidate read counts were provided by Geoffrey Faulkner upon request.

WGS KNR read count histogram (Figure 2—figure supplement 1B): The gold-standard KNR

insertion set for the WGS read count histogram is defined as insertions detected in both bulk sam-

ples (cortex and heart) of the individual with the following parameters (see Evrony et al. (2015) for

details of parameters): a) � 2 RAM reads on each side of the breakpoint; b) � 4 clipped reads sup-

porting the insertion call; c) estimated target-site duplication or deletion � 50 bp in size in the

absence of a poly-A tail, or � 250 bp in size if a poly-A tail was detected; d) at least half of clipped

reads at the insertion site aligned to ± 2 bp of the insertion breakpoint; e) the insertion was detected

in prior independent L1 profiling studies from other groups (see Evrony et al. (2015) for list of prior

L1 profiling studies used).

L1-IP KNR read count histograms (Figure 2—figure supplement 1C): The gold-standard KNR

insertion set for the L1-IP read count histograms was defined as insertions detected with a confi-

dence score � 0.5 in at least half of the bulk samples of the individual and detected in prior indepen-

dent L1 profiling studies of other groups (see Evrony et al. (2012) for list of prior L1 profiling

studies used).

RC-seq L1 junction detection rates
The percentage of RC-seq insertions and candidates detected at only the 5’, only the 3’, or both 5’

and 3’ L1 junctions (Figure 2B) were obtained as follows:

Germline KNR junction detection data for bulk and single-cell RC-seq samples were provided by

Geoffrey Faulkner; these data annotated for each individual sample and each KNR insertion which L1

junctions were detected (5’, 3’, or both). Junction detection rates of both bulk and single-cell germ-

line KNR insertions shown in Figure 2B are for the same high-confidence KNR insertion set defined

for the single-cell KNR read count histogram in Figure 2A (see ’Read count histograms’ in the prior

section of the ’Materials and methods’). The numerator and denominator units of bulk and single-

cell RC-seq KNR junction detection rates are KNR insertion calls, not KNR insertions; i.e. for a hypo-

thetical KNR insertion detected in samples A, B, and C, each of these 3 calls is counted separately

because the detection of a KNR insertion in each sample is independent of other samples.

Single-cell RC-seq somatic candidate junction detection data were obtained from the ’Somatic

L1’ sheet of Table S2 in Upton et al. (2015). 5’-only detected candidates are those with a negative

alignment in the ’Sense L1’ column but no antisense read or a negative alignment in the ’Antisense

L1’ column but no sense read. 3’-only detected candidates are those with a positive alignment in the

’Sense L1’ column but no antisense read or a positive alignment in the ’Antisense L1’ column but no

sense read. Candidates detected at both 5’ and 3’ junctions are those with both sense and antisense

reads. Note that the ’single-cell somatic candidate’ junction data available in Table S2 of Upton

et al. annotates junction detection per candidate (regardless of the number of cells in which the can-

didate was detected), in contrast to the ’single-cell KNR insertion’ junction data that annotates junc-

tion detection for each individual sample in which the insertion was detected. Since ’single-cell

somatic candidate’ junction detection data is only available annotated per candidate rather than per

cell, somatic candidates detected in multiple cells may skew the true junction detection rates and

preclude comparison to ’single-cell KNR insertion’ rates. Therefore, to allow comparison between

’single-cell somatic candidate’ and ’single-cell KNR insertion’ junction detection rates, the ’single-cell

somatic candidate’ junction detection rates in Figure 2B are for candidates detected in only one cell

and excludes those detected in multiple cells. Nevertheless, even when including candidates found
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in more than one cell (i.e. considering both junctions as detected even when each was detected in a

different single cell), only 0.4% (21/4728) of single-cell somatic candidates were detected at both

junctions– still >25-fold less than the rate for single-cell KNR insertions (11%) and similar to the sin-

gle-cell somatic candidate rate of 0.04% (2/4682) calculated when excluding candidates found in

multiple cells.

RC-seq somatic retrotransposon insertion rate calculation
Briefly, somatic insertion rates were calculated by first counting the number of somatic candidates

detected with > 2 reads. Sequences of candidates were then manually examined and definite chime-

ras were excluded (Supplementary file 1). In each cell, the remaining number of candidates was

adjusted for that cell’s sensitivity for gold-standard KNR insertions. Insertion rates per cell type

(Figure 3B) are an average of the rates across all single cells of that type. Below is a full explanation

of the insertion rate calculations:

RC-seq somatic retrotransposon insertion rates were calculated using RC-seq read counts of the

gold-standard germline KNR insertion set to guide read count filtering. A read count threshold was

chosen that would optimize the number of true (germline KNR and somatic) insertions above the

threshold (sensitivity) while minimizing the number of false-positive calls (specificity). Sensitivity for

true insertions at any given read count threshold was estimated per single cell using the single-cell

RC-seq KNR insertion read count data provided by Geoffrey Faulkner. Sensitivity was calculated as

the fraction of high-confidence germline KNR insertions present in the individual (i.e. insertions

detected with � 40 reads in both bulk samples of the individual, and identified in prior non RC-seq

L1 profiling studies with a prior study annotated in the ’Database?’ column of Upton et al. tables),

that were detected in the single cell above the read count threshold. Specificity at any given read

count was estimated using the read count distribution of all single-cell somatic candidate calls

(’Somatic L1’ sheet of Table S2 in Upton et al. (2015)) since nearly all are false-positives. As dis-

cussed in the main text and in the following paragraph, the latter assumption is valid because of the

discrepancy between the read count distributions of KNR insertions versus somatic candidates.

