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Abstract

Hi-C is a common technique for assessing 3D chromatin conformation. Recent studies have shown that long-range
interaction information in Hi-C data can be used to generate chromosome-length genome assemblies and identify
large-scale structural variations. Here, we demonstrate the use of Hi-C data in detecting mobile transposable elem-
ent (TE) insertions genome-wide. Our pipeline Hi-C-based TE analyzer (HiTea) capitalizes on clipped Hi-C reads and
is aided by a high proportion of discordant read pairs in Hi-C data to detect insertions of three major families of ac-
tive human TEs. Despite the uneven genome coverage in Hi-C data, HiTea is competitive with the existing callers
based on whole-genome sequencing (WGS) data and can supplement the WGS-based characterization of the TE-
insertion landscape. We employ the pipeline to identify TE-insertions from human cell-line Hi-C samples.

Availability and implementation: HiTea is available at https://github.com/parklab/HiTea and as a Docker image.

Contact: peter_park@hms.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Over half of the human genome is composed of repetitive DNA
sequences (de Koning et al., 2011). The repeats belong to two major
classes: (i) tandem repeats, consisting of DNA sequences from few
bases to few hundreds of bases that have expanded in tandem,
stretching up to millions of bases in the genome; and (ii) transpos-
able elements (TEs), interspersed throughout the genome and
accounting for 44% of the human genome (Mills et al., 2007).
Unlike tandem repeats, TEs are capable of transposition, in which
they move from one genomic location to another. The distinct self-
or trans-encoded mechanisms used by the TEs for transposition are
used to group them into several families (Wicker et al., 2008).
Although a vast majority of the TEs are inactive, a small fraction
(<0.05%) still remains active in the human genome (Mills et al.,
2007), primarily Small Interspersed Nuclear Elements (SINEs),
Long Interspersed Nuclear Elements (LINEs) and SINE-variable
number of tandem repeat (VNTR)-Alu (SVAs).

The transposition events are a major source of genomic struc-
tural variation (SV) and play an important role in a multitude of
human genetic diseases (Hancks and Kazazian, 2016). For example,
elevated levels of non-reference L1Hs (LINE) insertions are associ-
ated with epithelial carcinomas (Chenais, 2015; Hancks and

Kazazian, 2016; Lee et al., 2012); Alu (SINE) insertions are associ-
ated with cystic fibrosis and hemophilia (Chen et al., 2008; Vidaud
et al., 1993); and a recent case of Batten’s disease that led to the de-
velopment of an individualized antisense oligonucleotide therapy
(Kim et al., 2019) was caused by an SVA insertion. The TE-
sequences may also encode a range of regulatory features, such as
promoters, enhancers, transcription factor binding sites and non-
coding regulatory RNA transcripts (Chuong et al., 2017). Thus at
the molecular level, transposition can result in altered gene expres-
sion, splicing/RNA stability defects, genome instability, or decreased
integrity of centromere and telomeres (Bourque et al., 2018).

In particular, TE-sequences are a rich source of binding sites for
an insulator protein CTCF, which plays a key role in regulating the
3D structure of chromatin. The extended loops of the DNA are
maintained by binding of CTCF at the base of the loop; indeed, the
Hi-C chromatin maps suggest enrichment of SINE elements at the
topologically associated domains (TAD) boundaries (Rao et al.,
2014). The TE-derived CTCF binding sites are a fundamental source
for mammalian genome evolution at various time scales, with some
highly conserved across species and some species-specific expansions
of CTCF sites co-occurring with species-specific TADs (Cournac
et al., 2016; Schmidt et al., 2012). Given the important regulatory
role of TEs (Ahmed and Liang, 2012; Ayarpadikannan and Kim,
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2014; Garcia-Perez et al., 2016), identification of their transposition
is important in understanding the disease biology, gene regulation
and 3D chromatin organization.

Several computational tools are available for identifying non-
reference (either somatic and germline) TE-insertions from whole-
genome sequencing (WGS) data (Rishishwar et al., 2017). A key
component of such methods is the identification of discordant read
pairs (RPs), whose genome alignments display unexpected between-
pair distance or orientation. A discordant RP with one end mapping
to the consensus TE sequence and the other end mapping to the ref-
erence genome is indicative of a TE-insertion. Discordant RPs are
typically accompanied by ‘clipped’ reads, whose partial alignment
can be used to obtain base-pair resolution of the breakpoints. With
judicious integration of these criteria and appropriate thresholds,
candidate TEs insertions can be predicted across genome.

