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ABSTRACT
Motivation: Gene regulatory elements are often predicted
by seeking common sequences in the promoter regions
of genes that are clustered together based on their
expression profiles. We consider the problem in the
opposite direction: we seek to find the genes that have
similar promoter regions and determine the extent to which
these genes have similar expression profiles.
Results: We use the data sets from experiments on
Saccharomyces cerevisiae. Our similarity measure for
the promoter regions is based on the set of common
mapped or putative transcription factor binding sites and
other regulatory elements in the upstream region of the
genes, as contained in the Saccharomyces cerevisiae
Promoter Database. We pair up the genes with high
similarity scores and compare their expression levels in
time-course experiment data. We find that genes with
similar promoter regions on the average have significantly
higher correlation, but it can vary widely depending on the
genes. This confirms that the presence of similar regula-
tory elements often does not correspond to similarity in
expression profiles and indicates that finding transcription
factor binding sites or other regulatory elements starting
with the expression patterns may be limited in many
cases. Regardless of the correlation, the degree to which
the profiles agree under different experimental conditions
can be examined to derive hypotheses concerning the
role of common regulatory elements. Overall, we find that
considering the relationship between the promoter regions
and the expression profiles starting with the regulatory
elements is a difficult but useful process that can provide
valuable insights.
Contact: peter park@harvard.edu

INTRODUCTION
Gene regulation has been studied intensely for decades,
but the current knowledge of transcriptional control mech-
anisms is still fragmented. One of the major challenges
in this context is to relate DNA sequences to their gene

∗To whom correspondence should be addressed.

regulatory functions. For example, given a sequenced
control region of a gene, we would like to make pre-
dictions about its expression patterns. Technological
advances in rapid genome sequencing have provided
entire genome sequences of many organisms, allowing
researchers to apply various techniques to search for DNA
sequences related to transcription control signals. How-
ever, the prediction of these regulatory elements is a diffi-
cult problem, and current methods are not accurate enough
to be useful in the automatic annotation of a genome.

A major development in recent years is the use of
high-throughput DNA microarrays. This allows moni-
toring of gene expression levels for thousands of genes
simultaneously by quantifying the number of mRNA
copies in transcription. Some of the earliest studies using
microarrays were done on the budding yeast Saccha-
romyces cerevisiae, and it continues to be the focus of
much attention (Wodicka et al., 1997; Johnston, 2000;
Simon et al., 2001).

Some recent work in transcriptional regulation has taken
advantage of both sequence and microarray data. By
clustering the genes according to their expression profiles
in one or more experiments, one is able to find co-
expressed genes. Then, one hypothesizes that these genes
are also co-regulated. The idea is then to extract the
upstream sequences of these genes and apply an algorithm
that searches for shared patterns over-represented in the
sequences.

A primary consideration in these searches is in identify-
ing transcription factor binding sites. Transcription factors
(TFs) are proteins that can bind to a particular DNA se-
quence, called transcription factor binding site, usually of
5–25 base pairs in length. TFs are the elementary units
of transcription regulatory mechanism. For a positively
regulated gene, for example, a transcription activator pro-
tein might bind with an upstream sequence to prepare a
gene for transcription. Therefore, identifying the TF bind-
ing sites is an important step in the characterization of a
promoter region.

Detecting the binding sites for TFs in a genome
sequence, however, is complicated by many factors,
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particularly for eukaryotes. For example, the consensus
sequences recognized by some transcription factors are
short and variable, and it has been known that sequence
motifs of interest may contain too little diagnostic infor-
mation for easy identification (Bucher, 1999). In general,
the function of a regulatory region is complex, involving
multiprotein complexes interacting with TFs bound to
neighboring DNA sites. Therefore, in order to identify the
correct sites, they need to be considered in the context of
their interactions with other TFs (Wagner, 1999; Pilpel et
al., 2001).