As discussed above in the ’Read count histograms’ section, the single-cell RC-seq KNR insertion

read count distribution is bimodal due to non-uniformity of MALBAC amplification, with high and

low read-count sub-populations (Figure 2A). Finite mixture modeling can estimate the proportion of

the read count distribution that belongs to each sub-population. Finite mixture modeling estimates

the high and low read count sub-populations comprise 1/3 and 2/3 of the single-cell KNR insertion

distribution, respectively. In contrast, the read count distribution of single-cell somatic candidates is

unimodal, concentrated at low signal with nearly all (99.6%) candidates having � 2 reads

(Figure 2A). Intuitively, the absence of a high-signal component in the somatic candidate read count

distribution indicates nearly all somatic candidates are false-positives. Therefore, the somatic candi-

date read count distribution can be treated essentially as a false-positive distribution for the pur-

poses of deciding on an optimal read count threshold. More formally, any single-cell somatic

candidate distribution is a mixture of two subpopulations: false-positive candidates (e.g. chimeras)

and true somatic insertions. A finite mixture model can estimate the proportion of somatic candi-

dates that derives from a true somatic insertion subpopulation, using a model of the high read-count

component of the true-positive KNR insertion distribution as a guide. This analysis estimates a negli-

gible fraction (< 0.5%) of single-cell somatic candidates are true somatic insertions. Consequently,

we can consider the read count distributions of KNR insertions and somatic candidates as reflecting

true and false-positives, respectively. This then allows calculation of estimated sensitivity loss and

specificity gain at increasing read count thresholds.

Increasing the read count threshold from >0 to >1 read reduces the per-cell sensitivity for true

(KNR) insertion calls from an average of 45% to 31% (a 32% reduction) while reducing the estimated

number of false-positive calls by ~97%. Further increasing the threshold to > 2 reads reduces the

sensitivity for true insertion calls to 24% (a further 23% reduction) and reduces false-positive calls by

an estimated additional ~84% relative to the > 1 read threshold– still a large improvement in speci-

ficity with a relatively modest reduction in sensitivity. Increasing the read count threshold further to

> 3 reads leads to diminishing returns in terms of improved specificity– 18% reduction in sensitivity

with 35% reduction in false-positive calls relative to the > 2 read threshold– reflecting the fact that

nearly all somatic candidate (mostly false-positive) calls are at read counts of 1 and 2. Therefore a

read count threshold of > 2 reads was chosen, which maintains detection of 53% of KNR insertion
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calls across all single cells and a per-cell KNR detection sensitivity of 24%, while excluding an esti-

mated 99.6% of false-positive calls.

Once the > 2 reads count threshold was chosen, for each single cell the number of somatic inser-

tion candidates detected with > 2 reads was counted. Candidate sequences were then manually

examined and candidates that were definite chimeras were excluded (see ’RC-seq | Somatic L1 > 2

reads’ sheet in Supplementary file 1 for sequence analyses of all candidates). For each cell, the

remaining number of somatic candidates in the cell was then corrected for the sensitivity for gold-

standard KNR insertions achieved in that same cell, i.e. dividing the number of somatic candidates

by the fraction of KNR insertions detected in the cell above the chosen threshold, using the gold-

standard KNR insertion reference of the individual from whom the single-cell derived, as described

above. This final number was the estimated pre-PCR validation somatic insertion rate for the cell,

since Upton et al. did not attempt PCR validation for these somatic candidates. Insertion rates per

cell type (Figure 3B) are an average of the rates across all single cells of that type.

Further justification for the > 2 reads threshold is shown by estimates of the pre-PCR validation

somatic insertion rate at read thresholds of >1, > 3, and > 4 reads. At a read threshold of >1 read,

the estimated pre-PCR validation rate across all cells is 2.4 ± 3.3 (SD) per cell prior to manual exami-

nation of candidates for chimeras. Adjusting for the chimera rate of 12/20 seen at the > 2 read

threshold (since the chimera rate at a >1 read threshold could only be greater), gives a rate of 1.1 ±

1.4 insertions per cell. At read thresholds of > 3 and > 4 reads, the estimated pre-PCR validation

rates across all cells are 0.38 ± 1.35 and 0.44 ± 1.69 (SD), respectively, per cell prior to manual exam-

ination of candidates for chimeras. Adjusting for chimera rates of 8/13 and 7/12, respectively, seen

in manual examination of the candidates (Supplementary file 1) yields pre-PCR validation rate esti-

mates of 0.15 ± 0.52 and 0.18 ± 0.70, respectively, for the > 3 and > 4 read thresholds. These are

similar to the estimate of 0.19 ± 0.97 at a > 2 read threshold. In summary, the pre-PCR validation

rates across all single cells at >1, > 2, > 3, and > 4 read thresholds (after excluding chimeras) are

1.1, 0.19, 0.15, and 0.18, respectively. This shows stability of the rate estimate at thresholds of > 2

reads or more, a result of the fact that the vast majority of chimeras appear with 1 or 2 reads, while

most true insertions appear at higher read counts. The stability of the rate estimate above thresholds

of > 2 reads supports the use of the > 2 read threshold, which optimizes sensitivity and specificity. In

contrast, the somatic rate calculated at the > 1 read threshold is higher than the rates calculated at

