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ABSTRACT
Motivation: Array Comparative Genomic Hybridization (CGH) can
reveal chromosomal aberrations in the genomic DNA. These amplific-
ations and deletions at the DNA level are important in the pathogenesis
of cancer and other diseases. While a large number of approaches
have been proposed for analyzing the large array CGH datasets, the
relative merits of these methods in practice are not clear.
Results: We compare 11 different algorithms for analyzing array CGH
data. These include both segment detection methods and smoothing
methods, based on diverse techniques such as mixture models, Hid-
den Markov Models, maximum likelihood, regression, wavelets and
genetic algorithms. We compute the Receiver Operating Character-
istic (ROC) curves using simulated data to quantify sensitivity and
specificity for various levels of signal-to-noise ratio and different sizes
of abnormalities. We also characterize their performance on chro-
mosomal regions of interest in a real dataset obtained from patients
with Glioblastoma Multiforme. While comparisons of this type are diffi-
cult due to possibly sub-optimal choice of parameters in the methods,
they nevertheless reveal general characteristics that are helpful to the
biological investigator.
Contact: peter_park@harvard.edu

INTRODUCTION
Locating chromosomal aberrations in genomic DNA samples is an
important step in understanding the pathogenesis of many diseases.
This is especially true in cancer, and an enormous amount of effort
and resources has been dedicated to the detailed characterization of
the chromosomal abnormalities in the development and progression
of various cancers. Amplification or deletion of chromosomal seg-
ments can lead to abnormal mRNA transcript levels and results in
the malfunctioning of cellular processes.

Array comparative genomic hybridization (CGH) is a technique
for measuring such changes (Solinas-Toldo et al., 1997; Pinkel et al.,
1998). See Pinkel and Albertson (2005) for a review. The main
difference between array CGH and mRNA expression profiling is
that genomic DNA rather than mRNA transcripts are hybridized in
array CGH. As the resolution of the arrays has improved over the
years, array CGH has become a powerful tool. As a high-throughput

∗To whom correspondence should be addressed.

technique, it offers many advantages over other cytogenetic tech-
niques such as fluorescence in situ hybridization (FISH). While
early experimental techniques were only able to detect chromosomal
changes at the whole chromosomal or whole arm level, the CGH
arrays using BAC (Bacterial Artificial Chromosome) clones have
been widely used subsequently, with the resolution on the order of
1 Mb (Pinkel et al., 1998). These arrays generally contain many
regions with known oncogenes and tumor suppressor genes, and can
be iteratively designed in a locus-specific manner to identify candid-
ate genes in a small region. More recently, cDNA and oligonucleotide
arrays have become popular for CGH (Pollack et al., 1999; Brennan
et al., 2004). The shorter probes on these new arrays may not be
as robust as BACs for large segments, but they offer much higher
resolution (in the order of 50–100 kb). In particular, oligonucleotide
arrays allow design flexibility and greater coverage, and they appear
to provide sufficient sensitivity (Brennan et al., 2004). Tiling or cus-
tom arrays are also available now for even finer resolution of specific
regions and allow the detection of micro-amplifications and deletions
(Lucito et al., 2003; Ishkanian et al., 2004).

The resultant high-throughput array CGH data have prompted
the development of various algorithms for data analysis, as briefly
reviewed in the next section. However, while there have been numer-
ous publications introducing new methods, the relative strengths and
weaknesses of these methods are difficult to discern, due to the com-
plexity of the algorithms and the lack of software with visualization
tools. This problem is exacerbated by nondescript titles and abstracts
of the articles and their lack of extensive performance comparisons to
existing methods. This is especially true from the perspective of the
biologist who must choose an algorithm for the dataset of interest.
The purpose of this paper is to compare the algorithms that have been
published so that the user can quickly gain an overview of the array
CGH algorithms and their performance. Both simulated data and real
data obtained from glioblastoma samples are used for evaluating the
algorithms. The methods evaluated in this paper are listed in Table 1.

METHODS

Basic issues and algorithms
Array CGH data consist of the log-ratios of normalized intensities from dis-
ease vs control samples, indexed by the physical location of the probes on the
genome. The goal is to identify regions of concentrated high or low log-ratios.
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Table 1. List of algorithms tested in this paper.

