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ABSTRACT

Motivation: DNA copy number aberrations (CNAs) and gene

expression (GE) changes provide valuable information for studying

chromosomal instability and its consequences in cancer. While it is

clear that the structural aberrations and the transcript levels are

intertwined, their relationship is more complex and subtle than

initially suspected. Most studies so far have focused on how a CNA

affects the expression levels of those genes contained within

that CNA.

Results: To better understand the impact of CNAs on expression,

we investigated the correlation of each CNA to all other genes in the

genome. The correlations are computed over multiple patients that

have both expression and copy number measurements in brain,

bladder and breast cancer data sets. We find that a CNA has a direct

impact on the gene amplified or deleted, but it also has a broad,

indirect impact elsewhere. To identify a set of CNAs that is

coordinately associated with the expression changes of a set of

genes, we used a biclustering algorithm on the correlation matrix.

For each of the three cancer types examined, the aberrations in

several loci are associated with cancer-type specific biological

pathways that have been described in the literature: CNAs of

chromosome (chr) 7p13 were significantly correlated with epidermal

growth factor receptor signaling pathway in glioblastoma multiforme,

chr 13q with NF-kappaB cascades in bladder cancer, and chr 11p

with Reck pathway in breast cancer. In all three data sets, gene sets

related to cell cycle/division such as M phase, DNA replication and

cell division were also associated with CNAs. Our results suggest

that CNAs are both directly and indirectly correlated with changes

in expression and that it is beneficial to examine the indirect effects

of CNAs.

Availability: The code is available upon request.

Contact: peter_park@harvard.edu

Supplementary Information: Supplementary data are available at

Bioinformatics online.

1. INTRODUCTION

Nearly all cancers are caused by abnormalities in the DNA

(Vogelstein and Kinzler, 2004). Structural changes of chromo-

somal regions such as aneuploidies, translocations, copy

number aberrations (CNAs) and point mutations have been

observed in various tumors (Lengauer et al., 1998). Among

these, CNAs represent both amplifications and deletions of

chromosomes, often ranging from 0.5 to 10Mb in size. CNAs

of oncogenes and tumor suppressor genes have been reported

as causatively related with initiation, development and progres-

sion of cancer (Albertson et al., 2000; Pinkel and Albertson,

2005). With the maturation of microarray technology, CNAs

studies using high-resolution array comparative genomic

hybridizations (aCGH) have been performed in many types

of cancer, including brain, prostate, colon, pancreatic and lung

cancers (Chaudhary and Schmidt, 2006; Liu et al., 2006;

Phillips et al., 2006; Pole et al., 2006; Tonon et al., 2005). These

genome-wide chromosome copy number data have accelerated

cancer research by allowing identification of new candidate

cancer loci, classification of cancer subtypes and discovery of

molecular mechanisms of cancers. In addition, meta-analyses of

published aCGH datasets have revealed a relationship between

the CNA pattern and cancer cell lineages (Jong et al., 2007;

Myllykangas et al., 2007).
While CNAs are structural changes, measuring the level of

transcripts provides additional information on whether those

changes have functional consequences. Genome-wide profiling

of gene expression (GE) has already shown promising

possibilities in classification of cancer, prediction of treatment

responses and discovery of correlated events in the clinical data

such as metastasis (Bild et al., 2006). So far, several groups

performed systematic studies to check whether CNAs are

directly associated with transcriptional changes of the genes

contained in those CNAs (Chaudhary and Schmidt, 2006;

Jarvinen et al., 2006; Phillips et al., 2006; Pollack et al., 2002;

Stranger et al., 2007). Hyman et al. (2002) analyzed a set of

aCGH and GE profiles from the same 14 breast cancer cell lines

hybridized on cDNA microarrays. They calculated the mean

difference in gene expression between samples with and without

amplifications divided by standard deviations for each gene and
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compared with those from random permutations for estimating
statistical significance. They reported that 44% of the highly
amplified genes (42.5 in copy number ratio) were up-regulated

and that the percentage decreased with a lower level of ampli-
fication. Using the same statistical method, Jarvinen et al.
(2006) analyzed CNAs and GEs from laryngeal squamous cell

carcinoma cell line and found that 39% of amplified regions
were up-regulated and 14% of deleted regions were down-
regulated. These percentages decrease in the primary tumors:

only 18% of amplified regions are up-regulated and there were
no changes in the deleted regions. Chaudhary and Schmidt
(2006) stimulated the prostate cancer cell line DU145 with

serum and found that a large proportion of genes in deleted
regions were down-regulated, but most genes in amplified
regions did not show any change in GE. Although different

tumor types and quantification methods can give varied
estimates, these results clearly demonstrate the high impact of
copy number in the transcription of those genes contained in
the aberration. This direct relationship between structural

changes in the DNA and gene expression has been used
to identify or verify candidate cancer genes and pathways
(Chin et al., 2006; Hyman et al., 2002; Ruano et al., 2006;

Soroceanu et al., 2007; Sweet-Cordero et al., 2006; Wolf et al.,
2004; Yao et al., 2006).
These studies suggest that the relationship between CNAs

and GEs is not simple and that the positive correlations are
often but not always observed. The interaction between the two
is further complicated by distant interactions in which a CNA

can impact the expression of genes located elsewhere. For
instance, Soroceanu et al. (2007) observed in glioblastoma that
the DNA loss in PTEN, a known oncogene located in chr 10, is

highly correlated with over-expression of IGF or EGFR, both
of which are located away from chr 10. In the following, we call
the relationships between CNAs and GE in the same location

as a direct interaction and those in the different locations as an
indirect one.
In the current study, we investigate both the direct and

indirect relationships between structural changes measured by
aCGH and functional changes measured by expression arrays,
by analyzing three data sets in which both the copy number and

expression were available. For this type of integration, there are
several difficulties to overcome. The first is that the choice of
data sets is limited. While both aCGH and expression data sets

are plentiful, paired data sets with both DNA and RNA data
on the same set of patients are scarce. It is possible to infer
relationships from unpaired data sets, but that process is prone

to false positives. The second issue is that the probes in the two
platforms generally vary greatly, both in array type and in
resolution. The newer aCGH arrays have oligonucleotide

probes with much higher resolution, but the arrays in the
data sets we use are two channel arrays using Bacterial
Artificial Chromosomes (BACs) and thus have a low resolu-

tion, on the order of 1MB. The platforms for expression data,
on the other hand, are generally oligonucleotide arrays with
higher resolution. Reconciling between the two requires

resolving the many-to-one or one-to-many mappings in each
chromosomal segment and may require judicious averaging of
the probe values in the higher resolution platform. The third

difficulty is that many genes are co-expressed and that CNAs

occur simultaneously in multiple locations (Chin et al., 2006).
This limits the precision in locating the interacting partners. In

the proposed approach, we thus deduce a set of modules, each
module containing a group of co-expressed genes and a group

of co-occurring CNAs. These two groups are highly correlated

and provide sufficient information for pathway analysis. The
relationships inferred by these modules involve distant loci and

are thus fundamentally different from those derived in previous
studies. Below, the proposed approach is described in detail and

is applied to three data sets containing glioblastoma multiforme

(GBM), bladder and breast cancer samples. In all cases, we
observe that cell-cycle related pathways are enriched. More

importantly, we identify several statistically significant CNAs
that are associated with disease-specific pathways in each case.

2. METHODS

2.1. Data sets

The method is illustrated in Figure 1. We collected and reanalyzed three

paired data sets: 34 GBM samples (Nigro et al., 2005), 57 bladder

tumor samples (Stransky et al., 2006) and 89 breast tumor samples

(Chin et al., 2006). Each sample consists of a BAC array for measuring

copy number and an Affymetrix GeneChip for measuring expression.

Each of three datasets contained about 2400 BAC probes at an

approximately megabase interval. For copy number changes, log ratio

to normal samples were used as described in the original publications.

Gene expression index was recalculated with the raw data (CEL files)

using the GCRMA algorithm (Hubbell et al., 2002). When multiple

probe sets were mapped to the same RefSeq ID, we calculated the

geometric mean after excluding the probe sets (with _x_at suffix) that

do not map uniquely to the genome. Log-transformed values were used

for further evaluation and statistical procedures.