Besides WGS, another data type that involves a large amount of
sequencing is Hi-C, an unbiased genome-wide extension of the
chromosome conformation capture technique. Hi-C experiments
(Rao et al., 2014; Schmitt et al., 2016) are conducted primarily to
understand the long-distance regulatory relationships in the genome
(e.g. which enhancer interacts with which promoter). In this experi-
ment, the cross-linked DNA fragments are first digested with a suit-
able restriction endonuclease (RE). Then, random ligation is
performed in a condition that favors ligation between cross-linked
fragments. The resulting ligation product contains pairs of frag-
ments that were close in 3D proximity. Sequenced Hi-C reads in-
deed show that the effective insert sizes—the distance between the
mapped mates—range from few hundred to millions of bases.
Consequently, the proportion of discordant RPs, that are <20% in
WGS, are in the excess of 50–70% for Hi-C data. Furthermore, as
the sequenced fragments are generated after the ligation step, the
proportion of reads carrying split mapping (due to encompassed RE
sites) is higher in the Hi-C data. These features thus limit the use of
WGS-based TE detection tools on Hi-C data.

Here, we present a computational pipeline Hi-C-based TE ana-
lyzer (HiTea), which identifies non-reference TE-insertions of the
LINE, SINE and SVA families using Hi-C data. Our comparisons
show that HiTea (run on Hi-C) performs similarly to a commonly
used WGS-based tool (run on WGS at similar coverage) (Gardner
et al., 2017). With increasing realization of 3D chromosomal struc-
ture as a regulatory component of gene regulation, large-scale
efforts, such as 4D Nucleome (Dekker et al., 2017), are underway to
aim to map genome organization across cell-types and disease mod-
els. Our results indicate that Hi-C data can be used not only to study
3D genome organization but also to characterize the non-reference
TE-insertions.

2 Materials and methods

2.1 Informative Hi-C RPs for non-reference TE detection
To understand the methodology underlying HiTea, we first describe
the different types of RP mappings observed in Hi-C data (Fig. 1A).
Discordant RPs, defined in paired-end sequencing, are RPs with un-
expected distance or orientations between paired-mate reads when
mapped to the reference genome. Due to the intrinsic design of Hi-C
experiments for detecting interactions between two distant genomic
loci, a major proportion of RPs (typically 50–70%) in Hi-C data are
discordant with large (>1 kb) mapping distances or atypical orienta-
tions of the paired mates. A small proportion (6–30%) of RPs dis-
play WGS-like concordant read mapping configuration (Fig. 1A,
panel i), where both mates map close (< 500 bp) to each other in
convergent orientation (i.e. inward-facing mapping).

The RPs in Hi-C data can also be classified into two different
categories. First, we introduce the terminology conforming RPs to
refer to those with mapping configuration explained solely by the
Hi-C experiment. For instance, conforming RPs with unique map-
ping of the entire mate reads on two proximal or distant genomic
loci are prevalent in Hi-C data (Fig. 1Ai, ii). Here, the between-pair
distance can range from WGS-like insert size (i.e. �500 bp) to mil-
lions of bases (Fig. 1B). A third type of conforming RPs are those in

which the 50 portion of a mate maps uniquely to the genome and the
30 portion maps convergent on the genomic locus of the matching
mate, and the two portions are connected with the RE-ligation motif

(Fig. 1Aiii). These mappings are referred to as chimeric Hi-C pairs
(�10–20%) and are included in the 3D-contact matrices. Second,

the remaining RPs (�10–30%) do not conform to any expected con-
figuration of read mappings, and thus are discarded in standard
analyses. In those non-conforming RPs, one or both mates remain

unmapped, multimapped, or their partial mapping does not produce
chimeric Hi-C pairs (Fig. 1Aiv–vi). To identify non-reference TE-

insertions, HiTea uses non-conforming RPs whose partial (clipped)
sequences or one entire mate read map to TE sequence assemblies.

In Figure 1C, we show the distribution of reads along a small
genomic region. In WGS data, the genomic coverage is relatively
even. In Hi-C data, the coverage is more variable; however, much of

the region is still covered with at least some reads, thus allowing for
the possibility that most TE-insertions can be captured. The propor-
tion of discordant RPs (non-gray colors) is very high in Hi-C data.