> 2, > 3, and > 4 reads and a significant overestimate of the true rate for two reasons: a) the > 1

read threshold begins to overlap the false-positive chimera distribution, so most candidates at the >

1 read threshold are chimeras. This is confirmed by the read count histogram analyses of KNR inser-

tions and somatic candidates discussed above– namely that there is no discernible population of

high read count candidates in the read count distribution of somatic candidates as there is in the

KNR insertion read count distribution (Figure 2A), so the population of somatic candidates at read

counts of 1 and 2 are nearly all false-positives; b) this is a pre-PCR validation rate. The somatic inser-

tion rate estimate obtained at a > 1 read threshold is therefore an overestimate that would be con-

firmed as such after proper PCR validation, while the rate obtained at a > 2 read threshold is a more

accurate pre-PCR validation rate estimate.

The somatic L1 retrotransposition rate for single neurons from Evrony et al. (2015) was calcu-

lated for comparison to the RC-seq rate. 16 single neurons were sequenced in Evrony et al. (2015),

but the rate was estimated from the 14 single neurons that were selected randomly for sequencing.

The 2 remaining cells in which L1 #1 was detected (neurons 2 and 77) (Evrony et al., 2015) were

excluded from the rate estimate, because they were a priori chosen for whole-genome sequencing

as positive controls known to harbor somatic L1 insertions previously detected by the L1-IP method

in Evrony et al. (2012). Therefore, the calculated rate reflects the 2 of the 14 single neurons (neu-

rons 6 and 18) that harbor the same L1 #2 clonal insertion (Evrony et al., 2015). The L1 somatic

insertion rate estimate of each neuron was corrected for the neuron’s sensitivity for KNR insertions.

L1-IP 3’ PCR validation
3’ junction PCR validation of 48 L1-IP candidates with low read counts (Supplementary file 1, sheet

’L1-IP | low-read-count’) was performed as described in Evrony et al. (2012). The L1-IP computa-

tional pipeline was rerun on raw data from Evrony et al. (2012) after removing any read count filter.

24 candidates were randomly selected from all candidates detected by only 1 read, and another 24

candidates were randomly selected from all candidates.
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Supplementary files
. Supplementary file 1. Sequence analysis of RC-seq somatic retrotransposon insertion candidates,

and validation results of low read-count L1-IP candidates. Detailed sequence analyses of RC-seq can-

didates can be found within the embedded word documents in the ’Sequence Analysis’ column of

each RC-seq spreadsheet (double-click to open documents). "RC-seq | Somatic L1 PCR" sheet

presents sequence analyses of all RC-seq candidates passing Upton et al.’s RC-seq PCR validation;

see candidate chr6:37821198 analysis document for example schematic. "RC-seq | Somatic L1 > 2

reads" sheet presents sequence analyses of all RC-seq somatic L1 candidates detected by > 2 reads

in a single cell; this is the set of somatic candidates above the read count threshold chosen for calcu-

lation of corrected RC-seq somatic insertion rates. This sheet contains sequence analysis of the likely

bona fide insertion at chr6:58481778. "RC-seq| Somatic hippoc. 5+3 jxn" sheet presents sequence

analyses of all RC-seq somatic L1 candidates detected in hippocampal single neurons at both 5’ and
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3’ junctions. "RC-seq| Bulk somatic L1 TSD>=50" sheet presents sequence analyses of 10 randomly

selected RC-seq somatic L1 candidates detected in bulk samples with a TSD of at least 50 bp; see

candidate chrX:85583069 analysis document for example schematic. In RC-seq sheets, columns with

new analyses have blue column headers. Remaining columns with white headers (candidate meta-

data and sequences) were obtained as follows: candidate metadata and sequences for "RC-seq

| Somatic L1 PCR", "RC-seq | Somatic L1 > 2 reads", and "RC-seq| Somatic hippoc. 5+3 jxn" sheets

were obtained from Table S2 ("Somatic L1" and "Somatic L1 PCR" sheets) of Upton et al.; candidate

metadata and sequences for the "RC-seq| Bulk somatic L1 TSD>=50" sheet were obtained from the

full RC-seq bulk somatic insertion table provided by Geoffrey Faulkner.

"L1-IP | low-read-count" sheet presents candidate information and validation results of 24 randomly

selected L1-IP candidates detected by only 1 read and 24 L1-IP candidates randomly selected with-

out any read count filter. Candidates were obtained from L1-IP data from Evrony et al. (2012). All

candidates failed PCR validation, illustrating true insertions do not preferentially appear at low read

counts in L1-IP and the importance of using read counts to filter candidates.

DOI: 10.7554/eLife.12966.013
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Appendix 1: Non-physiologic TSD sizes of RC-seq bulk
somatic insertion candidates

The distribution of TSD sizes of RC-seq bulk hippocampus somatic candidates contains many

large TSDs, a finding inconsistent with nearly all prior L1 research. Of the RC-seq bulk somatic

candidates detected at both 5’ and 3’ junctions, 44%, 37%, and 30% of candidates were

detected with TSDs � 30, � 40, and � 50 bp in size, respectively. In contrast, prior L1 research

has shown TSD sizes < 30 bp for nearly all insertions. The authors point to a prior study of in

vitro retrotransposition in HeLa cells that found large TSDs (� 50 bp in 20% of insertions)

(Gilbert, et al., 2005) and hypothesize the same occurred in neuronal progenitors due to

chromatin properties shared with HeLa cells, such as "pervasive euchromatinization". Large

