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ABSTRACT

Motivation: Several statistical methods that combine analysis of

differential gene expression with biological knowledge databases

have been proposed for a more rapid interpretation of expression

data. However, most such methods are based on a series of univariate

statistical tests and do not properly account for the complex structure

of gene interactions.

Results: We present a simple yet effective multivariate statistical

procedure for assessing the correlation between a subspace defined

by a group of genes and a binary phenotype. A subspace is deemed

significant if the samples corresponding to different phenotypes are

well separated in that subspace. The separation is measured using

Hotelling’s T2 statistic, which captures the covariance structure of

the subspace. When the dimension of the subspace is larger than

that of the sample space, we project the original data to a smaller

orthonormalsubspace.Weuse thismethodtosearch through functional

pathway subspaces defined by Reactome, KEGG, BioCarta and Gene

Ontology. To demonstrate its performance, we apply this method to the

data from twopublishedstudies, andvisualize the results in theprincipal

component space.

Contact: peter_park@harvard.edu

INTRODUCTION

Microarray technology enables the simultaneous monitoring of

expression profiles on a genome scale and has numerous areas of

application. With the identification of differentially expressed genes

between different cancer types, for example, the microarray tech-

nique can aid in diagnosis (Pomeroy et al., 2002). By correlating

expression with phenotypic data such as patient survival time and

responsiveness to treatment, it may also help in the prognosis and

treatment of diseases (Park et al., 2002; Holleman et al., 2004).
Recently proposed analytical tools for microarray data combine

statistical analysis with a priori biological knowledge from expert-

curated databases. In general, a univariate statistical score is first

computed for each gene. Then a second statistical procedure is

used to determine whether a particular category of genes are

over-represented among the top-scoring genes. Annotations from

different databases provide a multitude of different gene categories

for this process. Fisher’s exact statistic, Kolmogorov–Smirnov

statistic and a simple average of univariate statistical scores

(e.g. average of negative log p-values) are among the common

measures of significance for a group of genes. A large number

of tools are available for this type of analysis including MAPP-

Finder (Doniger et al., 2003), DAVID/EASE (Dennis et al., 2003),
Gene Set Enrichment Analysis (GSEA)(Lamb et al., 2003; Mootha

et al., 2003; Subramanian et al., 2005) and ermineJ (Pavlidis et al.,
2004). Especially notable is GSEA, in which genes are rank-ordered

according to a signal-to-noise ratio and the distribution on this list of

the genes from a gene set is used to compute the score for each gene

set. If a large fraction of genes in a gene set shows up near the top of

the ordered list, that gene set gets a high score, as measured by

the Kolmogorov–Smirnov test. Model-based methods include glo-

bal test by Goeman et al. (2004) and the analysis of covariance

(ANCOVA) approach by Mansmann and Meister (2005). These

two tests are equivalent in the case of independent genes but appear

to lose some power for correlated genes (Mansmann and Meister,

2005).

Advantages of the approach combining expression data and

biological knowledge are at least 2-fold. First, a biological inter-

pretation of the results can be facilitated by categorizing the dif-

ferentially expressed genes into functional groups. This is especially

true when the user is not familiar with the statistically significant

genes. Second, a weak effect in a group of genes may be missed

when each gene is considered individually, but it may be captured

when they are considered together (Mootha et al., 2003).
However, in the simple methods using Fisher’s test or x2-test

from a contingency table, one problem has been the instability of

the results that depends on the threshold value for statistical sig-

nificance (Pan et al., 2005). This problem has been alleviated to

an extent with some more recent methods, which employ a statistic

that considers the entire list of genes and avoids the thresholding.

Another shortcoming shared by most current tools, however, is the

use of a univariate statistic to score each gene, before the calculation

of a group score. Genes in a gene set are functionally related and

are not independent; the complex structure of gene interactions

within a gene set are not fully captured using univariate approaches.

Sample groups that do not seem to be separated according to a series

of univariate measures may be well separated when a joint distri-

bution is considered.