Name Reference Method Software Type

CGHseg Picard et al. (2005) CGH Segmentation CGHseg, Nov, 2004 (MATLAB) E
Quantreg Eilers and de Menezes (2005) Quantile Smoothing quantreg, v3.76 (R)∗ S
CLAC Wang et al. (2005) Clustering Along Chromosomes CLAC, v0.1-1 (R) S, E
GLAD Hupe et al. (2004) Adaptive Weights Smoothing GLAD, v1.0.2 (R) S, E
CBS Olshen et al. (2004) Circular Binary Segmentation DNAcopy, v1.1.1 (R) E
HMM Fridlyand et al. (2004) Hidden Markov Model aCGH, v1.1.4 (R) E
Wavelet Hsu et al. (2005) Maximal Overlap Discrete Wavelet Transform waveslim, v1.4 (R)∗ S
Lowess Locally Weighted Regression stats, v2.0.1 (R)∗ S
ChARM Myers et al. (2004) Chromosomal Aberration Region Miner ChARM, v1.6 (JAVA) S, E
GA Jong et al. (2003) Genetic Local Search aCGHSmooth, Nov, 2004 (exec) E
ACE Lingjaerde et al. (2005) Analysis of Copy Errors CGH-Explorer, v2.3 (JAVA) S, E

For the last column, ‘S’ and ‘E’ indicate that the algorithm has a step for smoothing and estimation, respectively. Three methods (Quantreg, Wavelet and Lowess) are for smoothing
only. Some methods or packages did not have specific names; others had names that are too generic. We have created short abbreviations in such cases [e.g. we have called the
method in Picard et al. (2005) based on the name of their downloadable file]. These names are used in the subsequent figures. ∗indicates those using existing R packages: Quantreg
and Wavelet methods were implemented by us based on the descriptions given in the papers; Lowess is our implementation using the existing R function. CGHseg was ported to R
from MATLAB by us. A list of websites for these packages can be found in the Supplementary Material available at http://www.chip.org/∼ppark/arrayCGH_comparison.

In general, these regions of interest can be very small; some microdeletions
may only contain a single probe. Because attempting to identify such small
regions can result in too many false positives, information from consecutive
probes are used to identify larger regions with more confidence.

The first analytical methods were simple yet intuitive and often effective,
involving smoothing of the ratio profiles and applying a reasonable threshold
to determine if the average ratio over a potential region signified an ampli-
fication or a deletion. For instance, a moving average was used to process
the ratios, and a ‘normal versus normal’ hybridization was used to com-
pute a threshold level (Pollack et al., 2002). In another study, a simple
maximum likelihood method was used to fit a mixture of three Gaussian
distributions corresponding to gain, loss and normal regions (Hodgson et al.,
2001).

Broadly, there are two estimation problems. One is to infer the number and
statistical significance of the alterations; the other is to locate their boundaries
accurately. The many available methods differ in the ways in which each
part is modeled and the two are combined. In general, the formulation of a
model-based method presumes a sequence of piecewise constant segments
as a function of various parameters such as the number of breakpoints, their
locations and the mean/variance of the distributions for each segment. Then
the maximization of a function, typically a log-likelihood, is used to estimate
the model parameters from the data. In the likelihood, a penalty term for the
number of segments is often included to avoid too fine a partition, which tends
to increase the likelihood. Models differ in their distributional assumptions
and the incorporation of penalty terms.

Subsequently, more complicated methods for denoising and estimating the
spatial dependence were derived. Genomic amplifications and deletions are
assumed to cover multiple probes in general, and an effective incorporation
of this spatial structure is a key component in any algorithm. For instance, a
quantile smoothing method based on the minimization of errors in L1 norm
(sum of absolute errors) rather than L2 norm (sum of squared errors) is shown
to give sharper boundaries between segments (Eilers and de Menezes, 2005).
Another promising smoothing algorithm is a denoising by wavelets (Hsu
et al., 2005), a nonparametric technique that appears to handle abrupt changes
in the profiles well. A simple and more common approach is based on robust
locally weighted regression and smoothing scatterplots (lowess), introduced
in Cleveland (1979). This has been used previously in other works such as in
Beheshti et al. (2003).