2.2 Identification of TE-insertion breakpoints
HiTea starts by identifying non-conforming RPs using Pairtools

(https://github.com/mirnylab/pairtools). In the discovery step, the
clipped reads without legitimate RE-ligation motif are -mapped

[using BWA-MEM (Li and Durbin, 2010) with ‘-a -k 13 -T 20’] to
family-wise TE-consensus assemblies published earlier (Gardner
et al., 2017) for Alu (SINE), L1Hs (LINE) and SVA (https://melt.igs.

umaryland.edu/downloads.php). Additionally, it uses a separate 200
bases-long PolyA sequence to improve detection sensitivity of TEs,
especially those with long PolyA tails. Clipped reads mapping solely

to the PolyA sequence are assessed separately while evaluating the
TE-insertion candidates. For the alignment, we note that many poly-

morphic insertions may have sequences distinct from the family-
based consensus. To accommodate such cases, HiTea offers an op-
tion to remap clipped reads that initially fail to map to a TE-family

consensus, to a user-provided set of polymorphic sequences for a
TE-family or sequences of the members of its subfamily [e.g. from

Repbase (Bao et al., 2015)]. HiTea, in principle, can also detect
insertions of other template-based transposons, such as an active
human endogenous retrovirus, as long as adequate TE-consensus

sequences are provided. The clipped-sequences are derived from
non-conforming Hi-C RPs, where minimum clip length (default: �s

20, recommended) can be defined by the users. Using a two base-
pair leeway, a breakpoint on the reference genome is determined as
the location with the maximum number of clipped reads at a locus

(Supplementary Fig. S1). HiTea simultaneously records all non-
conforming RPs in which a read maps to the reference genome and

its ‘anchor’ mate maps to the TE-consensus assembly (using default
BWA-MEM settings). We refer to these as Repeat-Anchored non-
conforming Hi-C Mates (RAMs) pairs (Fig. 1D), following the ter-

minology introduced earlier (Lee et al., 2012). All breakpoints sup-
ported by at least two clipped reads with partial mapping to a TE-
consensus are further interrogated for enrichment of available TE-

supporting clipped-reads and RAMs using a negative binomial
model (Supplementary Fig. S1). The candidate sites, where the num-

bers of clipped reads and RAMs are <5% and 2.5%, respectively, of
the total Hi-C coverage at the locus are omitted as unreliable.

Unlike WGS, where the RAM pairs are clustered around the sites
of TE-insertion, Hi-C data exhibits wider mapping area. Though,
both WGS and Hi-C data are biased by GC-content or overall

mappability, the coverage in Hi-C is additionally clearly biased by
the density of RE sites at the locus. Hence, HiTea uses a negative bi-

nomial model to assess the enrichment of TE-insertion supporting
reads (i.e. RAM pairs and clipped-reads) at the locus. To model the
biases, HiTea uses randomly selected loci in the genome that have

similar coverage of the non-conforming RPs as the site under investi-
gation. Then, the count of TE-supporting reads at a locus is assessed
against negative binomial model built from the random set.
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2.3 Filtering and annotation of non-reference TE-

insertions
A substantial fraction of clipped reads in Hi-C data displays chi-
meric mapping (Fig. 1A, panel iii) carrying a ligation motif at the
clip position. To avoid calling such canonical Hi-C interactions as
TE-insertions, HiTea filters out insertion candidates whose pre-
dicted breakpoints on either the reference genome or TE-
consensus are within 3-bases (user-defined) of the ligation-site
(Fig. 1D, clip reads at RE site; Supplementary Fig. S1 for detailed
filtering steps). It also filters out candidates when multiple break-
points are predicted around a putative breakpoint, as it is likely to
be a complex variant other than a simple TE-insertion. At the
sites of insertion, clipped mapping positions of the reads indicate
a breakpoint where reads mapping to the reference-genome cluster
(Fig. 1D). HiTea expects that the genuine breakpoint should also
show reciprocal cluster of the clipped-sequences when mapped to
the TE-consensus. Insertions defying this expectation are removed
as invalid. Furthermore, insertions where clipped reads map only
to the PolyA sequences are omitted as potential simple repeat
expansions. The genuine breakpoints are expected to have clip-
sequences mapping to PolyA sequence or presence of a degenerate
polyA sequence (here, we look for a stretch of 7-As or Ts in the
proximal 10 bases at the breakpoint on clipped-sequences).
Subfamily annotation of the insertion is done by mapping the lon-
gest clipped sequence to the subfamily consensus sequence derived
from Repbase (Bao et al., 2015). HiTea further detects target site
duplication, strand information, and estimates the size of insertion
from the observed mapping of the clipped-sequences on the TE-
consensus. HiTea is written in PERL and R. It uses GNU-parallel
(Tange, 2011) for parallelization over available cores. The inser-
tions are reported in bed format, with following status. Status-3
insertions are supported by right- and left-hand side mapping of
the clipped reads (Fig. 1D), whereas status-2 insertions represent a
subset of status-3 cases that overlap the reference copy of the
same TE-family. If the insertion is supported by clipped reads at
one side but have unmapped reads on the other side with
polyA stretches (as defined earlier), such instances are flagged
with status-1.