2.2. Measuring association between CNA and expression

To investigate the association between CNAs and gene expression

changes, we used the Pearson Correlation Coefficient (PCC). We first

selected BAC array probes. Since many probes did not show any

aberrations and thus are no longer of interest, we selected a subset of

BAC probes for further analysis using the following criterion: CNAs

with probes among the top 12.5% of the amplifications or the bottom

12.5% of the deletions for at least twenty percent of samples. Using

PCC, we computed the association between all pairs of selected BACs

from aCGH and RefSeq ID from gene expression data. The results were

stored in the Correlation Matrix, as illustrated in Figure 1C. We defined

the association as direct when the BAC probes and RefSeq genes were

located on the same cytoband, and all other significant associations

were defined as indirect. We note that while a segmentation algorithm is

generally used to process aCGH data (Lai et al., 2005), it results in a

loss of sensitivity in this analysis, as the spatial averaging fails to take

advantage of the full range of the observed log-ratios for a given probe.

This is particularly true for the BAC data sets we consider here.

2.3 Biclustering for identification of modules

Because the occurrences of many CNAs are highly correlated, it is

difficult to accurately distinguish among them. The same is true for

expression profiles. Thus, rather than trying to relate a particular CNA

with the expression of a particular gene, we search for a set of CNAs

and a set of expression profiles that are highly correlated, using a

biclustering approach.

Biclustering has been popular in expression profiles studies, as it

attempts to find a subset of genes having similar expression patterns
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under a group of conditions. Such an entity is often called a module.

For a comparison of various biclustering algorithms, see Prelic et al.

(2006). In this study, a biclustering algorithm called SAMBA (Tanay

et al., 2004) was used to identify associated CNAs and gene expression

changes (Fig. 1D). The statistical significance of generated modules was

calculated by a method based on the framework developed by Tanay

et al. (2004) and those modules with P-values smaller than 0.0001 were

selected for further analysis (see Supplementary Material). This

approach allows multiple appearances of genes and of conditions in

several modules, reflecting a biological principle that genes can have

multiple functions (Cheng and Church, 2000; Dudley et al., 2005). The

biclustering approach is appropriate for the present study, as both

CNAs and genes with expression changes may participate in multiple

pathways and loci distributed across different chromosomes may be

related to the same biological pathway.

2.4. Enriched pathways in CNV-GE modules

To determine functional relevance of the modules identified, we tested

whether the genes from expression data contained in a module were

enriched for specific biological functions or signaling pathways

(Fig. 1D). We collected the gene sets of biologically related functions

from Gene Ontology (GO) using the annotation package in

Bioconductor (http://www.bioconductor.org). Biological process GO

terms with sizes between 5 and 250 were used to exclude too specific or

too general ones. Additional gene sets were downloaded from the

Molecular Signature Database (MSigDB) at the Broad Institute (http://

www.broad.mit.edu/gsea/msigdb). We used three categories of gene sets

from MSigDB: (C1) Cytobands, (C2) Manually curated pathways

including BioCarta and (C3) Motif gene sets.

For each module, we calculated the hypergeometric statistics and the

associated P-values to find enriched gene sets. To address the multiple

comparison issue with respect to the large number of gene sets tested at

the same time, we calculated the estimated false discovery rate using the

q-values and 50.01 was used for enrichment threshold (Storey and

Tibshirani, 2003).

To find out statistically significant structural components, we

calculated a hypergeometric statistic for the enrichment of cytobands

of BACs in a given module. To map BAC probes to cytobands, we used

cytoband information downloaded from the UCSC golden path

database (ftp://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/

cytoBand.txt.gz).

3. RESULTS

3.1. Associations between CNAs and GEs

The first question was whether there are in fact many cases of
strong association between distant loci. Isolated cases of such

relationships have been observed, but there was no quantifica-
tion of such effect previously.

PCC between all pairs of selected BACs from aCGH and
RefSeq ID from gene expression data showed that the large

proportion of significant associations was from different
cytobands. When we controlled the significant associations as

the top 1% of total number of associations, 2% (10 out of 515)
of pairs in the same cytobands and 1% (4386 out of 439 151) of

pairs in the different cytobands were significantly associated.

The numbers were similarly high in bladder and breast cancer
data sets.

These numbers clearly suggest that there are highly
correlated distant loci and that studying the impact of CNAs

only on the expression of those genes contained in the CNAs is
not sufficient.