There have been many methods for finding the common
regulatory motifs. Inferring the motif sequence from a set
of sequences known to contain the TF binding site, one
can directly search for the specific patterns of nucleotides
(Stormo and Hartzell, 1989; van Helden et al., 2000;
Lawrence et al., 1993). With the availability of microarray
data, these searching techniques could be made more
efficient, by applying them to the upstream sequences of a
group of co-expressed genes rather than to the sequences
of all genes. It was recognized early (DeRisi et al., 1997;
Spellman et al., 1998) that some groups of genes with
similar expression patterns belong to similar regulatory
pathways and that they also contain the binding sites for
relevant transcription factors. In Brazma et al. (1998), 300
bp upstream regions for genes in the same expression
clusters were compared against all other upstream regions
and a large number of over-represented patterns were
identified, many of which turn out to have matches to
substrings in known TF binding sites.

It is important to note that the underlying hypothesis
in these studies is that co-expression of genes implies
common regulatory mechanism, and in particular, the
presence of common TF binding sites. However, it is well
known that the correspondence between gene cluster and
common motifs is imprecise in both directions, i.e., many
genes in the cluster do not contain the motif and those
with the motif often are not expressed (Bussemaker et al.,
2000). Sometimes different transcriptional mechanisms
may result in similar expression patterns and sometimes
the same mechanism may have different effect on the
expression. Therefore, the success of identifying regula-
tory elements guided by expression similarity relies in
part on the extent to which this ‘controversial’ hypothesis
(Altman and Raychaudhuri, 2001) holds true for the given
set of expression profiles.

In this paper, we examine this hypothesis by posing the
question in the opposite direction. Rather than starting
with the expression profiles and asking what regulatory
elements they have in common, we ask whether the
genes with similar promoter regions, i.e., genes that have
common TFs or other regulatory elements, are in fact
co-expressed according to the microarray data. Under-
standing the complex relationship between the promoter

region and the expression is a great challenge, and we
believe it is important to consider the problem in both
directions.

The extent of disagreement between the similarities of
the promoter regions and the expression profiles helps to
evaluate the effectiveness of the methods in which one
tries to extract regulatory sites in the promoter regions
of co-expressed genes. In addition, whether or not the
correlation between profiles is high, we may be able to
gain valuable insights by examining the profiles. By seeing
how the profiles are correlated for each of the experimental
data sets, we may be able to hypothesize the conditions
under which the promoters become relevant. This would
be a way to elucidate the role of some common promoter
elements.

METHODS
We would like to define a reasonable measure of similarity
among different promoter regions, pick out the most
similar pairs, and examine their correlations across an
expression space. We make use of the regulatory elements
to describe promoter regions.

SCPD database
S. cerevisiae Promoter Database (SCPD) at Cold Springs
Harbor Laboratory contains a list of genes with their
TF binding sites, collected from the literature (Zhu and
Zhang, 1999). This database has been used for several
studies (Bussemaker et al., 2000; Hughes et al., 2000;
Cohen et al., 2000), often to verify the performance of an
algorithm for identifying regulatory sites. For a region of
specified length upstream from a gene, one can retrieve
the TFs and their binding sites as well as some other
regulatory factors, either mapped or putative.

We use this database to extract TF binding sites in
the 600 base pairs upstream of the genes. (Among the
regulatory sites examined by Roth et al. (1998), about 85%
were within 600 bases upstream of translation start.) In
SCPD, there are over two hundred genes with at least one
mapped site. There are total of 455 mapped sites; among
them, 203 sites are present once, 69 in two copies, 19 in
three, nine in four, three in five and one in six (Zhu and
Zhang, 1999).

While it is clear that information collected in SCPD
is far from complete, the mapped sites in the database
provide a fairly reliable measure. The database also
contains a much larger number of putative sites. These
have been obtained using a version of the expectation–
maximization (EM) algorithm which has been shown to
work well in finding the sites as well as the weight
matrices for representing them (Stormo, 2000). However,
the variability in the binding site sequences and many
other factors make an accurate description of putative sites
difficult and their prediction even more difficult. As a
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result, there are sometimes up to 20 times more putative
elements than mapped elements for a gene, but only a
small fraction of them has been demonstrated as true
positives. In our comparisons, we first use mapped and
putative sites separately and then use them together.

Similarity measure for promoter regions
Unfortunately, how to define similarity between the pro-
moter regions is not clear. It is complicated, for example,
by the fact that often there are many TFs involved in the
regulation of each gene, possibly with multiple binding
sites for each TF. It is known that contextual information
is important, as transcriptional control frequently involves
interactions of many TFs, but it is difficult to formalize
this to come up with a measure that should apply in all
cases. Some other considerations include how to weigh the
mapped sites against the putative ones, how to weigh mul-
tiple matches of the binding sites for the same TF, how to
weigh the binding sites that are present for only one gene,
and whether the prevalence of a TF should diminish its
weight.