In this paper, we present a multivariate approach to address this

problem. As in other methods, we seek to determine the significance

of every pre-defined group of genes in order to choose the most�To whom correspondence should be addressed.
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relevant ones. The novelty in the proposed method is that we

recast this problem as measuring the separation of the samples

by their phenotype in each subspace of genes. Considered this

way, it becomes natural to employ a variety of multivariate methods

commonly used for class discovery and prediction. In the context

of two-group comparison, the t-statistic or some variation based on

it is a standard measure of significance. Such a univariate method

is used in most of the methods described above. In the proposed

method, we instead use Hotelling’s T2(or, equivalently, the Maha-

lanobis distance, which differs only by a constant). This is the

multidimensional analog of the t-statistic that accounts for the cor-
relation structure. A number of methods, such as the Between-

Group Analysis (Culhane et al., 2002) based on correspondence

analysis, also attempt to find a subspace in which the samples are

maximally separated. In the current work, we use a formal statistic

that allows us to compare different subspaces.

Hotelling’s T2 has already been employed for the identification

of differentially expressed genes (Szabo et al., 2003; Kim et al.,
2005; Lu et al., 2005). Kim et al. (2005) compared Hotelling’s

T2 statistic and a univariate procedure in the detection of differen-

tially expressed genes and found Hotelling’s T2 to be more efficient.

Lu et al. (2005) used the same statistic with a search algorithm to

identify a set of differentially expressed genes. They reported that

Hotelling’s T2 gave fewer false positives and false negatives than

the univariate t-test when a spike-in dataset from Affymetrix was

analyzed. One shortcoming in that work, however, was that the

numberofdifferentiallyexpressedgenesfoundbyT2had tobesmaller

than the number of samples to avoid singularity in the inversion of the

covariance matrix. In this study, we address this problem by trans-

forming the data on to an orthonormal subspace using principal com-

ponents first. This allows us to calculate the score even for the

subspaces whose dimension is larger than that of the samples.

In the following, we describe the methodology in detail and apply

it to two datasets of our interest. The first dataset on the effect of

TOR inhibitor on Akt transgenic mice (Majumder et al., 2004) was
originally analyzed using GSEA. In the re-analysis of this dataset,

we compare the performance of the proposed method to GSEA as

well as the global test for a group of genes by Goeman et al. (2004).
While we analyze the first dataset using a collection of gene sets

similar to the one used in the original paper for comparison, we

search through a much larger set of subspaces for the second dataset

on the effect of left ventricular assist device (Hall et al., 2004).
These subspaces are defined by several biological knowledge data-

bases. Previously defined sets include those curated from KEGG,

BioCarta and Gene Ontology (GO) (Tian et al., 2005). For this

work, we also derived new sets from the Reactome (Joshi-Tope

et al., 2005) database. The R source code and the gene sets imple-

mented as an object in R are available from the authors upon

request.

METHODS

The current problem is naturally phrased in the language of vector spaces,

where n samples are points in a q dimensional space of genes. An element in

a gene set is an additional dimension of the vector space. Hence, concepts

such as projection and subspaces developed in vector algebra provide a

natural framework (Kuruvilla et al., 2002). In the subsequent discussions,

we use the term ‘subspace’ in place of ‘gene set’ or ‘functional category’ to

emphasize that a statistical test is performed in a multidimensional space

where the dimension is the number of genes.

Comparing multivariate means of two groups using

Hotelling’s T2

LetX0 be the data matrix containing expression values, with n1 samples from

first group and n2 samples from second group. n ¼ n1 + n2 columns corre-

spond to samples and p rows correspond to genes. Suppose the subspace that
we wish to test is a q · nmatrix X that contains q functionally related genes.

The null hypothesis is that the multivariate means of the two groups are

equal. The covariance matrices of the two groups are assumed to be the same

and the pooled within-group covariance matrix is denoted by S.

Our test statistic is based on Hotelling’s T2:

T2 ¼ n1n2
n

ð�XX1��XX2ÞtS�1ð�XX1 � �XX2Þ‚

where �XX i ¼ 1/ni
Pni

j¼1 Xij denotes the mean vector of the i-th group

obtained by summing over the j-th q-dimensional vector Xij in group i;

S denotes the pooled covariance matrix ((n1 � 1)S1 + (n2 � 1)S2)/

(n � 2), where Si ¼ 1/ðni � 1Þ
Pni

j¼1 ðXij � �XXiÞðXij��XX iÞt. For the

null hypothesis H0 : �XX1 ¼ �XX2, the sampling distribution of T2 follows

(n � 2)q/(n � q � 1)Fq,n�q�1. If the covariance matrix cannot be assumed

to be the same, a similar statistic (with S1/n1 + S2/n2 as the covariance term

and a different constant) follows a x2 distribution but only for a large sample

size. But the unequal variance case can be easily incorporated since our

significance testing is based on permutation. Multiple testing problem is

addressed by false discovery rate (FDR) as described previously in Storey

and Tibshirani (2003).