In Olshen and Venkatraman (2002) and Olshen et al. (2004) the binary
segmentation method (Sen and Srivastava, 1975) is modified to allow splits
into either two or three segments. In this algorithm, termed Circular Binary

Segmentation (CBS), the maximum of a likelihood ratio statistic is used
recursively to detect narrower segments of aberration. In Jong et al. (2003,
2004), a genetic search algorithm is used to maximize a likelihood with a
penalty term containing the number of breakpoints. In Hupe et al. (2004),
a more complex likelihood function with weights determined adaptively is
used to solve the estimation problem locally based on data smoothed by the
Adaptive Weights Smoothing procedure (Polzehl and Spokoiny, 2000). A
likelihood method with a different penalty function is used in Picard et al.
(2005) for the number of segments to avoid underestimation on them. It
is pointed out that a distribution assumption can have an important con-
sequence in a model: a homogeneous variance assumption among different
regions, for example, tends to lead to a more segmented profile in order to
satisfy the variance assumption. In Daruwala et al. (2004), a Poisson distri-
bution is used to model the number of segments and this is incorporated as an
additional component in the likelihood. (This last method was not available
publicly.)

In a more local approach (Myers et al., 2004) an edge filter is used to detect
the approximate location of edges, and an EM algorithm is used to place them
more precisely. In Lingjaerde et al. (2005), a simple smoothing is done using
signs of neighbors, and significance is determined by comparing both the
width and height of the observed segments with their joint null distribution.
A dynamic programming approach is used in Autio et al. (2003), but this was
not part of our study because the associated MATLAB package was difficult
to port to our platform.

A different kind of modeling approach involves the Hidden Markov mod-
els (HMMs), in which the underlying copy numbers are the hidden states
with certain transition probabilities (Snijders et al., 2003; Sebat et al., 2004;
Fridlyand et al., 2004). In Wang et al. (2005), a simple but effective method
based on hierarchical clustering along the chromosomes is used to identify
regions of interest and the False Discovery Rate (FDR) is used as a selection
criterion.

Evaluation method
Evaluation of the relative performance of these methods is complicated by
several problems. One difficulty is that the goals of different algorithms are
not the same. For example, those with an emphasis on the smoothing part may
simply return the log-ratios without determining which ones are significant.
More comprehensive methods may return the coordinates of only the stat-
istically significant segments with or without the estimated average log-ratio
per segment. One may require a ‘normal versus normal’ sample as a control
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Fig. 1. Array-CGH algorithms on simulated aberrations of increasing width. Illustrated here as an example are the signal profiles consisting of five aberrations
of 2, 5, 10, 20 and 40 probes long with an amplitude of 1. Gaussian noise N(0, .252) was added onto the signal profile to generate the simulated data. Default
settings for the algorithms were used when available; otherwise, appropriate parameters were selected or computed based on the program documentation and
related papers.

while another may not. When necessary, we simulated the control samples
by Gaussian noise with zero mean and a variance estimated from the tested
data using the median absolute deviation.

In terms of implementation, the primary issue was that not every algorithm
was implemented in a publicly available software. All our calculations were
carried out in the statistical language R (R Development Core Team, 2004)
http://www.R-project.org, since this was the dominant platform for the soft-
ware packages. But other algorithms were implemented in MATLAB, a JAVA
application, or an executable file. When the code could be ported easily from
MATLAB to R, such as the algorithm in Picard et al. (2005), this was carried
out. When a program allowed a relatively simple interface, as was the case
with the algorithms in Jong et al. (2004), Myers et al. (2004) and Lingjaerde
et al. (2005), it was used for computations.

The most appropriate way to compare these algorithms on simulated data
was to calculate the Receiver Operating Characteristic (ROC) curves. Because
different algorithms were tuned at different sensitivity levels, it was important
to examine the trade-off between sensitivity and specificity in each case.
This approach adjusts for the differences arising from identifying different
numbers of segments in each algorithm. We have used the default parameters
for each algorithm, as most users will be doing. If no default parameters were
available, we used the steps suggested in the program documentation or the
papers describing the method to select the parameter values. We have not
attempted to adjust the parameters to improve the performance, due to the
large number of algorithms and the large number of scenarios under which
they were tested. This issue is further discussed in the section Discussion.
The general properties are nonetheless apparent, even if the parameters were
suboptimal.

RESULTS
First, we tested the algorithms on simulated data of various abnormal-
ity widths and noise levels. To generate ROC curves corresponding
to a particular aberration width and noise level, we calculated the
true positive rates (TPR) and the false positive rates (FPR) as we
varied the threshold for determining an aberration. We also tested
the algorithms on cDNA microarray data containing measurements
from 26 different primary Glioblastoma Multiforme (GBM) tumors
(Bredel et al., 2005).