Because of these ambiguities in defining biological sim-
ilarity, whichever measure one employs will be arbitrary to
some extent. We have tried to capture the main effects and
performed sensitivity analysis for the parameters, which
showed that the similarity measure we introduce is fairly
robust to parameter values. For each pair of genes, we used
the following score S:

S =
2∑

j=1

γ j

∑
i

(
f j
i

)−1/2

[(
2

N j
1i + N j

2i

+ α

)
C j

i − β (N j
1i + N j

2i )I{C j
i =0}

]
,

where j = 1, 2 correspond to the mapped and putative
sites, respectively, and i denotes the distinct binding sites;
γ j are the relative weights between mapped and putative
sites; omitting the superscript j for convenience, N1i and
N2i are the number of binding sites for the two genes in a
pair; and Ci is the number of common sites between the
two genes. The term 2 Ci/(N1i + N2i ) is the proportion of
sites in common; the next term αCi is to give preference
to the pairs with more matches when the proportion of the
matches as given by the first term is the same. The term
containing β is the penalty term for the cases in which
a binding site appears for only one gene, specified by
indicator function I{Ci =0}, which is equal to 1 if Ci = 0
and 0 otherwise. Factor ( fi )

−1/2 is the weighting of the
number of common occurrences by the inverse square root
of its frequency in the database.

In defining the similarity score S, we have tried to
satisfy few basic properties. First, we normalize the

number of matched sites between the genes by the
number of sites in both genes. This avoids automatically
penalizing genes with fewer binding sites. However, we
do give some preference to having extra matches, as
specified by α. (With each letter representing a TF
binding site: AAA/AAA should be preferable to A/A,
but not by a factor of 3.) By including the penalty
term with β, we account for those sites that do not
have matches. (A/A should be preferred over AB/A)
We also include the frequency information (A/A should
be preferred over B/B if A occurs few times in the
database while B occurs hundreds of times). When we
simply consider the number of shared elements without
accounting for their overall frequency, we find that those
genes with few commonplace TFs dominate the list of
high-scoring pairs. Dividing by the frequency, on the other
hand, de-emphasized the common regulatory elements too
much. The choice of square root in the denominator is
a compromise, giving decreasing weight to successive
occurrences. If there are some other effects that we
want to include in the similarity score, it can be done
easily. We can, for example, prefer the ordered matches
(ABC/ABC over ABC/ACB); however, this effect should
be relatively small and the complication it would bring
with an additional parameter seems to outweigh the
benefits.

If the similarity measure is to be based only on the
counts of different motifs, one can use the Poisson-
based similarity metric (van Helden, 2002). This models
the probability of an occurrence for a motif by Poisson
distribution, with the average number of the motif in all
genes as the mean. When this measure was applied to
our data, however, we observed that the average of the
correlation coefficients for the expression profiles is much
lower. We suspect that this is related to the sparsity of the
mapped sites in the database. For other cases, the Poisson-
based measure and the heuristic measure we propose give
a very high concordance.

Scope of the expression space
After we decide on the similarity measure for the promoter
regions, we must still decide on the appropriate way to
measure their expression space similarity. The difficulty
arises due to the inevitable lack of exact correspondence
between the promoter elements found on a pair of genes
and the presence of the experiments that capture the effect
of those elements. On the one hand, if the expression
space we compare is too small, there may be regulatory
elements present in the two genes but without the profiles
that would reflect their presence; on the other hand, if the
expression space is too large, there may be profiles that
are not related to any of the promoters found. In both
cases, the profile similarity would not reflect the promoter
similarity exactly.
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For the purpose of measuring correspondence between
promoter regions and the expression profiles, the com-
promise we adopt is a moderate size expression profile
space from extensively studied regulatory mechanisms.
Since the mapped binding sites would most likely be
related to the well-studied mechanisms, the use of these
profiles seems appropriate. The compilation of 79 profiles
contains data from several experiments such as mitotic
cell division cycle, sporulation, the diauxic shift, and
shock responses (Eisen et al., 1998). Of the 236 genes
that have mapped sites in the database, 183 are included
in the 2467 genes used in the experiments. We also chose
this particular data set because it has been demonstrated
already that clustering with this data set results in groups
of genes with the same functional categories (Eisen et al.,
1998) and that a set of clusters based on this data set can
be used to recover many regulatory elements (Vilo et al.,
2000).