TSDs greater than 50 bp have only been found at an appreciable rate in HeLa cells

(Gilbert, et al., 2005; Moran, et al., 1996; Symer, et al., 2002). HeLa cells differ

physiologically in many respects from normal human cells, and outside of HeLa cells, studies of

inherited, de novo, and somatic insertions in every other biological context to our knowledge

have found only the canonical TSD size distribution, including:

a. Known human-disease causing L1 insertions (19 insertions; TSD mean: 14 bp; range: 2–20
bp, except 4 without a TSD) (Hancks and Kazazian, 2012).

b. Tumor somatic insertions (1450 insertions; TSD peak: 15 bp; 98% are � 20 bp)
(Helman et al., 2014; Tubio et al., 2014).

c. Comprehensive profiling of population-polymorphic insertions in the 1000 genomes project
(TSD peak: 15bp � 7 (SD); nearly all between 5 and 25 bp) (Stewart et al., 2011).

d. Genome-wide analysis of all L1s in the human genome reference (TSD peak: 15 bp; nearly all
< 25bp) (Kojima, 2010; Szak et al., 2002).

e. Somatic insertions in neurons: six L1 insertions in rat neuronal progenitors in vitro
(Muotri et al., 2005) and the two bona fide human brain somatic insertions we have found
(Evrony et al., 2012; Evrony et al., 2015) all had TSD sizes < 20 bp.
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Appendix 2: Single-cell genome quality and amplification
performance in Upton, et al.

How widely and evenly the genome is amplified (breadth and uniformity) are two measures of

single-cell genome quality and amplification performance that are integral to the feasibility

and success of subsequent somatic mutation analyses (Leung et al., 2015). Each can be

assessed at different genomic scales (i.e. resolutions) or sequence elements, for example, in

large 500 kb bins, at base-pair resolution, stratified by GC-content, at retrotransposon

elements, etc. (Evrony et al., 2015; Zhang et al., 2015). Breadth and uniformity of genome

amplification are related and can vary significantly depending on the genomic scale or

sequence element evaluated. For instance, if a hypothetical single-cell genome amplification

method amplifies only one small 1 kb region every 500 kb across the genome while the

remaining genome is unamplified (i.e. extreme non-uniformity), then a low-resolution analysis

of breadth of amplification will show 100% genome coverage at 500 kb bins even though at

base-pair resolution only 0.2% (1/500) of the genome is amplified. Such a single-cell method

would be suitable for analysis of copy number variants larger than 500 kb, but would not be

suitable for smaller mutations. Single-cell amplification breadth and uniformity of coverage

must therefore be evaluated at genomic size scales and sequence elements relevant to the

type(s) of mutation(s) being studied. We profiled the MALBAC-amplified single neurons from

Upton, et al. using previously developed single-cell quality metrics (Cai et al., 2014;

Evrony et al., 2015; Zhang et al., 2015), and compared them to MDA-amplified single

neurons and MALBAC-amplified single cells from prior studies.

I. Single-cell quality control performed by Upton, et al.
Upton, et al. initially evaluated single-cell quality and MALBAC amplification by low-coverage

sequencing at a resolution of 600 kb bins, estimating 8% allelic dropout and 0.8% locus

dropout. However, a scale of 600 kb bins is larger than the size of retrotransposon insertions

(< 6 kb) or the DNA fragments used to detect them (< 300 bp). Upton, et al. then evaluated

single-cell quality at higher resolution by detection of reference L1-Ta insertions, a genomic

scale that is relevant to retrotransposon analysis. Single-cell 5’ junction PCR of a set of

germline heterozygous L1 insertions detected 50% of junctions. Therefore, Upton, et al.’s

MALBAC single cells have greater dropout of L1 element junctions (50%) than the dropout

measured at 600 kb bins (0.8%), indicating non-uniformity of genome coverage at small

genome scales relative to large genomic scales. This illustrates the importance of analyzing

genome amplification uniformity. In contrast, prior MDA single-neuron studies analyzed

amplification uniformity and yielded consistent estimates of 8–10% allelic and ~2% locus

dropout across the full range of genomic scales, including 500 kb bins, microsatellites (<400

bp), single nucleotide variants, genome-wide base-pair resolution, and direct measurement of

L1 dropout by PCR (Evrony et al., 2012; 2015).

II. Genome coverage
We analyzed breadth and uniformity of genome amplification of Upton, et al. single cells at high

and low resolutions (small and large genomic scales), and compared them to MALBAC single

cells from Zong et al. (2012) and MDA single neurons from Evrony et al. (2012), (2015).
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High-resolution genome coverage
Visualization of genome coverage at base-pair resolution reveals striking non-uniformity in

pooled hippocampus and pooled cortex MALBAC single neurons from Upton, et al., with ~1

kb peaks of high coverage separated by troughs of low coverage/dropout (Figure 4A). The

similarity of the peaks and troughs in hippocampus and cortex single neurons indicates

systematic non-uniformity. Remarkably, MALBAC single cells from Zong, et al. have peaks and

troughs of coverage in similar locations (Figure 4A), indicating the non-uniformity is due to

MALBAC amplification. In contrast, at this resolution MDA single-cell samples show

significantly better uniformity (Figure 4A). The non-uniformity of MALBAC amplification at

small genomic scales (< 30 kb) encompassing the size of L1 insertions has been identified by

prior studies (Evrony et al., 2015; Zhang et al., 2015) and likely explains several performance

metrics of single-cell RC-seq: a) the low success rate (50%) of PCR for germline L1s; b) the

subset of germline gold-standard known non-reference (KNR) insertions appearing at low read

counts (Figure 2A, label ’a’); and c) the low sensitivity (high dropout) for germline KNR

insertions (Figure 3A and Figure 3—figure supplement 1).