Dimensionality reduction

When the dimension of the subspace is smaller than that of the sample size

(q < n � 1), Hotelling’s T2 can be applied in a straightforward way. When

the dimension of the subspace is larger (q � n � 1), a modification is

necessary to deal with the singularity of the within-group covariance matrix

S. For the gene set subspaces we compiled, the dimensions vary widely and

handling the latter case well is crucial. There are several common ways to

deal with this issue. The simplest is to ignore the correlations among genes

and to set the off-diagonals in S to be zero, which results in a squared

Euclidean distance between the two mean vectors. This is the approach

taken in, for example, von Heydebreck et al. (2001). The correlations

among the genes, however, should play a critical role in determining the

significance of the subspace, and should not be disregarded. Another way is

to regularize S by adding a small constant e to the diagonal. This has the

effect of shifting the eigenvalues by e. In one simple but effective variation,

only the diagonal of S is still used but shrunken centroids for each group

are used (Tibshirani et al., 2002). Other sophisticated methods include

Regularized Discriminant Analysis (Friedman, 1989), in which the separate

covariance matrices as in Quadratic Discriminant Analysis are shrunk

toward the pooled covariance matrix, and Penalized Discriminant Analysis

(Hastie et al., 1995), in which eS0 is added to S with a small constant e > 0

and a suitably chosen symmetric and non-negative definite penalty matrix S0.
In our approach, we diagonalize the within-group covariance matrix by

projecting the data on to an orthonormal subspace spanned by principal

components of the covariance matrix. After this transformation, the coor-

dinates are uncorrelated and each principal component has unit variance.

This type of pretreatment of data is common in linear discriminant analysis

(LDA) and independent component analysis (ICA). Mathematically, this

involves computing the new data matrix

X0 ¼ D�1/2UtX‚

where the diagonal D and orthogonal U matrices are obtained from the

decomposition of the covariance matrix S ¼ UDUt. Since S is singular,

only the columns corresponding to the non-zero eigenvalues in D are

used for this transformation. Numerically, the eigenvalues decay rapidly

in our examples and it is not difficult to find a reasonable threshold (e.g.

10�4) for determining the rank. We have verified that in working with the

transformed data, the transition between the singular and the non-singular
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cases is smooth and that addition or subtraction of few genes from a subspace

does not change the significance of a subspace unexpectedly. We note that a

relatively simple method for projecting the data into a lower dimensional

space was chosen for this step here and that more sophisticated methods may

result in improved performance.

Computationally, the statistic for each subspace can be calculated fast.

The data matrixX is generally small (q� p), and, even when we have q� n,

the matrix decomposition can be done quickly using a trick. Instead of

decomposing q · q matrix S, we adjust X by subtracting their group

means and use the singular value decomposition relationship X ¼ UDVt.

Using the fact that the columns of V are the eigenvectors of a smaller n · n

matrixXt
X, we first obtainV and then calculateU byX¼UDV

t. It is easy to

show that this is the desired U.

RESULTS

Application to the microarray datasets

We used two publicly available gene expression datasets to evaluate

our method. For each subspace, Hotelling’s T2 statistic was calcu-

lated to test the null hypothesis that the two groups are indistin-

guishable in the subspace. Statistical significance was computed

based on the null distribution obtained by permuting the group

labels. To differentiate among many highly significant genes, a

large number of permutations (20 000) was performed. The top

three subspaces for each dataset are shown in Figure 1.

For the first dataset, nearly the same gene sets used in the original

study were used; for the second dataset, functional annotations were

collected fromBioCarta, KEGG,Reactome andGO. TheAffymetrix

probe sets were mapped to the subspaces through the Entrez Gene

identifiers. The conversion from probe set ID to Entrez Gene ID was

performed using the annotation packages available through Biocon-

ductor (http://www.bioconductor.org) in the statistical language R.

When therewere several probe set IDs for a singleEntrezGene ID, all

of them were included. The annotations were dated March 2005.