RESULTS
Using mapped and putative sites separately
We first compare the promoter regions using only the
mapped sites. We do this by setting (γ1, γ2) = (1, 0) in
the similarity measure. The top pairs giving the highest
Pearson correlations are listed in Table 1, and the promoter
regions of the top five pairs are displayed in Figure 1
with each symbol representing a mapped TF binding site.
The first pair consists of ADE5,7 and HIS4. They share
both copies of BAS1 and one copy of BAS2. GCN4
is only contained in the HIS4 promoter but it appears
relatively often and hence carries a smaller weight; BAS2,
on the other hand, appears in no other promoter regions
and carries a large weight. Few of the pairs on the list
share exactly the same set of TFs. For example, the
second pair, COX6 and QCR8, both have ABF1 and
HAP2;HAP3;HAP4 genes.

When we examine the correlation coefficients for the
expression profiles of many of these pairs, we find that
they are not as high as one would expect. We see in Table 1
that it may be as high as 0.955 (ENO2 and PGK1), but
there are also few negative numbers (four out of 40). The
average and the standard deviation of these numbers are
shown in Table 2. Using mapped sites only, the mean of
the correlation coefficients for the top 40 genes is 0.404
(the standard deviation is 0.307). To put the correlations in
context, we also computed correlations between randomly
selected genes. A random sample of 106 pairs shows
the average to be 0.04 (the standard deviation is 0.26).
It is definitely the case that the selected pairs of genes
have higher correlations on average than those obtained
from random pairs of genes. But the correlations are not
uniformly high and there is a large variability.

One possible reason for the lack of corresponding

agreement in expression profiles is that not enough sites
have been mapped, at least as contained in SCPD. If this
is the case, we may be able to obtain more uniformly high
correlations between the expression profiles by including
the putative sites. The number of putative sites is usually
several times larger than that of the mapped sites for each
gene in SCPD. However, when we use the putative sites
alone, the mean decreases to 0.157 (standard deviation
of 0.283). This seems to indicate that the putative sites
have not been predicted accurately, and that they do not
provide a reliable description of the promoter region. This
is not surprising since the number of predicted sites far
exceeds the expected number of sites and there are many
false positives. This clearly indicates the limitations of the
current computational approaches for identifying putative
sites.

Using mapped and putative sites together
Though not as accurate as mapped sites, putative sites
may provide some additional information when combined
with the mapped sites. We examine this by choosing the
measure of relative influence through γi accordingly. We
have found that values in the neighborhood of (γ1, γ2) =
(0.8, 0.2) give the best result, defined as the average
correlation of the top 20 or 40 pairs. We find that the
overall average of the correlation in fact increases when
putative sites are incorporated, as shown in Table 2. This
shows that while putative sites by themselves are a poor
measure compared to mapped sites, they should be used
in addition to the mapped sites. The top 20 pairs are listed
in Table 1. The list is quite similar to the one obtained by
mapped sites alone: the first two are the same; 18 of the
top 20 are shared by both lists.

While there are some parameters in this formulation,
the list of pairs with high similarity score S are fairly
robust to the perturbations in the parameters chosen,
particularly to α and β. To determine the parameters,
we searched through the parameter space exhaustively in
our simulations, looking for those values that give the
highest average correlations in the top pairs. We found
that (α, β, γ1, γ2) = (1, 0.1, 0.8, 0.2) are near optimal
and stable values. Perturbations in α and β resulted
in only small changes and the lists of top pairs were
almost identical; different values of γ1 and γ2 resulted in
more substantial changes. Some other variations on the
similarity measure, such as different ways of incorporating
the frequency information, seem to result in gene pairs
with similar or lower average correlations.