3 Results

3.1 HiTea shows performance comparable to that of a

WGS-based method
To assess the performance of HiTea, we utilized Hi-C data gener-
ated from the HapMap cell line GM12878 (Rao et al., 2014). This
cell line has been extensively characterized using a wide range of
technologies and sequencing platforms. To generate the gold stand-
ard for comparison, we used an improved version of our algorithm
Tea (Lee et al., 2012) on PacBio HiFi long reads (Zook et al., 2016)
with extensive manual curation (hereafter referred to as the PacBio
reference). For WGS, we employed Mobile Element Locator Tool
(MELT) (Gardner et al., 2017), a popular software package with re-
portedly superior performance at moderate sequencing depth
(Rishishwar et al., 2017). The full datasets consisted of �5B RPs for
Hi-C (Rao et al., 2014) (MboI-digested dataset; downloaded from
4DN data portal) and �1.4B RPs for WGS (downloaded from the
1000 Genomes project). Sequencing depths have considerable im-
pact on the precision and recall (Rishishwar et al., 2017), thus we
randomly down-sampled Hi-C data to1.4B RPs (�80� coverage) to
provide a fair comparison between platforms. At this coverage, 79%
of the genome in WGS and 57% in Hi-C data are covered with at
least 60� coverage (Fig. 2A). The coverage was calculated by count-
ing reads with mapping quality of at least 10 (MAPQ�10).

The candidate insertions predicted by HiTea (ran on Hi-C data)
and MELT (ran on WGS data) were compared against the PacBio
reference set (Fig. 2B). We used two sets of insertions reported by
MELT for GM12878: (i) the stringent ‘PASS’ set (1122 insertions,
referred as MELT-PASS) and (ii) a more lenient set that includes the
PASS variants and others for which genotype could still be inferred
(1443 insertions, referred as MELT-GT) in the comparisons. A total
of 1251 insertion were identified by HiTea while the PacBio refer-
ence set consisted of 1747 insertions.

Overall, HiTea correctly identified 1085 insertions (Fig. 2B).
The precision (fraction of the true positives among all identified
insertions) was 0.87; recall (fraction of true positives among all posi-
tives) was 0.62 with F1 score of 0.72. MELT-PASS and MELT-GT
correctly recovered 925 (precision 0.82, recall 0.53, F1 0.64) and
1115 (precision 0.77, recall 0.64, F1 0.7) insertions, respectively.

Fig. 1. Properties of Hi-C reads supporting a TE-insertion. (A) Hi-C RPs can be grouped into two classes that we termed ‘conforming’ and ‘non-conforming’. Conforming RPs

comprise of (i) WGS-like pairs with short insert sizes, (ii) pairs with large effective insert sizes and (iii) chimeric RPs where the clip-sequence maps convergent to mapped locus

of its paired mate. Non-conforming RPs comprise of mapping configurations where (iv) the clipped sequence does not display chimeric mapping or (v and vi) the mate remains

unmapped on reference genome. (B) Comparison of the between-pair distances for WGS and Hi-C experiments. (C) A genome browser view of a true insertion event, showing

both coverage and the discordant RPs (non-gray color) in WGS and Hi-C experiments. Box marks the TE-insertion site. Mapped RPs in the display are color-coded by the in-

sert sizes using default IGV color scheme. (D) A schematic of Hi-C read configuration at insertion site. Clipped reads supporting TE-insertion exhibit partial mapping to TE-

family consensus (orange), whereas those that do not, map at distant reference locus (black). RPs with a mate mapping to the TE-family consensus are displayed with orange

outline (RE, restriction endonuclease; TSD, target site duplication)
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i. Alu. Most of the insertions were Alu, as expected. Among the