Effect of mTOR inhibitor on Akt transgenic mice

Target of rapamycin (TOR) is a key protein that regulates the

translation of ribosomal proteins in eukaryotes. Pathways upstream

of TOR as well as the TOR pathway itself are frequently activated in

cancer, and it has been studied extensively as a novel anticancer

therapeutic target (Bjornsti and Houghton, 2004). In Majumder

et al. (2004), Akt transgenic (Akt-Tg) mice were treated with

mTOR inhibitor RAD001 and placebo, and the samples after 12

or 48 h of RAD001 or placebo treatment in both wild-type and

Akt-Tg mice were hybridized to microarrays. From this experiment,

they reported that mTOR inhibition induced apoptosis of epithelial

Fig. 1. The significant subspaces are shown in the principal component analysis plots. All principal components are used for calculation but the data are

displayed only in three dimensions. An ellipsoid of 2 SDwas generated in each case. The top row corresponds to the top BioCarta and KEGG pathways, and the

Hif pathway in themTORdataset: (A) BioCarta: Erk1/Erk2MapkSignaling pathway; (B)KEGG:MAP00020Citrate cycle (TCAcycle); (C) BioCarta:Hypoxia-

inducible factor in cardiovascular system. The red and blue colors denote the RAD001-treated and placebo-treated, respectively. The bottom row contains the

three pathways in the cardiac remodeling dataset: (D) BioCarta: MAP kinase inactivation of SMRT corepressor; (E) GO biological process: activation of

MAPKKK; (F) BioCarta: sprouty regulation of tyrosine kinase signals. The blue and red colors denote pre- and post-LVAD.
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cells and a complete reversal of a neoplastic phenotype in the

prostate of mice expressing human AKT1 in the ventral prostate.

To identify the targets altered by AKT expression and by subse-

quent mTOR inhibition, they searched BioCarta gene sets and other

manually curated gene sets for enriched categories of genes using

GSEA. It was found that the main transcriptional response to AKT

activation and mTOR inhibition involved the targets of Hif

(Hypoxia-Inducible Factor)-1a.

To reanalyze this dataset, we downloaded the Mouse 430A gene

sets similar to the ones used in the original study from http://www.

broad.mit.edu/gsea/msigdb/msigdb_index.html. The two are not

exactly the same, as the authors have updated some pathways

and added new ones. The current version contains 539 gene sets,

which includes 274 BioCarta pathways. We calculated Hotelling’s

T2 between the RAD001-treated (n ¼ 9) and placebo-treated

(n ¼ 10) groups in the subspace defined by each of these pathways.

The main results are shown in Table 1. In the original study, the Hif

pathway was reported as the only significant gene set, with the

p-value 0.034. In our analysis, the Hif pathway was also significant

with the permutation p-value 0.0001 (q-value 0.000313) but was

ranked fourth among the BioCarta pathways. The most significant

pathway was Erk1/Erk2 Mapk Signaling Pathway (‘erkPathway’

in the GSEA result). The second ranked one was Hemoglobin’s

Chaperon (‘ahspPathway’), which includes ALAS1/2, Hbs and

GATA1. Its role in Akt-Tg treated with RAD001 was not clear,

but the Hif targets were considered to play an important role in

the experiment and so the hypoxia-related hemoglobin changes can

be expected. We also found that multiple pathways related to car-

bohydrate metabolism on the top of our list. Of the top 10 KEGG

gene sets 6 were from carbohydrate metabolism, which includes

Glycolysis/Gluconeogenesis (KEGG: MAP00010). Among the

BioCarta pathways, sixth ranked Feeder Pathway for Glycolysis

(‘feederPathway’)wasrelated tocarbohydratemetabolism.Thisfind-

ing is also in accordance with the observations in the original paper.

It is also important to note that our method appears to have

much greater statistical power than GSEA, resulting in 234 curated

pathways under the significance level of the permutation p-value
< 0.05 (the top ones are shown in Table 1). In the original publica-

tion using GSEA, only one pathway was found to be significant. We

also compared our method to the global test in the generalized linear

model setting (Goeman et al., 2004). For this example, the global

test appears to detect few more subspaces, e.g. it detected 270 under

the permutation p-value of 0.05, while our method detected 234. In

this case, the overlap between the two were 152. Important sub-

spaces such as the Erk1/Erk2Mapk Signaling Pathway, Hif pathway

and KEGG TCA cycle were found in both cases.