Identifying role of regulatory elements
Once we have the gene pairs with similar promoter
regions, we can examine the extent of agreement in
their profiles under different experimental conditions. By
seeing what common regulatory elements confer similar
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Table 1. Gene pairs with the highest similarity score S. The list on the left was obtained using mapped sites only (α, β, γ1, γ2) = (1, 0, 1, 0); the one on the
right was obtained using both mapped and putative sites (α, β, γ1, γ2) = (1, 0.1, 0.8, 0.2). In order to see how similar the expression profiles of these gene
pairs are, we compute the Pearson correlation coefficients over the aggregate data. A summary of the coefficients is presented in Table 2

Mapped only Mapped and putative
Rank Gene pair Score Pearson corr Gene pair Score Pearson corr

1 ADE5,7, HIS4 2.096 0.600 ADE5,7, HIS4 1.691 0.600
2 COX6, QCR8 1.816 0.712 COX6, QCR8 1.549 0.712
3 ENO2, PGK1 1.699 0.955 LEU1, LEU2 1.469 −0.097
4 PGK1, TPI1 1.651 0.906 ANB1, HEM13 1.379 0.111
5 PHO5, PHO84 1.579 0.481 PGK1, TPI1 1.320 0.906
6 CLN2, IME1 1.414 0.040 ENO2, PGK1 1.317 0.955
7 LEU1, LEU2 1.414 −0.097 FBP1, ICL1 1.316 0.751
8 PHR1, URA3 1.414 0.030 FAS1, RPO21 1.276 0.374
9 ANB1, HEM13 1.363 0.111 CLB1, SWI5 1.262 0.458
10 CLB1, SWI5 1.359 0.458 PHO5, PHO84 1.207 0.481
11 BAR1, STE2 1.358 0.137 BAR1, STE2 1.159 0.137
12 ARG1, ARG8 1.289 0.277 ARG1, ARG8 1.116 0.277
13 ADE5,7, HIS7 1.262 0.677 CDC21, CDC6 1.060 0.299
14 FBP1, ICL1 1.224 0.751 PDR5, SNQ2 1.056 0.477
15 FAS1, RPO21 1.189 0.374 CDC21, CDC9 1.053 0.726
16 CYT1, MET16 1.154 0.111 ADE5,7, HIS7 1.050 0.677
17 CYT1, PGK1 1.154 −0.038 PHR1, URA3 1.013 0.030
18 MET16, PGK1 1.154 −0.236 CYT1, MET16 1.013 0.111
19 HIS4, HIS7 1.152 0.598 CDC6, CDC9 1.002 0.397
20 ADE2, ADE5,7 1.133 0.667 CLB1, CLB2 0.994 0.428

Table 2. Correlation coefficients. We compute the mean and standard deviation of the top 40 gene pairs generated by the similarity measure with different γi
values. Using only the mapped sites (γ1, γ2) = (1, 0) is more efficient than using only the putative sites (γ1, γ2) = (0, 1), but combining them gives the best
result. The first column is for a large number (500 000) of gene pairs chosen at random. The pairs chosen according to S have substantially higher correlations.
If the same parameters (α, β) = (1, 0.1) are used for all three cases, the means (standard deviations) are 0.383 (0.327) and 0.125 (0.344) for the mapped and
putative only cases, respectively

All Top 40 pairs
(γ1, γ2) = (1, 0) (γ1, γ2) = (0, 1) (γ1, γ2) = (0.8, 0.2)

(α, β) = (1, 0) (α, β) = (0.6, 0.5) (α, β) = (1, 0.1)

Mean 0.041 0.404 0.157 0.436
s.d. 0.26 0.307 0.283 0.316

expression in which experiments, we may gain more
understanding of the transcriptional regulations involved.

We plot the profiles of two pairs in Figure 2, along
with the correlation coefficients for each subset of the data
listed under the name of the experiment. The genes in the
top pair, ADE5,7 and HIS4, have been studied extensively
in the context of biosynthesis. In particular, HIS4 gene
is one of the best characterized yeast genes related to
amino acid biosynthesis. These two genes achieve a high
similarity score due to the presence of the binding sites
for the transcriptional activators BAS1 and BAS2. It turns
out that the role of BAS1 and BAS2 in ADE5,7 and HIS4
have been characterized separately in general (Rolfes et
al., 1997; Arndt et al., 1987); it also has been noted that

BAS1 and BAS2 are cross-pathway regulators of both
the histidine and purine biosynthetic pathway (Daignan-
Fornier and Fink, 1992).

