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Abstract

Whole-exome sequencing (WES) has become a standard method for detecting genetic variants in human diseases.
Although the primary use of WES data has been the identification of single nucleotide variations and indels, these data also
offer a possibility of detecting copy number variations (CNVs) at high resolution. However, WES data have uneven read
coverage along the genome owing to the target capture step, and the development of a robust WES-based CNV tool is chal-
lenging. Here, we evaluate six WES somatic CNV detection tools: ADTEx, CONTRA, Control-FREEC, EXCAVATOR, ExomeCNV
and Varscan2. Using WES data from 50 kidney chromophobe, 50 bladder urothelial carcinoma, and 50 stomach adenocarcin-
oma patients from The Cancer Genome Atlas, we compared the CNV calls from the six tools with a reference CNV set that
was identified by both single nucleotide polymorphism array 6.0 and whole-genome sequencing data. We found that these
algorithms gave highly variable results: visual inspection reveals significant differences between the WES-based segmenta-
tion profiles and the reference profile, as well as among the WES-based profiles. Using a 50% overlap criterion, 13–77% of
WES CNV calls were covered by CNVs from the reference set, up to 21% of the copy gains were called as losses or vice versa,
and dramatic differences in CNV sizes and CNV numbers were observed. Overall, ADTEx and EXCAVATOR had the best
performance with relatively high precision and sensitivity. We suggest that the current algorithms for somatic CNV
detection from WES data are limited in their performance and that more robust algorithms are needed.
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Introduction

Copy number variations (CNVs) in the human genome can af-
fect gene expression by altering gene dosage, disrupting regula-
tory or coding sequences or causing structural changes [1–3].
Many CNVs have been shown to be associated, directly or indir-
ectly, with various diseases, such as cancer, neuropsychiatric

disorders, and Down syndrome [4–6]. In particular, cancer gen-
omes are often characterized by somatic CNVs, with amplifica-
tion of oncogenes or deletion of tumor suppressor genes [7].
CNVs can be detected using techniques such as fluorescent in
situ hybridization and comparative genomic hybridization
(CGH). With the development of array technology, genome-wide
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approaches using array comparative genomic hybridization
(aCGH) and single nucleotide polymorphism (SNP) arrays have
become popular. These array-based technologies sample copy
number along the genome (a median resolution of �10–100 K
between probes for high-density platforms) and ‘segmentation’
approaches are used to partition the genome into segments of
different copy numbers.

More recently, the development of sequencing technology
has led to a widespread use of whole-exome sequencing (WES).
Compared with whole-genome sequencing (WGS), WES allows
for high coverage (greater sequencing depth) at a relatively low
cost by targeting only the protein-coding regions in the genome
[8]. The primary use of WES data has been to identify disease-
associated single nucleotide variants and indels. Using these
data also for identification of CNVs is an enticing proposition,
as it offers additional information at no additional cost, but
CNV estimation based on WES data has been more difficult. The
main difficulty comes from the noise that arises in the hybrid-
ization-capture step, in which probes (either in solution or on
array) are used to ‘pull-down’ the fragments that correspond to
the exonic regions. Despite significant efforts in designing bet-
ter target-capture probes and better hybridization protocols, the
differential efficiencies of the probes result in highly variable
read depth along the genome.

A number of CNV detection tools for WES data have been de-
veloped [9–24]. Some of these methods are designed for detec-
tion of germ line CNVs (single samples without control), while
others are for detection of somatic CNVs (with matched con-
trols). These two types of approaches are related in that a germ
line CNV calling indirectly uses the rest of the samples as a con-
trol. The existing methods vary in their complexity, from simple
comparison (e.g. Poisson model-based) of read counts found in
equal-size bins with more sophisticated hidden Markov models
(HMMs). Nearly all are straightforward adaptations of the
approaches already applied to aCGH/SNP array data sets (we
had tested 11 such methods previously and had found a wide
range of sensitivity and specificity [25, 26]). Normalization for
GC bias can and should be performed for most type of high-
throughput sequencing data, but these are not sufficient to cor-
rect for probe-to-probe difference in hybridization efficiency. As
a result, estimation of copy number profiles for WES has been
challenging.

In this study, we carry out a comparative study of the algo-
rithms for somatic CNVs using paired tumor/normal samples.
There are two major issues for comparison of these algorithms.
First, the performance of existing methods varies greatly de-
pending on the scale of the CNVs. Many algorithms, for in-
stance, will perform reliably when the size of the CNVs is large

(e.g. hundreds of kilobases) but give erratic result for small
CNVs (e.g. exon-level). Thus, it is often too simplistic to draw a
general conclusion unless the ranges of CNV sizes are specified.
Second and related issue is the lack of true CNV profiles with
which the results of the algorithm are to be compared. CGH and
SNP array profiles have been used in most cases, but the accur-
acy of these profiles themselves depend on the algorithms used
and the scale of CNVs examined. In particular, although it is
possible to estimate tumor fraction using SNP array data and
use that information to determine the sample-specific thresh-
olds for amplification and deletion calls, most analytical pipe-
lines ignore this information, which results in incorrect
classification of some regions. Simulated data are sometimes
used to circumvent this problem, but they can give biased re-
sults, especially if the generative model bears resemblance to
the model on which an algorithm is based.