In terms of breadth of coverage at base-pair resolution (the highest possible resolution),

Upton, et al. pooled MALBAC hippocampus single neurons capture 89% and 64% of the

genome at �1x and �10x read depth, respectively, at a total genome-wide average

sequencing depth of 30x (Figure 4—figure supplement 2A). At the same 30x genome-wide

average sequencing depth, MDA single neurons capture more of the genome, with 97% and

73% of the genome at �1x and �10x read depth, respectively (Figure 4—figure supplement

2A). The pooled MALBAC single-neuron sample from Upton, et al. has similar breadth of

coverage as individual MALBAC single cells from Zong, et al. Notably, MDA single neurons

achieve greater breadth of genome coverage than MALBAC single cells from both studies

across all increasing subsampled read depths (Figure 4—figure supplement 2A), indicating

consistently lower locus dropout for MDA relative to MALBAC. The plateau of the �1x

genome coverage curves with increasing subsampled read depths estimates a locus dropout

of ~3% in MDA single neurons, ~7% in Zong, et al. MALBAC single cells, and ~9% in Upton,

et al. pooled MALBAC single neurons. These comparisons indicate similar performance of

MALBAC amplification in the two studies but do not mean that individual single cells in the

two studies achieved similar genome coverage, because the breadth of genome coverage for

pooled Upton, et al. single neurons is likely an overestimate of coverage in individual single

cells due to pooling canceling stochastic noise/dropout of individual cells.
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Low-resolution genome coverage
We evaluated uniformity of genome coverage/amplification in individual Upton, et al. single

neurons at larger genomic scales of ~500 kb bins (low-resolution view) using median absolute

pairwise deviation (MAPD) and median absolute deviation from the median (MDAD) scores

(Cai et al., 2014; Evrony et al., 2015). Lower scores indicate more uniform coverage. This

analysis was performed for individual single hippocampal neurons without pooling, since the

low-coverage WGS is sufficient for low-resolution analysis of individual cells. Upton, et al.

MALBAC-amplified single neurons have both greater variability among cells and significantly

lower average quality of genome coverage/uniformity (MAPD 0.53 � 0.16) than both

MALBAC-amplified single cells from Zong, et al. (MAPD 0.18 � 0.06) and MDA-amplified

single neurons (MAPD 0.33 � 0.06) (Figure 4—figure supplement 1A). The lower quality of

Upton, et al. MALBAC single cells was unexpected given prior analyses showing that MALBAC

single cells (from Zong, et al.) have better coverage uniformity at large genomic scales than

MDA (Figure 4B and Figure 4—figure supplement 1A–B) (Evrony et al., 2015; Zhang et al.,

2015). MDAD scores show the same findings, and these results are independent of total

sequencing depth, which minimally affects low-resolution analyses due to single-cell

amplification noise significantly outweighing Poisson sampling error as supported by

subsampling analyses (Figure 4B and Figure 4—figure supplement 1A–B) (Evrony et al.,

2015). Interestingly, a sample created by pooling all Upton, et al. hippocampus single neurons

shows significantly better uniformity (MAPD 0.12) than the average uniformity of the individual

single neurons as well as individual MALBAC single cells from Zong, et al. (Figure 4B and

Figure 4—figure supplement 1A–B). Therefore, the low quality of Upton, et al. single

neurons is not due to systematic noise but rather due to stochastic non-uniformity present in

each individual neuron, likely preceding MALBAC amplification, that cancels after pooling.

This suggests low quality of single cells prior to MALBAC amplification.

Power spectral density and Lorenz curve analysis of genome
coverage
The above analyses evaluated single-cell genome coverage uniformity at two specific genomic

scales/resolutions– single base pairs (high resolution) and 500 kb bins (low resolution). We

evaluated uniformity of pooled Upton, et al. single neurons from hippocampus and cortex

across the full range of genomic scales using two methods introduced by Zong et al. (2012):

power spectral density analysis and Lorenz curves. We previously performed these analyses to

compare MDA and MALBAC performance (Evrony et al., 2015).

Power spectral density plots show the degree to which variability in read depth (uniformity) is

distributed across genomic scales (frequencies). At larger genomic scales (smaller frequencies),

MDA single neurons have lower uniformity than MALBAC single cells from Upton, et al. and

Zong, et al. At smaller genomic scales the situation is reversed: MALBAC samples from both

Upton, et al. and Zong, et al. show a similar peak of increased non-uniformity below a

frequency of ~3.5�10-5 bp (i.e. < ~30 kb) (Figure 4C), while MDA samples have higher

uniformity similar to bulk samples (Figure 4C). The power spectral analysis therefore

recapitulates the findings of the analyses performed above at specific genomic scales while

providing a more comprehensive view of uniformity across genomic scales.

Lorenz curves provide another view of genome coverage uniformity by plotting the cumulative

fraction of reads as a function of the cumulative fraction of the genome covered at increasing

read depths. Perfectly uniform coverage across the genome would approximate the y = x line.