In the expression space, ADE5,7 and HIS4 have an
overall correlation coefficient of 0.600, but we see that
the coefficients vary widely depending on the experiment.
There is a strong agreement six of the eight experiments,
with coefficients all greater than 0.731. However, in ELU
(centrifugal elutriation), the coefficient is low (0.118);
in CDC15 (temperature-sensitive cdc15 mutant), the
coefficient is negative (-0.396). From this we may suspect
that the mechanism involved in the two experiments
ELU and CDC15 may be different from the others that
involve BAS1 and BAS2, and that they may be related
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Fig. 1. Promoter regions of the five gene pairs with the highest similarity score S, when both mapped and putative sites are used. Only the
mapped sites are shown here (a large number of putative sites makes it difficult to show them this way).

to the TFs that are not common in the two promoters,
such as GCN4, RAP1, and ABF1;BAF1. This is a limited
hypothesis, since it is based only on the mapped sites
and a small data set. However, the fact that the profiles
agree very well in the six experiments seems to indicate
that two mapped sites are an important factor and suggest
that the two remaining experiments may involve different
transcriptional mechanisms.

For the third pair LEU1 and LEU2, the overall correla-
tion is much lower (-0.097). (The second pair, COX6 and
QCR8, is not interesting, as the correlation across all ex-
perimental conditions is high) The only common binding
site is for LEU3, which is known to encode a factor for
control of RNA levels of a group of leucine-specific genes.
(Among the putative sites, they share GCN4, BAS2, and
HSTF.) But based on the correlations coefficients shown
in Figure 2, it seems likely that the presence of LEU3 by
itself is not directly relevant in most experimental condi-
tions. We note that the correlation coefficients do not take
account of the noise level in the data, and small coeffi-
cients do not necessarily imply lack of correlation when
the expression levels are comparable to the noise level.

Classification and Regression Trees (CART)
Another approach to better understand the relationship
between the promoters and the expression profiles is a
direct classification. The similarity measure we have used
enumerates all the promoters in order to relate them to
expression profiles. It is possible, however, that what
determines the expression profile is a smaller subset of
specific promoters that have dominant effects. In that case,
there would exist a simple set of rules that can explain
the profiles in terms of few particular promoters. The
similarity measure we introduced earlier may not capture
this effect as well as a direct classification scheme.

For this approach, we use a Classification And Regres-
sion Trees (CART) method, as implemented in the soft-
ware package C5.0 (Quinlan, 1993). It is an algorithm that
extracts informative patterns from data, with the aim of
predicting the class of a sample based on its attributes. In
our case, we would like to predict the type of expression
profile given the promoter attributes.

One difficulty is that the class that we wish to predict
is a somewhat arbitrary grouping of a clustering result,
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Fig. 2. Profiles of two pairs: ADE5,7 and HIS4; LEU1 and LEU2. Vertical lines divide the expression space into 8 experimental conditions
that make up the data set: ALPHA (the cell division cycle after synchronization by alpha factor arrest, 18 points), ELU (centrifugal elutriation,
14 points), CDC15 (with a temperature-sensitive cdc15 mutant, 15 points), SPO (sporulation, 11 points), HT (shock by high temperature, 6
points), D (reducing agents, 4 time points), C (low temperature, 4 points), and DX (diauxic shift, 7 points). The break in expression lines
is due to the missing values. The numbers below the experiment labels are the Pearson correlation coefficient for that segment. The overall
correlations for the two pairs are 0.600 and −0.097, respectively.

and the result of classification may depend heavily on how
one defines the classes of expression profiles. In the case
of S. cerevisiae, we can avoid the problem of defining
clusters of expression profiles by using the functional
categories instead, as the expression profiles tend to be
closely related to the function of the genes (Eisen et al.,
1998). MIPS database (Mewes et al., 1999) contains the
necessary functional category annotations.

We then seek to find a classification that can explain the
functional categories of genes in terms of their promoters.
The output of CART is a classification tree as well as
optimal rules for determining the functional categories
of all genes. If simple structures appear, then we may
conclude that those few regulatory elements involved are
the important ones to capture and that it is not necessary
to account for all the elements in the promoter region.