Among the significant pathways identified, there often are a large

number of shared genes. For instance, the vegfPathway (VEGF,

Hypoxia and Angiogenesis), which was significant with permuta-

tion p-value 0.00465 (q-value 0.00305), shares five genes (Hif-1a,
NOS 3, Vegf, von Hippel–Lindau syndrome and Arnt) with the Hif

pathway. The relationship among pathways that share some of their

members and their proper interpretation are subject to further

investigation.

Cardiac remodeling by left ventricular mechanical

unloading

To investigate the underlying mechanism of cardiac remodeling

after mechanical unloading in patients with heart failure,

Table 1. List of top 10 pathways in BioCarta and KEGG

Source Description No. of probe sets p-value q-value

BioCarta

1 Erk1/Erk2 MAPK signaling pathway 56 <0.00005 <0.000010
2 Hemoglobin’s chaperone 19 0.00005 0.000217

3 CXCR4 signaling pathway 38 0.00005 0.000217

4 Hypoxia-inducible factor in the cardiovascular system 28 0.00010 0.000313

5 HIV-I Nef: negative effector of Fas and TNF 99 0.00015 0.000384

6 Feeder pathways for glycolysis 9 0.00025 0.000500

7 Cadmium induces DNA synthesis and proliferation in macrophages 29 0.00035 0.000658

8 uCalpain and friends in cell spread 26 0.00050 0.000810

9 CCR3 signaling in eosinophils 35 0.00075 0.001030

10 SREBP control of lipid synthesis 12 0.00075 0.001030

KEGG

1 MAP00020 Citrate cycle (TCA cycle) 29 <0.00005 <0.000010
2 MAP00051 Fructose and mannose metabolism 43 <0.00005 <0.000010
3 MAP00650 Butanoate metabolism 33 <0.00005 <0.000010
4 MAP00252 Alanine and aspartate metabolism 30 0.00005 0.000217

5 MAP00280 Valine and leucine and isoleucine degradation 44 0.00005 0.000217

6 MAP00030 Pentose phosphate pathway 34 0.00010 0.000313

7 MAP00970 Aminoacyl tRNA biosynthesis 28 0.00015 0.000384

8 MAP00710 Carbon fixation 29 0.00020 0.000470

9 MAP00010 Glycolysis/Gluconeogenesis 85 0.00025 0.000503

10 MAP00052 Galactose metabolism 35 0.00025 0.000503

Among the 539 collected pathways, there are 274BioCarta, 63KEGG and 202manually curated pathways. The permutation P-value is based on 20 000 permutations of samples labels,

and FDRs (q-values) were calculated.
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Hall et al. (2004) studied 19 paired human left ventricular apex

samples that were harvested at the time of implant of a left vent-

ricular assist device (pre-LVAD) and at the time of explant (post-

LVAD). They identified 107 genes with FDR of <1% that were

differentially regulated in pre-LVAD versus post-LVAD groups.

Among downregulated genes, neurophilin-1 (a VEGF receptor),

FGF9, Sprouty 1 (FGFR/EGFR antagonist), stromal-derived factor

1 and endomucin have been implicated in the regulation of vascular

organization. Consequently the authors inferred that vascular gene

expression is modulated by mechanical unloading. In addition, they

found that GATA-4, a central regulator of cardiac gene transcrip-

tion, was downregulated after mechanical unloading.

We applied our multivariate approach to discover gene subspaces

in which gene expression was coordinately regulated between

pre-LVAD and post-LVAD conditions. Unlike the previous exam-

ple in which the same gene sets as in the original publication was

used for comparison, we used a much larger database of subspaces.

We collected 5400 gene set subspaces (5000 from GO and 400 from

Reactome, KEGG and BioCarta; described in Tian et al. (2005) and
available from authors’ website), from which we selected 2338

subspaces containing 5–250 genes for further analysis. The lower

limit on size was imposed to eliminate subspaces that were too

easily influenced by single genes and did not correspond to a path-

way. The upper limit was necessary to avoid categories that were

too general to be helpful in interpretation.