Simulated data
We calculated the ROC profiles of each algorithm for aberration
widths of 5, 10, 20 and 40 probes, and signal-to-noise ratios (SNR)
of 1, 2, 3 and 4. SNR was defined as the mean magnitude of the
aberration (i.e. signal) divided by the standard deviation of the super-
imposed Gaussian noise. Figure 1 illustrates the kind of profiles
examined in this simulation. For each aberration width and SNR, we
generated 100 artificial chromosomes, each consisting of 100 probes
and with the square-wave signal profile added to the center of the
chromosome. The performance of the algorithms for the aberrations
at the boundaries was not examined here.

TPR was defined as the number of probes inside the aberration
whose fitted values are above the threshold level divided by the
number of probes in the aberration. FPR was defined as the number
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Fig. 2. Receiver operating characteristic (ROC) curves for array CGH algorithms measured at different aberration widths and signal-to-noise ratios (SNR).
The x-axis is the false positive rate and the y-axis is the true positive rate. Red is CGHseg (Picard et al., 2005), orange is quantreg (Eilers and de Menezes,
2005), dark yellow is CLAC (Wang et al., 2005), green is GLAD (Hupe et al., 2004), blue is CBS (Olshen et al., 2004), violet is HMM (Fridlyand et al., 2004),
salmon is wavelet (Hsu et al., 2005), black is lowess, light green is ChARM (Myers et al., 2004), brown is GA (Jong et al., 2003) and cyan is ACE (Lingjaerde
et al., 2005). The curves were generated by measuring the true and false positive rates on simulated data at different threshold levels.

of probes outside the aberration whose fitted values are above the
threshold level divided by the total number of probes outside the aber-
ration. In order to compute the ROC curve, we varied the threshold
value for aberration from the minimum log-ratio value to the max-
imum. (This is equivalent to moving the x-axis cutoff value in a
mixture distribution.) Each threshold value results in a TPR and a
FPR, represented by a point on the ROC curve. A set of TPRs and
FPRs were then plotted to reveal the algorithm’s ROC profile for the
particular aberration width and SNR (see Fig. 2). We also computed
confidence intervals around each ROC curve (data not shown) but
significant differences among the methods did not appear to exist.

We note that TPR and FPR are informative in understanding how
an algorithm performs in estimating the boundary of the altered
region. When the algorithm over-estimates the boundary, FPR
increases while TPR remains fixed; when it under-estimates the
boundary, TPR decreases while FPR remains fixed. We also note
that FPR estimates depend on the size of the aberration relative to
that of the chromosome. Therefore, FPR should be used only for
measuring relative performance among different methods given a
fixed aberration size.

The default parameters in the software were used except in the
following cases where the parameters had to be chosen by the user.

For quantile smoothing, we followed the suggestion of Eilers and
de Menezes (2005) to use 2-fold cross-validation to estimate the value
of λ that minimizes the overall penalty term; this gave us a λ of 1.5.
For the wavelet denoising algorithm, we chose soft Stein’s Unbiased
Risk Estimate thresholding with a maximum wavelet coefficient level
of 3 based on results given in their paper. For lowess, we used a
smoothing window of 10 probes and defined the smoothing span as
the size of the smoothing window divided by the number of non-
missing log-ratios in the chromosome. For the genetic algorithm
(Jong et al., 2003), we deselected the option to filter out log-ratios
with a threshold value of 0.75 so that their program will consider all
data points in the analysis. For Analysis of Copy Errors (Lingjaerde
et al., 2005) we chose results for the estimated false discovery rate
closest to 0.001.

As shown in Figure 2, most algorithms did well in the case of
detecting the existence and the width of aberrations for the large
changes and high SNRs (upper left panels). For the cases of smaller
aberrations and low SNRs, the smoothing methods (i.e. wavelets,
lowess and quantile regression) gave better detection results (higher
TPR and lower FPR) than other methods. The smoothing algorithms
followed low amplitude and local trends in the data better than the
other algorithms that were less sensitive to such features.
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Fig. 3. Array-CGH profile of chromosome 13 in a Glioblastoma Multiforme sample (GBM31). This chromosome has a partial loss of low magnitude. Most
algorithms in the study detect the loss. In particular, CGHseg, GLAD, CBS and GA clearly identify the region.