Upton et al. pooled hippocampal neurons show lower overall uniformity than MDA single

neurons but better uniformity than MALBAC cells from Zong et al. (Figure 4B). The latter is

likely due to pooling of Upton et al. single neurons removing their stochastic noise whereas

Lorenz curves of individual MALBAC cells from Zong et al. also reflect stochastic single cell

noise.
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IV. Conclusions
Our analyses of Upton, et al. single cells confirm the better uniformity of MDA at small genomic

scales (<50 kb) suitable for study of small mutations, for example SNVs and retrotransposons,

whereas MALBAC has better uniformity at larger genomic scales suitable for study of large

copy number variants (Evrony et al., 2015; Hou et al., 2013; Zhang et al., 2015). DOP-PCR

methods not presented here have better uniformity than either method at large genomic

scales but lower uniformity at smaller genomic scales, making it suitable mostly for large

(>50 kb) copy number variants (Navin and Hicks, 2011; Navin et al., 2011). Because each

single-cell amplification method has advantages in different domains, the choice of method

depends on the type of mutation being studied– there is no current method ideally suited for

all types of mutations. Rigorous evaluation of dropout and uniformity at the size scale of the

somatic mutation being studied is imperative prior to undertaking costly downstream single-

cell sequencing and somatic mutation analyses.

Our low-coverage analyses of Upton, et al. single neurons also revealed lower quality and

greater variability among individual cells compared to prior single-cell studies. Quantitative

quality control metrics of single cells prior to costly higher coverage or targeted sequencing

can reveal differences in quality between tissues and helps exclude low quality tissues and

single cells that would otherwise produce high false-positive or false-negative rates.

Note that at small genomic scales, MALBAC single cells from Zong, et al. have significantly

better reproducibility, though not uniformity, than MDA (Evrony et al., 2015); the loci at

which peaks of coverage are found and the shapes of the peaks are highly reproducible

between single cells. This suggests one potential advantage for MALBAC over MDA

amplification for studying small-scale mutations such as single nucleotide variants if one were

interested only in the areas of the genome reproducibly amplified to high coverage by

MALBAC (i.e. at the loci with peaks of coverage). In applications seeking to ensure capture

and genotyping of the same loci across all profiled single cells, MALBAC’s better

reproducibility between samples may be advantageous relative to MDA despite MALBAC’s

lower breadth of coverage and greater non-uniformity at small genomic scales.
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Appendix 3: Single-neuron sequencing does not
preferentially amplify chimeras

Upton, et al. state that in single-neuron RC-seq, as opposed to bulk RC-seq, chimeras are

preferentially amplified to higher read counts than true insertions. They further assert the

same is true generally of single-neuron sequencing, including prior studies (Evrony et al.,

2012; Evrony et al., 2015). However, analysis of Upton, et al.’s single-cell whole-genome

sequencing (WGS) data shows directly that the authors’ single-cell MALBAC amplification and

WGS library preparation methods do not preferentially create and amplify chimeras relative to

true genomic fragments. Chimera rates are reflected in the fraction of discordant read pairs

(DNA fragments whose sequencing reads from each end of the fragment align distantly in the

genome or in wrong orientation to each other) and clipped reads (partially aligning reads,

which includes reads with chimera breakpoints occurring within a read rather than between

read pairs of a DNA fragment). Discordant and clipped reads in Upton, et al. single cells

comprise on average only 0.9 � 0.5% (SD) and 4.2 � 1.7% of all reads, respectively. Similar

fractions of discordant and clipped reads, 2.3 � 1.4% and 1.4 � 0.3%, respectively, were seen

in MALBAC single cells from a prior study (Zong et al., 2012) (analysis performed in

Evrony et al. (2015)). If it were true, as Upton, et al. assert, that chimeras amplify to higher

levels than true genomic fragments, then these rates would have been significantly greater.

The low discordant and clipped read rates in Upton, et al. single cells confirm that chimeras

are a small minority of their samples’ DNA fragments, and that their MALBAC and WGS library

preparation methods do not preferentially amplify chimeras more than true genomic

fragments to any significant degree.

Extensive quantitative analyses of chimeras in prior single-cell studies show that chimeras

occur at significantly lower rates than non-chimeric fragments also in the MDA method more

commonly used for single-cell amplification (Evrony et al., 2012; Evrony et al., 2015). Only

0.4% of DNA fragments in MDA-amplified single cells are MDA chimeras, reflecting an MDA

chimera rate of ~1.2 per 100 kb of amplified DNA (Evrony et al., 2015). An additional 2-3% of

fragments in single-neuron WGS samples are chimeras created during sequencing library

preparation, reflected in 1.9 � 0.5% and 0.8 � 0.2%, discordant and clipped reads,

respectively (Evrony et al., 2015), which could be mitigated by alternative library preparation

methods (Quail et al., 2008). Single-neuron WGS (Evrony et al., 2015) has no additional

steps in which chimeras could form other than MDA and WGS library preparation. This study

further presented MDA chimera spatial distributions that elucidate their mechanisms of

formation and aid computational filtering. The above analyses and others (Lasken and

Stockwell, 2007) have therefore shown unequivocally that chimeras are a minority of reads in

single-cell sequencing methods generally (i.e. the number of bases amplified between chimera

events is on average much larger than the size of sequenced DNA fragments).