A total of 38 subspaces were significant at permutation p-value
0.01 (Table 2). Compared to the first example in which 119 had

p-values < 0.01, not as many subspaces were significant and the

q-values were relatively high. This is most likely due to the

greater heterogeneity expected in the human clinical samples

than in transgenic models. The distribution of univariate p-values
confirms that the number of differentially expressed genes is much

greater for the first dataset for any threshold. Interestingly, the

BioCarta ‘NFAT and Hypertrophy of the heart transcription in

the broken heart’ subspace was ranked fifth (permutation p-value
0.003). As the title suggests, this subspace has multiple genes

related to the cardiac hypertrophy and remodeling such as

GATA-4, Nkx2.5, MAP kinases, NFAT, IGF, Akt and calcium/

calmodulin-dependent protein kinases. This subspace summarizes

the changes of many genes that are known to play a role in the heart

failure and cardiac remodeling, and its occurrence supports the

ability of our method to identify significantly co-regulated genes

many of which are not significant by univariate analysis.

The BioCarta gene subspace ‘MAP Kinase inactivation of

SMRT corepressor’ was the most significant. Modulation of

MAP kinase cascades was also supported by results from the

GO Biological Process subspaces, where ‘GO:000185 activation

of MAPKKK’ (permutation p-value < 0.00005) and its parent

node ‘GO:0000165 MAPKKK cascade’ (permutation p-value
0.00825) were found to be significant. MAP kinase signaling path-

ways are pivotal mediators of diverse cellular functions, including

growth, differentiation and apoptosis. MAP kinase pathways are

activated in heart failure (Haq et al., 2001), and chronic activation

in transgenic over-expression models has been associated with

dilated cardiomyopathy and heart failure, as reviewed in Liang

and Molkentin (2003).

The third ranked BioCarta pathway was ‘TACI and BCMA

stimulation of B cell immune responses.’ As members of the

TNF receptor gene family, TACI and BCMA interact with TNF

receptor associated factors (TRAFs) to activate NF-kB activation

and MAP kinase pathways. The significant rank of this subspace

again points to modulation of MAP kinase signaling, and also sug-

gests that myocardial unloading alters TNF signaling. TNF and

related cytokines are produced by myocardial cells after injury,

and activation of TNF pathways in heart failure is well documented

(Mann, 2003). Chronic TNF activation results in cardiomyopathy

and detrimental cardiac remodeling (Mann, 2003). NF-kB is a major

target of TNF signaling pathways, and it has been found to be

activated in failing human myocardium, where it is an important

regulator of cardiomyocyte hypertrophy and apoptosis (Purcell and

Molkentin, 2003). NF-kB and its negative regulator IKB were also

important components of two additional BioCarta pathways

with highly significant permutation p-values: ‘Activation of PKC

through G protein coupled receptor’ (permutation p-value 0.0022)

and ‘NF-kB activation by Nontypeable Hemophilus influenzae’
(permutation p-value 0.0092).

Activation of receptor tyrosine kinases, either by direct stimula-

tion by ligand or by receptor transactivation through G-protein-

coupled receptors, is important for the pathogenesis of heart failure

(Asakura et al., 2002; Iwamoto et al., 2003). The BioCarta pathway
‘Role EGF receptor transactivation by GPCRs in cardiac hypertro-

phy’ received a highly significant permutation p-value (0.0058),

consistent with a significant co-regulation of genes in this subspace

during mechanical unloading. This was reinforced by the BioCarta

pathway ‘Sprouty regulation of tyrosine kinase signals’, which

delineates tyrosine kinase signaling pathways and their negative

regulation by Sprouty. Placed in this broader context, the significant

upregulation of Sprouty found in the original report may be related

to regulation of myocardial receptor tyrosine kinase signaling,

which is known to be perturbed in heart failure.

As shown above, a detailed examination of the BioCarta path-

ways with highly significant permutation p-values reveals a number

of signaling pathways that play an important role in the pathogen-

esis of heart failure, as determined by experimental data from a

number of model systems. Identification of these pathways high-

lights the ability of this approach to identify significant patterns of

differential gene expression that are not apparent by single-gene

analysis.

For this example, we again compared our method to the global

test (Goeman et al., 2004) using their R package, which allows one

to iterate through the possible subspaces given by the user easily.

The results in this example were more discordant than those of the

first. Similar number of subspaces were identified, but a couple of

key subspaces were not found by the global test. For example,

‘TACI and BCMA stimulation of B cell immune responses’ had

the permutation p-value of 0.0027 in our method but 0.193 in the

global test. Similarly, ‘Sprouty regulation of tyrosine kinase

signals,’ which was validated in the original paper, obtained the

p-value of 0.0029 in our method and it obtained 0.11 in the global

test. It is difficult to draw a strong conclusion of this evaluation, but

this result appears to favor the proposed method in this example.

