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Abstract

Summary: Single-cell Hi-C (scHi-C) allows the study of cell-to-cell variability in chromatin structure and dynamics.
However, the high level of noise inherent in current scHi-C protocols necessitates careful assessment of data
quality before biological conclusions can be drawn. Here, we present GiniQC, which quantifies unevenness in the
distribution of inter-chromosomal reads in the scHi-C contact matrix to measure the level of noise. Our examples
show the utility of GiniQC in assessing the quality of scHi-C data as a complement to existing quality control
measures. We also demonstrate how GiniQC can help inform the impact of various data processing steps on data
quality.

Availability and implementation: Source code and documentation are freely available at https://github.com/4dn-
dcic/GiniQC.

Contact: peter_park@hms.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent advances in sequencing- and microscopy-based assays have
dramatically increased our ability to probe chromatin structure
and dynamics. Chromatin conformation capture methods, for ex-
ample, have revealed variability in nuclear compartmentalization
and topologically associated domains (Rowley and Corces, 2018).
Among these, single-cell Hi-C (scHi-C), a method based on high-
throughput chromatin conformation capture at the single cell
level, has been applied to assess cell-to-cell variability in chroma-
tin structure across the cell cycle and the oocyte-to-zygote transi-
tion (Flyamer et al., 2017; Nagano et al., 2017). However, despite
the potential of scHi-C to probe chromatin structure of individual
cells in high-throughput, the high level of noise inherent in
sequencing-based single-cell assays remains a barrier to wider
adoption.

Here, we present GiniQC, a novel quality control measure
designed to quantify noise in scHi-C data. In designing our measure,
we employed the observation, corroborated by decades of micros-
copy data, that each chromosome contacts a limited number of
other chromosomes at a given moment (Cremer and Cremer, 2001).
Consequently, GiniQC measures a different aspect of data quality
than measured by the percentage of contacts in cis, a commonly
used measure of scHi-C data quality. Our tool calculates GiniQC as
well as other frequently used scHi-C quality control metrics, includ-
ing percentage of contacts in cis.

2 Materials and methods

The tendency of chromosomes to occupy distinct territories in the
nucleus has been observed in previous scHi-C studies as distinct,
well-supported clusters of trans contacts (Lando et al., 2018;
Nagano et al., 2017). In contrast, random ligation noise is distrib-
uted more uniformly throughout the genome. In Figure 1A, contact
maps from two datasets are plotted on the same matrix: the upper
triangle is characterized by ‘clumps’ of reads, thus representing
higher quality data, than the lower triangle, which does not have
discrete clusters of trans contacts.

To quantify these observations, we begin by counting the num-
ber of reads that support a contact between two given inter-
chromosomal, or trans, regions. When these read counts vary
greatly between bins, such as in the upper triangle of Figure 1A,
they reflect the tendency of chromosomes to contact a limited
number of other chromosomes. When these read counts are simi-
lar across trans bins, such as in the lower triangle of Figure 1A, we
consider the data to be noisy and less representative of actual
chromatin structure. In our distribution of read counts, we ex-
clude cis (intra-chromosomal) bins, which contain far greater
reads than trans bins, in order to resolve smaller differences be-
tween trans bins.

To measure the clumping of reads, we used the Gini coefficient.
Commonly used as a measure of economic inequality (Gini, 1912),
the Gini coefficient allows one to quantify the inequality in the
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distribution of trans contacts and, by extension, the amount of
noise. Specifically, our tool takes a Hi-C contact matrix and normal-
izes read counts by iterative correction to account for sampling bias
at the experimental or sequencing stages (Imakaev et al., 2012).
After cis bins are discarded, the list of normalized read counts per
bin is then sorted. This sorted list can be used to calculate the Gini
coefficient (G) using the following formula (adapted from Sen,
1973; further detail in Supplementary Material):

G ¼

Pn

i¼1

2i� n� 1ð Þxi

n
Pn

i¼1

xi

;

where xi is the read count per bin and n is the total number of 2D
bins.

We call this specific application of the Gini coefficient as
GiniQC. A higher value of GiniQC, approaching 1, corresponds to
an unequal distribution of reads per bin, while a lower value of
GiniQC, approaching 0, corresponds to a more uniform distribution
of reads per bin. Higher quality data are associated with higher val-
ues of GiniQC. Due to a systematic bias in calculated values of the
Gini coefficient associated with the number of reads, we adjust the
value to account for this correlation (Supplementary Material;
Supplementary Fig. S2).