1493 Alu insertions from our reference set, HiTea correctly

identified 1000 (precision 0.89, recall 0.67, F1 0.76) insertions

from the Hi-C data. Whereas, MELT-PASS correctly identified

825 (precision 0.87, recall 0.55, F1 0.68) and MELT-GT recov-

ered 986 (precision 0.83, recall 0.66, F1 0.74) Alu insertions

from the WGS data. These results suggest that HiTea (ran on

Hi-C) has considerably better performance at detecting Alu

compared to MELT (ran on WGS) (Fig. 2B). Notably, HiTea

can detect Alu insertions with competitive precision and recall

from Hi-C samples with lower coverages (Fig. 2C). For in-

stance, at 600M RPs (�40� sample; recommended sequencing

depth by the 4DN consortium) and 300M RPs (�20� cover-

age), the precisions are nearly uniform (i.e. 0.89 for 1.4B, 0.89

for 600M and 0.90 for 300M) and the recalls decrease only

slightly, from 0.67 (1.4B, F1 0.76) to 0.65 (600M, F1 0.75) and

0.59 (300M, F1 0.71) (Fig. 2C). We compared the proportions

of the clipped reads, which are the starting point of TE-

insertion identification in HiTea, and RAM reads that map to

Alu consensus between Hi-C (identified by HiTea) and WGS

(identified by MELT) at the equal sequencing depth of 1.4B.

Although the proportions of Alu-mapping clipped reads (44%

in Hi-C and 53% in WGS) were higher, we observed that the

proportion of RAMs pairs mapping to the Alu consensus is

much higher for Hi-C (43% of total RAMs) than WGS (13% of

total RAMs). Taken together, better proportions of mapping of

clipped and RAM reads in Hi-C is likely associated with better

performance of HiTea on Alu.

ii. L1Hs. Our PacBio reference set contained 194 high-confidence

L1Hs insertions. HiTea correctly identified 67 (precision 0.64,

recall 0.35, F1 0.45), whereas MELT-PASS and MELT-GT

detected 73 (precision 0.61, recall 0.38, F1 0.47) and 91 (preci-

sion 0.52, recall 0.47, F1 0.49), respectively (Fig. 2B). With re-

spect to sequencing depths, recall increased as the depth

increased, from 0.11 for 300M (F1 0.19) to 0.4 for 5B RPs (F1

0.48), while the precision remained in a similar range (0.61–

0.71) (Fig. 2C). Interestingly, the proportions of both clipped

and RAM reads mapping to the L1Hs consensus were substan-

tially higher in the WGS data (39.5% and 84.2%, respectively)

compared to the Hi-C data (27.5% and 52.7%, respectively).

Transposed copies of L1Hs are frequently associated with 5’

truncation and/or inversion. Moreover, during target-primed re-

verse transcription, L1 RNA often accommodates sequences

from the downstream genomic region (Pickeral et al., 2000). A

RAM pair supporting L1Hs insertion can in fact be flagged as a

valid Hi-C interaction pair (Fig. 1Aii), if the region of the TE-

consensus exhibits high similarity with the genomic L1Hs cop-

ies. These additional features may lower the performance of

HiTea for L1Hs compared to Alu.

iii. SVAs. HiTea has relatively poor sensitivity toward SVAs. Of 60

SVAs in the PacBio reference set, HiTea correctly identified 18

(precision 0.75, recall 0.3, F1 0.43), whereas MELT-PASS and

MELT-GT, respectively, detected 27 (precision 0.51, recall

0.45, F1 0.48) and 38 (precision 0.48, recall 0.63, F1 0.55)

instances. Although the proportions of RAMs mapping on the

SVA-consensus were comparable (2.7% for Hi-C versus 2.5%

for WGS), the proportions of SVA mapping clipped reads were

substantially different (4.6% in Hi-C versus 7.1% in WGS).

SVAs comprise of frequently expanded hexameric repeats at the

5’, VNTRs in the middle and Alu-like sequences at the 3’. This

complex structure may lead to the relatively poor mapping of

SVA-originating reads to the SVA-consensus (e.g. some SVA

reads map to the Alu consensus instead), and thus affect the per-

formance of HiTea for SVAs. Nonetheless, the precision of

detecting SVAs was strikingly high for HiTea (0.73–0.75) as

compared to the MELT calls (<0.51) (Fig. 2B and C). The im-

pact of sequencing depth for SVAs was similar to that for L1Hs.

Of the 1251 HiTea insertions (at 1.4B), �13% (166) did not
overlap with the PacBio reference set. Hence, we interrogated them
against a collection of 1000 Genome TE-insertion set (at a popula-
tion allele frequency �10%; results were similar for AF �0.01%
and AF �0.1%), identified on the low coverage WGS data by
MELT (Gardner et al., 2017). Our comparison suggested that 117/
166 (�71%) HiTea-specific insertions overlap with the population-
based TE-insertion set, suggesting that these are true insertions
missed by the PacBio reference set. This also suggests that the preci-
sion and recall measures above represent lower bounds.