3.2. Modules from the biclustering method

Given our threshold for statistical significance, biclustering
of CNA-GE correlation matrix generated 247, 339 and 506

modules for the GBM, bladder and breast cancer datasets,
respectively. This was based on a less strict overlapping

criterion between modules (Overlap factor 0.1 is used in [0,1]

scale where 1 indicates non-overlap). Each module consisted
of selected BAC probes and RefSeq genes that were highly

correlated with each other. To select modules containing both
structural and functional changes among them, we performed

hypergeometric tests of the BAC probes for possible enrich-
ment in a cytoband, and genes for gene sets as described in

Methods.

3.2.1 Signaling pathway gene sets When we applied the

BioCarta and the manually curated gene sets from the MSigDB
C2 category, 20, 18, and 18 modules were significant in GBM,

bladder and breast cancer, respectively. These modules

Fig. 1. A schematic of our approach. (A) A gene expression data set

and (B) its paired CNA data set are collected. For CNAs, we choose

BAC probes that show amplification or deletion in a given fraction of

patients. (C) For every pair of genes and the selected BAC probes, the

Pearson correlation coefficient is calculated and the correlation matrix

is generated. (D) A biclustering algorithm is applied to the correlation

matrix to obtain modules containing highly correlated genes and BAC

probes. Each module is tested for enrichment of gene sets including

those from Gene Ontology, Biocarta pathways and cytobands.
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identified signaling pathways that were highly correlated with

the CNAs of distant locations (Fig. 2, Supplementary Figs S1

and S2).
In the GBM data set (Nigro et al., 2005), the authors

examined the paired data from 34 patients. They found that

patient survival was significantly correlated with both CNAs

and GE, and noticed that the aberration in a locus could be

associated with the changes in expression on a different locus.

For instance, they observed that CH3L1/YKL-40, a gene

located on chr 1, had a strong correlation with CNAs of chr 10.

Here we systematically investigated both direct and indirect

association between CNAs and GE. Figure 2 shows 20 enriched

categories from the MSigDB C2 gene sets for the GBM data.

These categories were enriched in one or more modules deemed

significant. The PGC1A pathway and the proteosome pathway,

for instance, were found multiple times in different modules.
We queried all the genes from the enriched pathways in the

PubMed database to check whether our findings have been

reported previously. Official gene symbol and the name of

specific cancer were used as keywords. We found the

supporting evidence for a number of genes from the enriched

modules. The result and the supporting references are

summarized in Table 1. Here, we describe two examples from

Table 1. Module 193 of the GBM dataset was significantly

enriched for the epidermal growth factor receptor (EGFR)

related pathway (uncorrected Fisher’s exact P-value ¼ 4.3E-05

and corresponding q-value50.01), shown in Figure 3. Among

the genes in this pathway, EGF, GAB3 and GRB7 were highly

correlated with the CNAs of chr 7p13. This result is very

interesting, for EGF itself is located on chr 4q25. It has been

reported that EGFR in 7p12 is amplified in 30–50% of human

GBM (Ruano et al., 2006). Gefitinib, the EGFR kinase

inhibitor, has been tried for the treatment of recurrent

malignant glioma in selected cases (Mellinghoff et al., 2005).

The effectiveness of this treatment is still in debate; however,

multiple lines of evidence showed that this pathway is altered in

several types of cancer including GBM.
In another example, the calcium/calmodulin related pathway

that includes CAMK2A, CAMK2B, CAMK2G, CAMKK2

and CALM3 was enriched in module 91. Calcineurin, a

calmodulin binding protein, has been known as a brain

tumor specific neuronal marker (Goto et al., 1986). The

potential implication of calmodulin-dependent phosphodiester-

ase in GBM is reviewed in Das and Sharma (2005).