Additionally, both Upton, et al. and prior single-neuron sequencing studies (Evrony et al.,

2012; Evrony et al., 2015) show unequivocally that true L1 insertions appear at higher read

counts than chimera calls. In prior studies, the score distributions (reflecting read counts) of

gold-standard KNR insertions in single cells have a unimodal distribution at high scores (i.e. at

high read counts), clearly separable from the remaining calls concentrated at lower scores

(reflecting chimeras) (Evrony et al., 2012, Figure S4B; Evrony et al., 2015, Figure 2B). The

KNR read count distributions of both Upton, et al. and these prior studies show the same

(Figure 2A; Figure 2—figure supplement 1A–C), contradicting Upton, et al.’s suggestion that

chimeras appear at higher read counts than true insertions. Therefore, in these methods and in

single-cell sequencing generally, insertion calls supported by single reads would have

negligible probability of being true insertions.

Upton, et al. further support their claim that single-neuron sequencing preferentially amplifies

chimeras by remarking on the low PCR validation rate among high-scoring final L1-IP

candidates of Evrony et al. (2012) (low specificity) as an indication that many true candidates

Evrony et al. eLife 2016;5:e12966. DOI: 10.7554/eLife.12966 29 of 32

Research article Genomics and evolutionary biology Neuroscience

http://dx.doi.org/10.7554/eLife.12966


at low scores are being missed (low sensitivity). This confuses specificity with sensitivity: low

specificity among candidate mutations does not imply low sensitivity for true mutations. L1-

IP’s sensitivity is high, in fact significantly higher than RC-seq, as measured using the gold-

standard KNR insertion reference (Figure 3A; Figure 3—figure supplement 1) as well as

single-copy (heterozygous and hemizygous) KNR and human genome reference insertions, the

most stringent performance measure (Evrony et al., 2012; Evrony et al., 2015). L1-IP’s

specificity performance is due to the very small fraction of chimeras that are at higher scores

outnumbering the very small number of true somatic insertions, highlighting the challenge of

chimeras in single-cell retrotransposon analysis in the setting of low retrotransposition rates.

Notably, the challenge of computational specificity was readily overcome with a definitive 3’

PCR validation approach with near-perfect sensitivity and high specificity, followed by full-

length validation with perfect specificity (Evrony et al., 2012). We emphasize that as in any

signal-noise problem where true events are distributed at higher signal than false events,

lowering a threshold to include more true events at lower scores would only decrease

specificity by including a relatively greater number of false-positive calls– i.e. the proportion of

chimeras among candidates called with a lower threshold can only be greater than the

proportion among candidates called with a higher threshold. Additional PCR validation

illustrates this: 24 randomly selected L1-IP candidates supported by one read and 24

candidates randomly selected without any read count filter all failed PCR validation

(Supplementary file 1, sheet "L1-IP | low-read-count"), illustrating the need for signal

modeling based on read counts and other parameters using a gold-standard true mutation

reference.

A subsequent single-neuron WGS method was motivated precisely to increase computational

specificity by its ability to detect most insertions at both 5’ and 3’ junctions (Evrony et al.,

2015). In fact, the four highest scoring candidates found by this method were bona fide

somatic insertions, i.e. greatly improved specificity while retaining high sensitivity. For this

reason single-cell whole-genome sequencing coupled with full-length validation is the

definitive, (albeit a costly) method for the study of somatic retrotransposition. It is also able to

profile multiple retrotransposon types (Alu, L1, SVA) as well as other types of somatic

mutation (structural variants, single-nucleotide variants) in one experiment. Targeted methods

such as L1-IP and RC-seq if used with an appropriate single-cell amplification method such as

MDA, careful signal modeling based on true insertions, and rigorous PCR validation, are cost-

effective alternatives for high-throughput studies focused on one type of retrotransposon

across many cells.
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Appendix 4: L1 qPCR copy number assay

Upton et al. (2015) employ a quantitative PCR (qPCR) method to measure somatic L1 copy

number in in the brain. Their qPCR results show relative differences of ~10-30% in somatic L1

copy number among hippocampi of four normal individuals and an individual with Aicardi-

Goutieres syndrome (Upton et al., 2015; Figures 4D–E). This qPCR method has also been

used in prior studies, with results showing variable increases (between 5% and up to 45%) in

somatic L1 copy number in brains of normal human individuals, in particular the hippocampus,

as well as brains of schizophrenia patients (Baillie et al., 2011; Bundo et al., 2014;

Coufal et al., 2009). However, there are known limitations of the qPCR method discussed by

its originators (Erwin et al., 2014; Reilly et al., 2013), namely its use of exogenous LINE-1

DNA to calibrate L1 copy number quantification. Furthermore, as discussed below, the qPCR

assay may lack specificity for active L1 elements, which would impact its findings.

Below is an alignment of the qPCR assay (ORF2 #1) primers and TaqMan probe to the L1Hs

and L1Pa2-5 consensus sequences from RepeatMasker (asterisks denote bases identical across

all sequences) (Appendix 4—figure 1). Note that only the 3rd base from the 5’ end of the

qPCR forward primer distinguishes L1Hs elements from older L1Pa elements (bold blue). The

reverse primer and probe do not distinguish between the different L1 subfamilies’ consensus

sequences.

Appendix 4—figure 1. Alignment of the qPCR assay primers and probe to the L1Hs and L1Pa2-

5 consensus sequences.