HiTea missed �38% (662/1747) of the insertions from the
PacBio reference set. Of the 662, 197 insertions overlapped with
1000 G set. We assessed the 50 end coverage of RAMs whose mates
or clipped-sequences map to the TE-consensus in Figure 2D. This
coverage plot (Gu et al., 2018) shows that the missed events by
HiTea do not have a sufficient number of clipped reads (lower right
panels in Figure 2D; 381/465 and 95/197 have <2 non-Hi-C chimer-
ic clipped reads mapping to the TE-consensus at the locus).

Since the 1.4B-RPs datasets used above are larger than typical
datasets, we repeated the above analysis with down-sampled data-
sets with �600 M RPs (�35–40�). Our comparison suggests that
HiTea (run on Hi-C) shows consistently higher precision in detect-
ing Alu, SVA and L1Hs compared to MELT (run on WGS data)
(Supplementary Fig. S2A). A total of 1016/1152 HiTea insertions
(precision 0.88, recall 0.58, F1 0.70) and 908/1134 MELT-PASS
insertions (precision 0.80, recall 0.52, F1 0.63) overlapped with the
PacBio reference set (Supplementary Fig. S2A). The insertions
missed by HiTea did not seem to show clip-read coverage at the re-
spective loci (Supplementary Fig. S2B).

We tested HiTea on a range of human Hi-C datasets generated
using different REs. A 4-cutter RE (MboI, DpnII) is expected to cut
the DNA at every 256 bases whereas a 6-cutter (HindIII, NcoI) will
digest the DNA at 4096 bp on average. The infrequent cuts by a 6-

Fig. 2. Performance of HiTea. (A) Cumulative distribution of the coverage for differ-

ent datasets. Gray dotted line marks 60� coverage. (B) Precision and recall for

detecting insertions of Alu, L1Hs and SVA families using HiTea (on Hi-C) and

MELT (on WGS) at 1.4B sequencing depth. PASS and GT refer to the more and less

stringent call sets, respectively, in MELT. (C) Precision and recall comparison at dif-

ferent sequencing depths of Hi-C experiment. (D) The 50 end coverage for the

RAMs whose mates map to the TE-consensus (left) or reads whose clipped-sequen-

ces map to the TE-consensus (right). The insertions are grouped according to the cri-

teria shown on the right. PacBio is the reference set constructed using PacBio HiFi

reads; 1000 G set refers to insertions detected in the 1000 Genome data by MELT
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cutter are expected to provide low spatial resolution of the Hi-C
(Supplementary Fig. S3A), resulting in a smaller number of clipped
reads along the genome. Indeed, when Hi-C datasets generated using
different REs for GM12878 cell line (Rao et al., 2014) were com-
pared, the overall recall dropped from 0.62 (MboI-digested Hi-C,
1.4B RPs, F-score 0.72) to 0.41 (1.8B RPs, HindIII digested Hi-C, F-
score 0.56). For comparison, the overall recalls for WGS sample
were 0.53 (MELT-PASS, F-score 0.64) and 0.64 (MELT-GT, F-
score 0.7) at 1.4B RPs (Supplementary Fig. S3B). Nonetheless,
HiTea showed a high precision (0.88) compared to MELT-PASS
(0.82) and MELT-GT (0.77). Besides 17 unique, remaining 794
(98%) insertions from the HiTea run either overlapped with PacBio
reference set or the 1000 G set, whereas about 79% (811/1032) of
the missed insertions displayed poor coverage of clipped reads
(Supplementary Fig. S3C and D). With the decreasing sequencing
cost, many studies are now using either a 4-cutter or a mix of 4-cut-
ter enzymes, and these high-resolution Hi-C datasets will be suitable
for HiTea analysis.

Next, we assessed the performance of HiTea on another widely-
characterized cell line, K562. We obtained WGS and Hi-C (MboI-
digested Hi-C) data from Cancer Cell Line Encyclopedia project
(Barretina et al., 2012) and a published study (Rao et al., 2014), re-
spectively. As a PacBio reference set was not available for this cell
line, we resorted to comparing the TE-insertions called by HiTea
(on Hi-C) to those from MELT (on WGS). At comparable sequenc-
ing depth of 1.2B RPs between Hi-C and WGS data for K562 cells,
a substantial fraction (769/958, �80%) of HiTea insertions over-
lapped with either MELT-derived (i.e. MELT-GT) insertions or
1000 G set. In comparison, previously analyzed GM12878 (MboI-
digested, 1.4B RPs) exhibited similar (1101/1251, �88%) degree of
overlap (Supplementary Fig. S4).