3 Results and comparison to existing metrics

As one example of GiniQC identifying noisy data, the GiniQC val-
ues are 0.506 and 0.386 for the upper and lower triangles in
Figure 1A, respectively. To systematically test the ability of
GiniQC to quantify signal and noise, we simulate low-quality data
by mixing together reads from different cells (Fig. 1C;
Supplementary Material). This particular approach is meant to
represent suspected sources of noise in the scHi-C protocol—such
as nuclear rupture during sample preparation or misapplication of
barcodes during library preparation or sequencing—that could
lead to mixing reads from different cells. When this is applied to

the eight haploid cells from Stevens et al. (2017), we find that
GiniQC decreases with the number of cells mixed (Fig. 1D). We
arbitrarily use the 90% quantile of the distribution of GiniQC val-
ues from mixing two cells to identify a quality control threshold in
our tool (Fig. 1D).

We compare this with the percentage of reads in cis, the most com-
monly used metric for scHi-C data, using the same cell-mixing proced-
ure (Fig. 1E). We find that the percentage of reads in cis does not
decrease as reads from different cells are mixed, which suggests that
percentage of reads in cis is less suited to detect certain kinds of noise.
We also note that using scHi-C contact matrices to model genome
structures has been proposed as a method for quality control in the lit-
erature (Lando et al., 2018). While this approach largely aims to ad-
dress a similar question of whether sequencing reads support plausible
clusters of contacts, it is far more computationally expensive
(Supplementary Material). Finally, we compare GiniQC with
QuASAR (Sauria and Taylor, 2017; Supplementary Figs S5 and S6).

Another source of noise in scHi-C data is the arbitrary fluctua-
tions in sequencing coverage by chromosome, which could bias
GiniQC values. We address this challenge by applying iterative cor-
rection to our contact matrices and by calculating the maximum de-
viation in chromosomal coverage from the median chromosome as
an additional measure of data quality.

GiniQC can also be used to assess modifications to the data proc-
essing pipeline. To validate this approach, we compare GiniQC values
when multimapping reads are discarded to GiniQC values when mul-
timapping reads are retained. As expected, we find that the inclusion
of multimapping reads, whose ambiguity in alignment should increase
noise, is associated with lower GiniQC values (Supplementary Fig.
S3). We extend this approach to assess whether discarding contacts
observed only once (‘singletons’) improves data quality, a data filter
that has been debated in the scHi-C literature (Lando et al., 2018;
Nagano et al., 2017; Stevens et al., 2017). We find that discarding
these reads marginally improves data quality, but that the size of the
effect depends on the dataset (Supplementary Fig. S3).

Finally, we assess whether GiniQC has any association with cell
cycle, ploidy, or percentage of contacts in cis. We find that higher
values of GiniQC, indicating higher quality data, are only marginal-
ly associated with a higher percentage of reads in cis (Supplementary
Fig. S4A), suggesting that the two quantities provide non-
overlapping information. We find no correlation with ploidy and a
negligible correlation with cell cycle (Supplementary Fig. S4B–D).

Our results demonstrate that GiniQC is a useful measure of data
quality. It complements other measures such as the percentage of cis
contacts, as each captures a separate aspect of data quality and as
no single metric can sufficiently describe a complex dataset.

4 Implementation

GiniQC is implemented in Python. GiniQC generates the total num-
ber of reads, percentage of reads in cis, raw GiniQC value, GiniQC
value adjusted for read counts, and maximum chromosomal cover-
age aberration for each cell. When a list of Cooler files is passed to
GiniQC, the application produces a tab-separated values table of
the metrics listed above and calculates a suggested data quality
threshold for GiniQC.
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Fig. 1. (A) Upper triangle and lower triangle are contact maps from two diploid cells

from Nagano et al. (2017). To compute GiniQC, cis reads are discarded and trans

reads are tallied by chromosomal bin. The cumulative distribution function (CDF)

can be used to calculate the Gini coefficient. 1CDX1-335 (upper) has read-count-

adjusted GiniQC of 0.506; 1CDU-524 (lower) has read-count-adjusted GiniQC of

0.386. (B) A visual demonstration of GiniQC calculation from the line of equality

and the CDF. (C) To test GiniQC and the percentage of reads in cis, we selected

50 000 reads from every combination of 1, 2, . . . 8 cells from Stevens et al. (2017)

and then computed these QC measures. (D) GiniQC versus of the number of cells

from which 50 000 reads are mixed together. Dashed line shows 90th percentile of

GiniQC values from mixing two cells. (E) Percentage of contacts in cis versus the

number of cells from which 50 000 reads are mixed together
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