Among the methods that perform estimation (indicated by ‘E’
in Table 1), the homoscedastic algorithm in Picard et al. (2005)
appeared to perform better than other methods. However, none of
the algorithms reliably detected the aberrations with small width and
low SNR because the signal is too weak to be differentiated from the
noise. Compared with other algorithms, the CLAC algorithm ten-
ded to overestimate the boundaries of the aberrations. The mean
smoothing step in CLAC appeared to reduce noise in the artifi-
cial chromosome data at the expense of blurring the edges of the
boundaries. The ChARM algorithm did not detect the presence of
aberrations in every artificial chromosome, even in the large width,
high SNR case, irrespective of the cutoff p-values for the mean
and sign tests. We suspect that this may be due to the fact that
its boundary detection step is local and decoupled from the overall
estimation.

Glioblastoma Multiforme (GBM) data
There are 26 samples representing primary GBMs in the glioma
data from Bredel et al. (2005). GBM is a particularly malignant
type of brain tumor, with a median patient survival time of a
year. The samples were co-hybridized with pooled human con-
trols onto custom spotted cDNA microarrays. The scanned raw
data were downloaded from the Stanford Microarray Database
(http://smd.stanford.edu). For the purpose of this paper, the array data
were normalized by print-tip group, intensity-dependent normaliza-
tion with the Limma package (Smyth, 2004). Of the 41 421 elements
on each array, we were able to link 33 599 to chromosomal positions

using mapped EST data from the hg16 build of the UCSC Gen-
ome Browser (http://genome.ucsc.edu). Missing values in each array
were removed to avoid the effect of imputed values in subsequent
analyses.

Though noisy (standard deviation of the log-ratios for each array
ranges from 0.35 to 0.9) the GBM data contained a mixture of
larger, low amplitude regions of gains/losses and smaller, high
amplitude regions of amplifications/deletions. These types of copy
number alterations represent the types of aberrations the array CGH
algorithms should detect. Two examples representing a broad, low
amplitude change and a smaller, high amplitude one are examined
in the following paragraphs.

Numerous regions of gains/losses have been found in many
microarray studies on gliomas (Koschny et al., 2002). For instance,
gain of chromosome 7 and losses of chromosomes 10 and large por-
tions of 13 and 22 have been observed in GBMs previously. These
gains and losses may be the effect of uncontrolled mitotic events
from point mutations of oncogenes and tumor-suppressing genes. In
the sample GBM31 there exists a large region of loss on chromo-
some 13. The overall magnitude of the loss is very low because not
all tumor cells in a given sample have the same types of gains and
losses. It may also be due to the presence of connective tissues and
other non-tumor cells in the sample. As a consequence of sample
heterogeneity, the signal is diluted, thus complicating the detection
procedure for the algorithms.

As can be seen in Figure 3, most algorithms in the study detected
the proximal loss of chromosome 13 of GBM31. CGHseg, GLAD,
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Fig. 4. Array-CGH profile of the three amplifications around EGFR in GBM29. CGHseg, quantreg, GLAD, wavelet and GA detect all three amplifications.
CLAC, CBS, Lowess and ACE detect the first two amplifications as one larger region. ChARM detects the amplification as one large region of gain, while
HMM does not detect any.

CBS and GA, all clearly identified nearly identical regions. All
three smoothing algorithms showed the same general trend but the
global loss was obscured by the local features. These algorithms
performed well in detecting the smaller aberrations in the simu-
lated data, but they were not as useful for a global view. HMM
did not separate chromosome 13 into two regions. In addition to
detecting the loss, GLAD identified numerous single-probe outliers.
Such outliers can either indicate a real focal aberration, some type of
polymorphism, or an experimental artifact (e.g. bad probe). CLAC
and ACE detected the region of loss as a series of smaller losses.
Many smaller regions within chromosome 13 that CLAC and ACE
did not detect as losses coincided with localized positive spikes in
log-ratios.