The bigger advantage of the proposed method may be its simplicity

and intuitive interpretation (see Figure 1).

DISCUSSION

Our goal in this study was to integrate biological knowledge with

microarray data using a multivariate statistical approach. The main
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2377

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/22/19/2373/241211 by guest on 15 M
arch 2023



advantage of the proposed method is the simple conceptual frame-

work of finding a subspace in which the two groups belonging to

different phenotypes are most separated. This method is made pos-

sible by the dimensionality reduction step described earlier, in which

weprojectasubspaceofhighdimensionontoanorthonormalspaceby

matrix decomposition and sphering. This step is essential because

most subspaces containmore genes than the number of samples in the

study.Aproblemmight still arise if the subspace is too large, butmost

subspaces do not contain more than one or two hundred genes. The

proposed method should be intuitively appealing to biologists, many

ofwhommaybe already familiarwith visualizing the samples in a 2D

or 3D principal component plots (Fig. 1).

A statistical method adjusting for different covariance structure

and dimension of subspaces was described previously (Tian et al.,
2005), but the current approach has a simpler interpretation, espe-

cially with the aid of visualization. The statistical test proposed here

is similar to the second of the two null hypothesis described in that

paper but is in some sense less aggressive and more omnibus. For

example, the current statistic does not distinguish between upregu-

lated and downregulated genes. If there is no correlation among

genes, the statistic becomes the sum of squared t-statistics. The first
null hypothesis in Tian et al. (2005) can still be used in addition if

desired but we felt that this was not necessary here. Exactly which

features of the subspaces should be considered most relevant from a

Table 2. List of significant subspaces from the comparison of pre-LVAD and post-LVAD