In the second dataset, Stransky et al. (2006) identified the

chromosomal region in bladder cancer samples where CNAs

are partly responsible for the changes in gene expression. They

discovered that several genes in a selected amplified region were

regulated under the epigenetic control of H3K9 trimethylation

and DNA methylation. Such regions were identified as copy

number-independent regions of correlations using their

Transcriptome Correlation Map, in which correlations among

the expression profiles of adjacent probes are computed and

stretches of probes with high correlations are selected. Copy

number-dependent regions where levels of gene expression can

be explained by CNAs in the same region were also identified.
In this study, we could find at least two signaling pathways

where gene expression levels of genes with GO terms are

correlated with CNAs in the different regions (Supplementary

Fig. S4). GO:0043123 (Positive regulation of l-kappaB kinase/

NF-kappaB cascade) was enriched in the three modules, where

the BAC probes in chr 13q were significantly correlated

with BCL10 (chr 1p22), TRAF3IP2 (chr 6q21), EDG2 (chr

9q31.3), TNFRSF1A (chr 12p13.2), LITAF (chr 16p13.13),
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Fig. 2. Structural and functional changes observed in the GBM data set. The number on the y-axis is a module identifier and the names on the x-axis
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TNFRSF10B (chr 8p21.3) and others. GO:0007249 (I-kappaB

kinase/NF-kappaB cascade) was also enriched in a module.

Interestingly, these two GO terms were closely related in terms

of the number of genes shared by two, but the associated CNA

loci were not same. It has been reported that NF-�B activates

anti-apoptotic proteins and plays an important role in

tumorigenesis and anticancer treatment (Dutta et al., 2006).

A complete result for the pathways is described in Supplemen-

tary Table S1.
In Chin et al. (2006), the authors investigated the correlations

between copy number, expression and treatment responses in

breast cancer. They found four regions of recurrent amplifica-

tion associated with poor outcome and identified 66 genes cis-

regulated by CNAs, with many genes known to be important

for cancer progression. We applied our proposed method,

and the result is summarized in Supplementary Table S2. The

RECK pathway (Inhibition of Matrix Metalloproteinase) was

significant among theMSigDB C2 gene sets. Four genes, RECK

(chr 9p13.3), hRAS (chr 11p15.5), MMP2 (chr 17q12-21) and

MMP14 (chr 14q11-12) were significantly correlated with

chr11p15.4 and chr11p15.5. Down-regulation of RECK has

been implicated in tumor angiogenesis and progression (Span

et al., 2003), but its role in breast cancer has not been

reported yet. Our result results that RECK regulated MMPs

Table 1. Analysis of pathways for the GBM data set

Gene set name Description Module ID Genes in modules

(BAC cytoband)

ARGININEC Catabolic pathways for arginine, 80 (13q14.3,13q22.1) ALDH4A1,GLS,

histidine, glutamate, glutamine GLUD1,OAT

and proline

AT1R Angiotensin II–mediated activation 71 (9p21.1,10q26.2,10q26.3) MEF2C,PTK2B (Lipinski et al., 2005),

of JNK Pathway via Pyk2 PAK1,PRKCB1,MAPK3,

dependent signaling MAP2K4,CALM3,ELK1

CACAM Caþþ/ calmodulin-dependent 91 (9p24.1,9p23) CAMK2A,CAMK2B,CAMK2G,

protein kinase activation CAMKK2,CALM3 (Perry et al., 2004)

EGF_RECEPTOR 193 (7p13) EGF,GAB1 (Kapoor et al., 2004),GRB7,

_SIGNALING

GABA Gamma-aminobutyric acid 71 (10q26.2,10q26.3,9p21.1), GABRA2 (Vlodavsky and Soustiel,2007),

receptor life cycle 91 (9p24.1,9p23), GABRA1,DNM1,GABRA5,NSF

167 (9p24.1,9p23)

GPCR Signaling pathway from 71 (10q26.2,10q26.3,9p21.1), PRKAR1B,ADCY1,GNAI1

G-protein families 83 (13q33.1,4q32.3) PRKAR2B,PPP3CB,PRKCB1,

MAPK3,CALM3,PRKAR1B,

PRKAR2B,PRKCB1

GNB1,PRKACB,GNAQ

HRAS (Knobbe et al., 2004),MAP2K1

NOS1 Nitric oxide signaling pathway 68 (7q21.3) PRKAR1B (Lam-Himlin et al., 2006),

PRKAR2B,GRIN1,PPP3CB,PRKCB1

DLG4,CALM3

RELA Acetylation and deacetylation 8 (10q23.31,3q26.32) NFKB1 (Wu et al., 2006),HDAC3,

of RelA in the nucleus FADD (Schultze et al., 2006),

TNFRSF1A (Panner et al., 2005)