DOI: 10.7554/eLife.12966.014

PCR specificity depends significantly more on the 3’ ends of primers than their 5’ ends,

because DNA polymerase can begin replication of the template even when only a 3’ portion

of the primer is hybridized (Bru et al., 2008; Stadhouders et al., 2010). In other words, DNA

polymerase depends on the 5’ end of the primer only to the extent that it aids in hybridization

and stability of the 3’ end. In this case, the 3’-most 20 bp of the forward primer match equally

well to the L1Hs and L1Pa consensus sequences. Therefore, in order for the PCR reaction to

specifically and preferentially amplify L1Hs and not L1Pa elements, the stringency of the PCR

reaction would need to be calibrated to allow amplification only when at least the 3’-most

21bp match to the template while not allowing amplification when only the 3’-most 20bp

match to the template (i.e. a single base mismatch stringency for the 3rd base from the 5’ end

of the 23 bp forward primer). Such a calibration was not performed by Upton et al. and

achieving such a precise PCR stringency/specificity is unlikely using this primer design

(Bru et al., 2008). A prior study recognized the need for L1Hs specificity in this assay and

sequenced amplicons from the qPCR reaction, finding that most amplicons corresponded to

L1Hs rather than L1Pa (Coufal et al., 2009; table S3). However, this result may be because the

primers are incorporated into the amplicons during PCR such that the diagnostic base

discriminating between L1Hs and L1Pa would be lost and replaced by the primer sequence.
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Therefore, the absolute number of non-L1Hs elements amplified by the assay depends on

whether the PCR reaction can discriminate templates matching the 3rd base of the forward

primer (i.e. matching the L1Hs-specific nucleotide). If the PCR reaction only amplifies

templates matching this diagnostic base, 214 L1 elements are predicted to be amplified per

the UCSC In-Silico PCR tool, most of which (88%) are L1Hs and the remainder L1Pa2-4.

However, without the specificity provided by the 3rd base of the forward primer, 5,166 L1

elements are predicted to be amplified from the human genome, i.e. ~24 times as many L1

elements, of which only 527 (10%) are L1Hs, and the remainder are 1136 (22%) L1Pa2, 2047

(40%) L1Pa3, 1203 (23%) L1Pa4, 178 (3%) L1Pa5, and other older L1 elements. Moreover, the

ORF2 #1 Taqman probe matches the majority (71%) of these elements with no mismatches

and nearly all (95%) with 1 mismatch. As a result, most of the L1 elements amplified and

quantified by the qPCR assay may be older inactive L1Pa elements rather than

retrotranspositionally active L1Hs elements.

Because qPCR measures relative changes in copy number, targeting of mostly inactive L1Pa

elements would in turn cause a decrease in sensitivity for detection of L1Hs copy number

changes. Additionally, any purported relative increase in copy number indicated by the assay

would mean more dramatic absolute increases in L1 copy number, because relative copy

number increases are measured relative to the total number of L1 elements amplified by the

assay. For example, without specificity for L1Hs elements, even a modest 5% relative copy

number increase in this assay would correspond to ~258 (5% * 5,166) additional L1Pa/L1Hs

insertions per cell. And the 30-40% relative copy number differences shown by the assay in

prior studies (Baillie et al., 2011; Upton et al., 2015) would reflect differences of ~1550–2070

L1Pa/L1Hs insertions per cell. qPCR estimates of hundreds to thousands of additional L1Pa/

L1Hs insertions per cell are biologically unlikely due to the immense mutational burden

implied and are inconsistent with even the highest prior estimates of somatic

retrotransposition. Furthermore, bulk tissue is profiled by this assay, so the above rate would

be revised even further upwards for neurons if retrotransposition were occurring at higher

rates in neurons than other cell types.

In light of the above, the qPCR and RC-seq results illustrated in Figures 4D–E of Upton, et al.

(2015) are inconsistent. Comparing individuals CTRL-36 and CTRL-55 in Figure 4E shows ~45

and ~15 somatic insertions, respectively, per individual by RC-seq, while the L1 qPCR assay

shows a difference of ~30% in L1 copy number between the individuals. However, a 30%

relative difference in L1 copy number measured by the qPCR assay would be equivalent to an

implausible absolute difference at least one order of magnitude larger than that measured by

RC-seq; i.e. >300 and perhaps up to ~1500 somatic insertions depending on the number of L1

elements amplified by qPCR.

There are inevitable random and frequent systematic sources of error inherent to qPCR,

including sample preparation, pipetting, and instrumentation (Fernandez-Jimenez et al.,

2011; Kitchen et al., 2010; Weaver et al., 2010; Whale et al., 2012). Robust detection of

small (< 10%) relative copy number differences is challenging (Weaver et al., 2010). Even with

sufficient replicates to eliminate random error, systematic error sources may remain. One

systematic error may be differential extraction of normalizer genes’ DNA (alpha-satellite DNA)

relative to L1 DNA from tissue samples; similar biases have been observed in a mitochondrial

DNA qPCR assay (Guo et al., 2009).

Finally, the large L1 copy number differences suggested by Upton et al.’s qPCR data are

unlikely to be explained by non-retrotransposition mediated processes such as structural

variation or aneuploidy, as this is inconsistent with recent studies showing that large genome-

wide copy number variation and aneuploidy are infrequent enough to account for such large

L1 copy number changes, at least in cortical neurons (Cai et al., 2014; Evrony et al., 2012;

McConnell et al., 2013). Even if an improved L1 qPCR assay addressing the above issues were

designed, it would still be unable to differentiate changes in L1 copy number due to

retrotransposition from those not due to retrotransposition (Reilly et al., 2013).
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