The GBM data also contained numerous amplifications. Several
amplifications, such as those around PDGFRA, CDK4 and MDM2,
have been well-studied in GBMs (Kraus et al., 2002). The amp-
lification at the EGFR locus has been implicated in other tumors,
and it is clearly present in GBMs, as shown in Figure 4. In this
GBM29 sample, there appeared to be at least three high amplitude
amplifications around EGFR. The algorithms CGHseg, quantreg,
GLAD, wavelet and GA detected all three high amplifications.
Because there are only four probes separating the first two ampli-
fications, methods such as CLAC, CBS, Lowess and ACE combined
the first two amplifications together. It is possible that these two amp-
lifications were in fact a single one, but mapping the probes to their

physical positions suggested that they are likely to be two separate
aberrations.

CLAC, ACE, and ChARM, all use mean smoothing as an initial
step to denoise the data. Mean smoothing increases SNR at the cost
of blurring the edges of the boundaries. Because of the blurring,
CLAC detected the amplifications as two larger adjacent amplifica-
tions. ACE does not merge the amplifications the way CLAC did, as
it has an additional step to compensate for the blurring in identify-
ing the boundaries. More sophisticated smoothing methods appear
to perform better in general.

ChARM detected the three amplifications as one large region of
gain. However, when each region was manually tested for signific-
ance in their software, all regions were marked as significant by their
mean and sign tests. This indicated that the boundary detection part
should be improved. HMM did not detect any of the three ampli-
fications, even though it detected smaller regions in the simulated
data. Singular matrices in the iterations were often the source of
problems.

DISCUSSION
For processing a large number of high-resolution arrays, the speed of
the algorithms becomes an issue. The simple smoothing algorithms
such as lowess and wavelets are the fastest, while HMM and CBS
are the slowest. The fast local algorithms are O(N), where N is
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the number of probes along the chromosome, and slow ones, which
require long-range information, are generally O(N2). For the typical
BAC arrays, speed is not a concern, but it can be a problem for
high-density oligonucleotide arrays.

A particularly helpful feature for future implementations of some
algorithms would be to estimate the statistical significance of the
detected copy number changes and then rank them accordingly.
Some current implementations simply return the processed profiles
but do not ‘call’ the detected regions as significant or not. When
the genome-wide profile is scanned for potentially new regions of
interest, quantitative statistics about the aberrations are critical in
order to decide which region to pursue for further examination. The
false discovery rate appears to be a natural framework, but only two
of the algorithms (CLAC and ACE) have incorporated this so far.

There is an inherent difficulty in comparisons of complicated
algorithms. Each method has its own set of parameters that must be
tuned properly, and this often requires a detailed understanding of the
algorithm. It is therefore possible for the proponents of one algorithm
to argue that their method did not perform adequately simply because
the parameters were not set at an optimal level. This is especially true
when the developers of different algorithms were interested in arrays
of different resolutions and noise levels, or were motivated by differ-
ent types of biological problems. For example, researchers working
on well-characterized cancers might be more interested in focal aber-
rations, whereas those working on less characterized cancers might
be interested in broad changes. To the extent that this is true, the
results of our analysis here should be taken with caution, and it is
incumbent upon the user to understand the characteristics of each
method. On the other hand, if the algorithm is very sensitive to the
changes in parameters or if the complexity of the algorithm does not
allow the user to determine the correct parameters easily, it may be
legitimately viewed as a weakness.

There are several ways in which these algorithms can be improved.
First, further refining of the methodology especially in the pre-
processing of the data would be beneficial. We have found that
some segmentation methods, especially CGHseg (Picard et al., 2005)
and CBS (Olshen et al., 2004), appear to perform consistently well.
When the noise is high, smoothing methods appear to work well,
although their output is more difficult to interpret. An optimal com-
bination of the smoothing step and the segmentation step may result
in improved performance. Second, one piece of information that
was not considered in any of the methods discussed here is the phys-
ical distance of the probes along the genome; uniform spacing is
assumed currently. If two probes indicating the same direction of
change are very far apart, the probability that they refer to the same
alteration should be lower than if they had been closer. It is not clear
how much improvement could result by incorporating this informa-
tion, but it can only help, if done correctly. Third, because multiple
samples are usually analyzed at the same time, it is important to
summarize the overall results in a clear fashion. Although those
aberrations present in a small fraction of patients can be important,
those occurring with a higher frequency are more likely candid-
ates for research. Finally, user-friendly software with visualization
tools and links to other databases would be helpful. Currently, these
functionalities are present only for a small number of programs
implementing the algorithms. An investigator is more likely to be
interested in a region if a gene is present in the region, and even
more so if it is an oncogene. Links to such information would be
invaluable.
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