ST_GRANULE_ Granule cell survival pathway 92 (11p15.4,13q14.11,13q22.1,13q31.3), ITPKB,GNAQ,MAPK10,

CELL_SURVIVAL 108(21q21.1) APC (Sunahara and Nakagawara, 2000),

108(21q21.1) MAPK9,MAPK8IP1,MAPK8IP3,

MAP2K4,MAPK8IP2,ASAH1,

CXCL2,MAPK1

TOLL Toll pathway 218 (12p13.32) TLR2,CD14,LY96

FOS (Puli et al., 2006),MAP2K3,IRAK1

Enriched pathways from the C2 category in MSigDB are listed. Each pathway can be enriched in more than one module. Among the genes in a given pathway, those in

modules are listed.

Fig. 3. (A) An example of a module from the GBM data set. This

module contains a highly correlated set of 43 BAC probes and 50 genes.

(B) Testing for enrichment of cytobands and pathways results in a

module with four BAC probes located in chr7p13 and three genes

(SHC1, EGF and GRB7) in EGFR related pathways.
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in breast cancer should be investigated further. Epidermis

development (GO:0008544) was also significantly enriched.

Six genes EMP1 (chr 12p12.3), PPARD (chr 6p21.31), PLOD1

(chr 1p36), LAMC2 (chr 1q25.3), LAMB3 (chr 1q32.2) and

BNC1 (chr 15q25.2) were significantly correlated with chr

3q25.33. EMP1 was reported as a novel marker of lobular breast

carcinomas (Turashvili et al., 2007), and the loss of expression of

LN5-encoding genes, LAMC2 and LAMB3, in breast cancer

cell lines has also been observed (Sathyanarayana et al., 2003).

Finally, we also found several modules that were highly enriched

in immune responses, consistent with the role of immune

system in developing and metastasis of breast cancer, as

reviewed in de Visser et al. (2006).

3.2.2 Gene Ontology gene sets When we applied the Gene

Ontology gene sets, 33, 29 and 52 modules were significant in

GBM, bladder and breast cancer, respectively (Supplementary

Figs S3, S4 and S5). In these modules, 65, 59 and 43 GO terms

were enriched. The overlap among them are shown in Figure 4.

Five significant GO terms were observed in common among

three cancer types: M phase (GO:0000279), DNA replication

(GO:0006260), locomotive behavior (GO:0007626), ATP

synthesis coupled proton transport (GO:0015986) and Cell

division (GO:0051301). Three of the GO terms (Cell division,

M phase and DNA replication) are all tightly related to cell

cycle, cell division and proliferation which are a signature of all

types of cancer.

3.3 Advantage over analysis of a single data type

To show the strength of combining two data types, we also

carried out pathway enrichment analysis for each type

separately with the GBM data (Nigro et al., 2005) as an

example. For GE, we used gene set enrichment analysis

(GSEA) (Subramanian et al., 2005) to find differentially

enriched gene sets between the two classes, 24 short term

survivals (STS) and 10 long-term survivals (LTS), using the

MSigDB C2 category of manually curated pathways, including

those from Biocarta. We found that no gene sets are significant

at FDR50.25. When we decreased the significance level to the

nominal P-value50.01, 27 gene sets are enriched among genes

up-regulated in STS and 1 gene set is enriched among genes

up-regulated in LTS (data not shown). For aCGH, we first

applied ISACGH (Conde et al., 2007) to identify the amplified

and deleted regions in the chromosome by segmenting each

sample. Then, we used FATIGO (Al-Shahrour et al., 2007) for

enrichment test of Biocarta pathways between the genes in

CNAs and the rest of the genes in the chromosome. When

multiple-testing adjusted P-value was calculated for Fisher’s

exact test, there were no functionally enriched regions.

While it is not possible to definitively conclude that the

pathways identified in the joint analysis is more functionally

relevant than those from separate analysis, we have found that

not many pathways are significant in single-data set analysis

and that the list of pathways are significantly different. Because

the relationship between the two data sets are exploited in the

joint analysis, it is more likely to result in a more biologically

meaningful set of pathways. We also note that the joint analysis

can be carried out even when the phenotypic data (patient

survival times in this case) are not available.