3.2 HiTea aids in the characterization of the non-

reference TE-insertions
To assess whether HiTea can correctly identify insertions otherwise
missed by MELT, we compared MELT-GT (better recall compared
to MELT-PASS) and HiTea insertions (both at 1.4B RPs sequencing
depth) using the PacBio reference set. Our analysis suggests that a
substantial number of insertions overlapping with reference-genome
copy of the same TE-family are missed by MELT (Fig. 3A and B).
TE detection along the reference TE copy of the same family can be
challenging due to multiple reasons, such as poor mappability of the
reads and SV within the reference-copies of the TE-family.
Therefore, several WGS-based tools filter out these insertions to
limit the number of false positives (Ewing, 2015). However, when
supporting reads are available and their mappings on both TE-
consensus and reference genome provide sufficient confidence for
the insertion, HiTea reports these events. Our reference set included
436 TE-insertions overlapping with the reference-copies of the same
TE-family. HiTea correctly identified 70 insertions reported in the
PacBio reference, outperforming MELT (5 and 8 by MELT-PASS
and GT) (Fig. 3B).

In total, HiTea identified 160 PacBio reference insertions missed
by MELT-GT. Conversely, MELT-GT identified 180 insertions
missed by HiTea from the reference set (Supplementary Fig. S5A
and B). When assessed for the features that led to disqualification of
these true-positive insertions by either MELT or HiTea, we observed
that indeed insertions within a reference-genome copy of the same
TE-family were preferentially missed by MELT (66/160, �41%;
Supplementary Fig. S5C). As the exact features used by MELT are
unavailable (the code is not open source), we could not further in-
vestigate the instances missed by MELT. Over half of the insertions
(124/180, �69%) missed by HiTea were due to poor coverage of
clipped reads, proximity to the RE motif, coverage thresholds and
absence of clipped reads supporting polyA tails (Supplementary Fig.
S5D).

Coverage in the Hi-C experiment is significantly higher around
the RE sites in the genome. Thus, insertions proximal to the RE sites
tend to have higher coverage of supporting reads even at relatively
low overall sequencing depth. In the example shown in Figure 3C,

the read coverage at an Alu insertion site missed by MELT-GT on
chromosome 20 is much higher in Hi-C than in WGS, although the
overall sequencing depth is the same (both bam files were sub-
sampled to 10% of total reads for better visualization). To assess
whether the same phenomenon is observed at many sites, we
counted total 50 end coverage in a 1 kb window centered at the 925
insertions identified by both MELT-GT and HiTea and the 160
insertions identified only by HiTea. As expected, the insertions iden-
tified by both methods tend to have similar coverages, whereas those
missed by MELT-GT tend to have relatively lower coverage overall
in WGS compared to Hi-C (Fig. 3D).

A total of 49/1251 (�4%) insertions detected by HiTea were not
explained by either the PacBio reference set or the 1000 G set
(Fig. 2D, second panel from the top). Of these, 4 and 6 were
reported by MELT-PASS and MELT-GT, respectively. These
HiTea-specific insertions exhibit clear presence of TE-mapping
clipped reads from Hi-C data (Fig. 2D). Representative examples of
two Alu insertions suggest that the HiTea-unique insertions have the
support of both clipped and discordant reads at the insertion locus
in the WGS data (Fig. 3E). We suspect that many of these cases may
be true positives that were missed by MELT due to its stringent fil-
tering criteria.

3.3 Installation and usage
HiTea is available at GitHub (https://github.com/parklab/HiTea)
and as a Docker image (4dndcic/hitea:v2 on Docker Hub). TE (Alu,
L1Hs and SVA) family-wise consensus sequences and the genomic
locations of the TE-family members required for running HiTea are
provided for hg38 and hg19 human genome references, with a de-
scription on how to generate them for other types of TEs on the
GitHub page. HiTea dependencies are PERL (�v5.24), R (�v3.2),