Source Description No. of probe sets p-value q-value

BioCarta

1 MAP kinase inactivation of SMRT corepressor 28 0.00025 0.244

2 Activation of PKC through G protein coupled receptor 11 0.00220 0.366

3 TACI and BCMA stimulation of B cell immune responses 18 0.00270 0.366

4 Sprouty regulation of tyrosine kinase signals 27 0.00285 0.366

5 NFAT and hypertrophy of the heart transcription in the broken heart 72 0.00300 0.366

6 Neuropeptides VIP and PACAP inhibit the apoptosis of activated T cells 25 0.00340 0.380

7 Multi-step regulation of transcription by Pitx2 29 0.00490 0.395

8 Role of EGF receptor transactivation by GPCRs in cardiac hypertrophy 33 0.00580 0.432

9 TPO signaling pathway 45 0.00800 0.475

10 NF-kB activation by nontypeable Hemophilus influenzae 50 0.00920 0.475

11 Role of FYVE finger proteins in vesicle transport 19 0.00980 0.475

KEGG

1 MAP00460 Cyanoamino acid metabolism 12 0.00105 0.366

2 MAP00630 Glyoxylate and dicarboxylate metabolism 14 0.00440 0.395

3 MAP00010 Glycolysis/Gluconeogenesis 103 0.00490 0.399

4 MAP00531 Glycosaminoglycan degradation 27 0.00735 0.463

Reactome

1 Hsa Phospho-IRS: activated insulin receptor 6 0.00945 0.475

Gene Ontology biological process

1 GO:0000185 Activation of MAPKKK 6 <0.00005 <0.0001
2 GO:0045786 Negative regulation of cell cycle 28 0.00130 0.366

3 GO:0050790 Regulation of enzyme activity 209 0.00195 0.366

4 GO:0006665 Sphingolipid metabolism 52 0.00205 0.366

5 GO:0030641 Hydrogen ion homeostasis 10 0.00220 0.366

6 GO:0006301 Postreplication repair 5 0.00245 0.366

7 GO:0035088 Establishment/maintenance of apical/basal cell polarity 11 0.00255 0.366

8 GO:0045197 Establishment/maintenance of epithelial cell polarity 11 0.00260 0.366

9 GO:0006816 Calcium ion transport 51 0.00270 0.366

10 GO:0008284 Positive regulation of cell proliferation 191 0.00370 0.380

11 GO:0042828 Response to pathogen 21 0.00370 0.380

12 GO:0007589 Fluid secretion 10 0.00400 0.391

13 GO:0042493 Response to drug 22 0.00450 0.395

14 GO:0019318 Hexose metabolism 109 0.00550 0.430

15 GO:0006968 Cellular defense response 142 0.00625 0.438

16 GO:0045765 Regulation of angiogenesis 19 0.00635 0.438

17 GO:0005996 Monosaccharide metabolism 109 0.00650 0.438

18 GO:0045934 Negative regulation of nucleotide/nucleic acid metabolism 187 0.00735 0.463

19 GO:0000165 MAPKKK cascade 86 0.00825 0.475

20 GO:0030384 Phosphoinositide metabolism 24 0.00875 0.475

21 GO:0006026 Aminoglycan metabolism 7 0.00975 0.475

22 GO:0016477 Cell migration 101 0.00985 0.475

A total of 38 subspaceswere identified as significant at 0.01. For this dataset, 2338 subspaces of sizes between5 and 250were compiled fromBioCarta, KEGG,Reactome andBiological

Processes of GO annotations.Many pathways were related toMAP kinase signaling cascades and their effectors. This result is in agreement with the previously suggested role ofMAP

kinase pathway in the failing heart.
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biological perspective is not yet clear. With respect to other avail-

able methods, the proposed method should be able to capture those

relationships missed by univariate methods. Evidence on the data-

sets of our interest strongly suggests that the proposed method

performs better, but a more extensive comparison is made difficult

due to the differences in the set of subspaces used. Owing to the

evolution of biological databases, the original subspaces are not

available for comparison.

The usefulness of this type of analysis depends on the quality

of the gene sets as well as the statistical method used. The BioCarta,

KEGG and Reactome databases were curated by human experts

and the functional annotation from these databases are considered

to be specific and of high quality. The contents of many GO terms,

however, are not as accurate, as their annotations come from

several different sources with varying degrees of reliability. In

particular, those derived by algorithmic approaches and not by

human experts tend to be low in accuracy. Some of the inaccuracies

may be due to the ambiguities in names and symbols (Weeber et al.,
2003). The IEA (Inferred from Electronic Annotation) type espe-

cially is regarded as the evidence of lowest quality, but this type of

annotation is extremely common: in case of human Biological Pro-

cess category, only 8377 out of 20 566 annotations are from non-

IEA sources as of April 2005. In addition, the relationships among

the three categories, Biological Process, Molecular Function and

Cellular Component, are not clear. For this study, we collected the

annotations in the Biological Process domain and excluded IEAs. In

the current analysis, we also limited the subspace size to between 5

and 250 based on our experience. It is conceivable that a subspace

with larger or small dimension can give useful information, but we

have found that the difficulty of examining a longer list of gene sets

outweighs any potential benefit. The limits are also similar to

5–100 used in Segal et al. (2004) and same as 5–250 used in Pavlidis

et al. (2004).
The proposed analysis generates a list of potential pathways but

interpreting that list itself can be time-consuming. Understanding

the relationship between the significant subspaces then becomes

critical to interpretation. The obvious candidates are the complex

parent–children relationships in the GO graph. For example, in the

result for the second dataset, ‘GO:000185 Activation of MAPKKK’

is a part of ‘GO:000165 MAPKKK cascade’ and is also a part of the

different GO term ‘GO:0045860 Positive regulation of protein

kinase activity’. In this case, the first two were significant while

the third was not. A couple of methods for adjusting statistical

significance in such cases have been proposed recently (Alexa

et al., 2006; Grossmann et al., 2006). However, we have also

noticed that pathways distant in the graph, from different GO

graph (e.g. biological function versus cellular component), or

referred to by different names in databases without hierarchical

structure can involve significant overlaps. Hence, a tool for facili-

tating the process of relating different pathways would be helpful.

When the relationships between pathways are clarified, the analysis

may resemble the method of understanding the data in terms of

modules. Defining a network of modules rather than of genes to

describe an underlying phenomenon has become popular recently

(Segal et al., 2004). By examining the genes contained in each

significant pathway, it should be possible to generate a network

of interactions by groups of genes.

The idea of identifying a relevant subspace can be particularly

helpful in pharmacogenomic screening. By comparing before- and

after-treatment data, the pathway targeted by a compound can be

more easily identified. The mTOR example was one such example.

The proposed approach is general and can be applied to other data

types as well as other phenotypes. When the phenotype involves

more than two classes, for example, MANOVA (Multiple Analysis

of Variance) is the natural extension.
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