Overall, we find that the presence or absence of various
regulatory elements constitutes a poor description of
the functional categories. The misclassification rates are
50.8% both for the decision tree and for the rules when
only the mapped sites are used. When both mapped and
putative sites are used, the rules become much more
complicated, with only a slight improvement in correct
classification. The error rate is little better (39.2% ) for
the decision tree and slightly worse (51.4% ) for the rules.

DISCUSSION
The complex relationship between regulatory elements
and gene expression has often been studied starting from
the expression space. We considered the relationship in
the opposite direction in the paper, trying to capture the
promoter similarity with a simple measure. Based on the
information contained in the SCPD database and the form
of similarity measure we introduce here, we are able to
find many pairs of genes whose expression levels have
high correlation, but we also find some pairs with low or
even negative correlation.

The fact that a high score on our similarity measure of-
ten does not result in a high correlation in the expression
profile may be attributed to several things. Most impor-
tantly, as we discussed in the Methods section, the scope
of the expression space may not match the promoter el-
ements precisely. Although successful recovery of a large
number of regulatory elements has been reported using the
same expression space (e.g., Vilo et al. (2000)), the data
set is not sufficiently large to represent the gene function
in some cases, and it is too large and suppresses the effect
of promoters in other cases. This aspect is critical but is
often not addressed adequately.

Second, it may be that the similarity measure we devised
does not capture the main elements of the transcriptional
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mechanism. It is certainly the case that this measure does
not include all the factors that are known to affect the level
of gene expression. One set of these factors is related to
a more precise description of the TF binding sites, such
as their location from the start of the transcription site
and the order in which they are arranged. In developing
a method to determine if a gene belongs to a particular
class based on motif-based hidden Markov models of the
promoter regions, Pavlidis et al. (2001) found that the
relative locations of motifs as well as the number of their
occurrences are important. They also suggested that the
bendability determined by the base composition of the
spacer regions between motifs should be included as it
influences the binding of the TFs. There are also some
post-transcriptional mechanisms, such as those controlling
mRNA stability that affect the co-regulation for some
genes.

There are also some sequence-independent effects, such
as the distance of the gene from the centromere. It has
been shown experimentally that the expression level can
change substantially for the same gene placed on different
location along the chromosome. Also not considered in
this study are chromatin effects, such as the acetylation
state of histones, which have been shown to play an
important role in gene expression. In our analysis, we
considered 600 bp upstream of the genes (larger segment
seems to make little difference), and this does not account
for long-range interactions that we know exist. While all
these can affect transcription, we have tried to keep the
model simple and capture the main effects.

Another reason for the discrepancy may simply be
the incompleteness of the information contained in the
database. The yeast genome is the most well studied of
all eukaryotes and many genes have been characterized
extensively through numerous experiments. However,
only a fraction of sites has been mapped and the putative
sites have not been predicted with great accuracy. With
a more complete database, we would be able to draw
stronger conclusions.

We note that this lack of correspondence between the
similarity of the promoter regions, as described by regula-
tory elements, and the similarity of expression profiles has
some implications in the common methods used to iden-
tify regulatory elements. While it can be effective in many
cases, extracting common motifs from the upstream se-
quences of genes that cluster together based on expression
data may be limited in its effectiveness in other cases. This
approach is based on the assumption that co-expression
in a set of experiments provides sufficient information
to capture the promoter elements. But depending on the
expression space, certain regulatory elements may or may
not be shared by a large portion of those genes. Clearly,
deeper understanding of the control mechanisms and more
sophisticated computational methods will be needed to

obtain a comprehensive set of regulatory elements. We
also note the ineffectiveness of putative sites in our
approach indicates that more work is needed in describing
and identifying true positive sites.

Finally, we found that the fact that these profiles do
not always correspond well can provide an opportunity
to gain some understanding of the role of the promoters.
We have examined the strength of correspondence under
different experimental conditions, and we are able to
make preliminary hypotheses on the involvement of the
common promoters under various conditions. As more
accurate information on the TF binding sites is gathered on
the databases and more microarray data are accumulated,
classification or clustering based on the properties of the
promoter regions appears to be a promising approach.
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