Fig. 3. Examples of TE-insertions detected in Hi-C but missed in WGS. (A) A brows-

er view of an insertion overlapping the reference-genome copy of a TE-family. This

insertion is identified by HiTea (on Hi-C) but missed by MELT (on WGS). Reads

with concordant and discordant mapping configurations are displayed in gray and

non-gray colors, respectively. The discordant RPs are color-coded according to their

insert sizes. Dotted red line with arrowhead marks the insertion site. (B) Summary

of TE-insertions detected when the insertion occurs in the reference-genome copies

of the TE-family. (C) Sequencing coverage comparison at an insertion correctly

called by HiTea but missed by MELT. (D) The boxplot for the Hi-C/WGS read

coverage ratios shows that Hi-C coverage is higher in cases identified by HiTea but

missed by MELT-GT. (E) More examples of insertions called only by HiTea
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bedtools (�v2.26) (Quinlan and Hall, 2010), samtools (�v1.7),
GNU-parallel (Tange, 2011) and Pairtools (https://github.com/mir
nylab/pairtools). Additionally, there are mandatory
(GenomicRanges, data.table, MASS) and optional [rmarkdown,
knitr, EnrichedHeatmap (Gu et al., 2018), circlize] R packages used
for computation and HTML-report generation steps, respectively.
Users can start the analysis with a single command by providing a
name-sorted bam file, restriction enzyme used for the Hi-C assay
and the genome build used to map the Hi-C data. HiTea auto
detects if the read class information is present in the bam file (e.g.
files obtained from 4DN data portal https://data.4dnucleome.org/
carry this information). If not, it employs Pairtools to generate read
class information. User-defined TE-consensus or polymorphic
sequences and the genomic locations of the members of TE-
sequences can be provided using a detailed input option. A HiTea
run on a typical Hi-C dataset (�600 M RPs) takes about 3.5–4 h to
complete with 8 cores and 20 G memory.

4 Discussion

Although used primarily for understanding 3D organization of the
genome and its regulatory role, the long-range chromatin interaction
information in Hi-C data have been used to assemble small scaffolds
into chromosome-length assemblies (Dudchenko et al., 2017; Gong
et al., 2018) and to identify copy number and translocations
(Chakraborty and Ay, 2018; Dixon et al., 2018; Wang et al., 2020).
In this work, we have demonstrated that Hi-C can be used also to
identify TE-insertions.

The strong performance of HiTea was somewhat unexpected.
Given the nature of the experiment, the read coverage for Hi-C is
highly variable along the genome. We thus expected that there
would not be enough reads at some TE-insertions sites, resulting in
degraded performance for HiTea compared to a WGS-based
method. What makes HiTea competitive with a WGS-based
method, however, is the use of clipped reads to locate candidate TE-
insertions at the discovery step, in contrast to the discordant RP-
based candidate discovery in most WGS-based methods. The higher
proportion of clipped reads (carrying no RE-ligation junction) in Hi-
C data (1.6%) than in WGS data (1.4%) is further helpful.
Moreover, the proportion of RPs whose one end remains unmapped
or multimapped is higher in the Hi-C data (21%) compared to the
WGS data (14%) due to wider effective insert sizes, increasing the
power of Hi-C data for detecting insertions. In particular, the TE-
insertions in the reference-genome copies of the same family or those
occurring in regions with comparatively lower coverage in WGS
data are sometimes detected by HiTea but missed by MELT.

The availability of PacBio HiFi data (circular consensus sequenc-
ing method, with half the reads >50 kb) for GM12878 made it eas-
ier to evaluate the performance of different methods. However, the
TE-insertion map based on this one sample is obviously incomplete,
as seen by the fact that many HiTea candidates not present in the
PacBio reference set were present in the 1000 G data. A small frac-
tion (<5%) of HiTea insertions were still not explained by either
PacBio reference set or 1000 G set. Although some of these insertion
calls may be false positives, it is interesting to note that both WGS
and Hi-C data show presence of discordant and non-conforming
RPs mapping to the underlying TE-consensus, respectively, along
most of these loci. Additional long-read data or independent experi-
mental validations may prove useful in discerning the nature of
HiTea-specific calls.

The number of studies mapping chromatin organization in di-
verse organisms, cell-types and disease states as well as the collective
efforts to organize such data has gained momentum (Dekker et al.,
2017). However, it is imperative to mark SVs in the genome before
construing the chromatin interactions from Hi-C data as functional
interactions, as we have demonstrated recently (Wang et al., 2020).
HiTea exploits Hi-C data to identify non-reference TE-insertions,
using reads that otherwise would be discarded. Finally, although we
compared call sets from Hi-C and WGS data in our analysis, the
ideal scenario is to have both data types for a sample of interest, so
that the insertions calls can be cross-validated and expanded.

Continued development of more comprehensive reference TE-
insertions maps and robust computational methods for TE identifi-
cation will be important.
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