3.4 Higher resolution aCGH platforms

Our results above are based on the aCGH data with BAC

probes, but the method obviously can be applied to the

platforms of higher resolution. To illustrate this, we analyzed

copy number data obtained from Affymetrix 100K SNP arrays

and expression data from Affymetrix U133 Plus 2.0 on 65

paired data sets of GBM patients (Kotliarov et al., 2006).

Multiple probe sets were mapped into Refseq identifier and

copy number estimates based on SNP probes were binned into

100 kb regions along the chromosome. A binned region was

selected as amplified if the averaged log-ratio (base 2) in more

than 30% of samples are greater than 2, and deleted if the

log-ratio in more than 30% of the samples are less than �1.5 or

that of 10% of samples are less than �2.0. Figure S6

summarizes the enriched modules. Interestingly, one of the

modules was significantly enriched for cardiac epidermal

growth factor pathway and, among the genes in this pathway,

ADAM12, EGFR, JUN, EDN1 and PLCG1 were highly

correlated with the CNAs of ch7p11.2. This shows that, while

the overlap is not as strong as one would like, the two data sets

from different platforms, especially for copy number estima-

tion, commonly identify the important feature that structural

changes of chr7p is correlated with functional changes of

epidermal growth factor related pathways.

4 DISCUSSION

As the arrays for comparative genomic hybridization have

increased in resolution, it has become possible to relate DNA

copy numbers with changes in expression. Integrating these two

data sets effectively is a challenging task, but is bound to result

in new insights for the interplay between chromosomal

instability and gene expression. A primary difficulty in this

integrative analysis has been the lack of appropriate data sets.

In a given cancer type, both expression data sets and copy

number data sets abound, but paired data sets with expression

and copy number from the same patients are solely lacking.

Fig. 4. Overlap among the enrichment Gene Ontology categories in

the three cancer types. Among the five in the center are M phase

(GO:0000279), DNA replication (GO:0006260), and cell division

(GO:0051301). Cancer type-specific gene sets are described in the text.
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It is possible to carry out analysis even with unpaired data. For

instance, Liu et al. (2006) identified physical clusters of genes

with differential expression and then prioritized the clusters

based on whether a CNA is present at the same location in a

different set of GBM patients. However, the analysis becomes

much more powerful when both types of data are derived from

the same patient because the relationship can be inferred not

just on averaged quantities but in each sample. Fortunately,

there has been an increased recognition for such a design

recently. In the ambitious Cancer Genome Atlas project from

the National Institutes of Health (http://cancergenome.nih.

gov), multiple data types including gene expression, copy

number, microRNA, SNPs and DNA methylation are being

generated on the same set of patients from three tumor types.

In the present work, we conducted a systematic study of how

a copy number change at each location may be correlated with

expression at every other location. Whereas previous studies

have focused on their interaction at the same locus, we have

extended this to long-range interactions. It is perhaps not

surprising that there are highly correlated pairs on different

loci, but the fraction of the high correlation at the same loci was

extremely small (less than 1% among the most significant

pairs).
One of the difficulties in an integrative study such as this is

the mapping of the probes between different array platforms.

Optimal probe design for expression is concentration of probes

near the 30 ends of known transcripts, whereas that for aCGH is

more uniform spacing of the probes, often with higher density

near oncogenes. Because of this difference in design, mapping

between the two platforms involves averaging across probes in

one platform to match a corresponding probe in another

platform. This can result in loss of information from the higher

resolution platform.
Because every pair of loci is examined, a large number of

correlations is computed. Given the noise in the data, the

ordering of all such pairs is not stable and interpreting each pair

on the list is impractical. For a more robust analysis and clearer

interpretation, we have used correlation analysis followed by

biclustering to identify modules. Interpreting the modules is

also not simple, however, as many of the modules have

significant overlaps. Most biclustering methods have the

advantage of allowing a row or a column to belong to multiple

clusters, but a disadvantage is that many similar clusters can

appear. Moreover, when pathway analysis is performed, each

module can give multiple significant pathways. We have dealt

with this problem by focusing on the pathways that appear

multiple times among the clusters and examining the cluster in

which the pathway has the most significant score. Our analysis

of the pathways appears effective, with each data set giving

tumor-type specific pathways as well as all of them giving the

common cell-cycle/proliferation signatures.
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