We evaluated six somatic CNV detection algorithms using 50
Kidney Chromophobe (KICH), 50 Bladder Urothelial Carcinoma
(BLCA), and 50 Stomach adenocarcinoma (STAD) samples from
The Cancer Genome Atlas (TCGA) project [27–29]. We chose
these data sets because they are among the most recent data
sets from the consortium (hence high quality) and both WGS
and SNP6.0 profiles were generated on the same set of DNA
samples. A brief description of each algorithm is given in
‘Materials and Methods’ section. Compared with previous com-
parative studies [30–34], a novel aspect of this article is the use
of WGS data in addition to SNP 6.0 array data to derive the truth
set. By using the overlapping CNVs between those two plat-
forms, the reference set we derived should be more accurate
(mostly fewer false positives) than those used in previous
comparisons.

Materials and methods
Six algorithms tested

We selected some commonly used CNV tools for paired WES data.
They are briefly described below and also summarized in Table 1.
These tools essentially contain two steps: normalization for GC
content and other biases and segmentation of the log-ratios into
discrete regions, each with the same copy number. They differ on
their specifics—which and how biases are accounted for, how ini-
tial bins are defined, what approaches and criteria are used to sep-
arate and merge adjacent regions for segmentation, and how to
use other information such as genotype data.

1. ADTEx (v.2.0) [24]: ADTEx uses two HMMs to predict copy
numbers and genotypes. Depth of coverage ratios are used
to predict CNVs, and B allele frequency (BAF) signals are

Table 1. A summary of the WES CNV detection tools examined in this study

Tool Year Language Paired or
pooled data

Input file
type

Segmentation Feature

ADTEx 2014 Python, R Both BAM, BEDTools DepthOfCoverage HMM Noise reduction
Ploidy estimation

CONTRA 2012 Python, R Both SAM, BAM CBS GC correction
Control-FREEC 2011 Cþþ, R Paired SAM, BAM, Pileup, Eland, BED, SOAP,

Arachne, BLAT, Bowtie
LASSO GC correction, mappability

EXCAVATOR 2013 Perl, R Both BAM HSLM GC correction, mappability,
exon-size correction

ExomeCNV 2011 R Paired BAM, Pileup, GATK DepthOfCoverage CBS GC correction, mappability
Varscan2 2012 Java, Perl, R Paired Pileup CBS GC correction
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used to estimate the ploidy of tumor and to predict the abso-
lute copy number.

2. CONTRA (v.2.0.4) [18]: CONTRA uses the basepair-level log
ratio to maximally remove the GC-content bias and to cor-
rect for an imbalanced library size when read lengths of case
and control samples are different. Region-level log ratios are
calculated by taking the mean of the basepair-level log ratio
in the target region. Large CNVs are predicted using Circular
Binary Segmentation (CBS) with the region-level log ratio.

3. Control-FREEC (v.6.7) [10]: Control-FREEC first calculates the
raw copy number profile by counting reads and normalizes
the profile based on GC content, ploidy and mappability. A
LASSO-base algorithm is used to perform segmentation of
the normalized profile.

4. EXCAVATOR (v.2.2) [20]: EXCAVATOR accounts for the
nonuniform read depths of the capture regions. A three-step
normalization is performed to reduce the GC-content,
mappability and exon size effects. A novel algorithm for seg-
mentation, which takes into account the distance between
consecutive exons, was developed to improve the detection
of small and large CNV regions.

5. ExomeCNV (v.1.4) [22]: ExomeCNV firstly calculates the log
adjusted ratio and the optimized cutoff based on read cover-
age, exon length and estimated admixture rate. CNV is
called on each exon, and CBS is used to merge individual
segments for the final CNV detection.

6. Varscan2 (v.2.3.6) [16]: By only accepting at least one of a
tumor sample and a matched normal reached at the min-
imum coverage requirement, Varscan2 calculates the depth
for the samples individually. Fisher’s exact test is used to de-
termine if the ratio of tumor and normal depth changes sig-
nificantly. CBS is applied to each target region to merge
adjacent small segments into large segments.

In addition, we measured the running time for each algorithm
(Supplementary Table S4). With a single processor, these algo-
rithms took between 1.5 and 8 h per sample on average, with
EXCAVATOR being the fastest, followed by ADTEx and Control-
FREEC.

Data sets analyzed

We downloaded 50 KICH, 50 BLCA and 50 STAD samples
(tumor/normal pairs for WES and WGS) from the Cancer
Genomics Hub (CGHub, https://cghub.ucsc.edu/), which con-
tains controlled-access sequencing data from TCGA. The list of
samples used is in Supplementary Table S1.

Generation of reference CNVs

We downloaded the Affymetrix SNP Array 6.0 Level 3 data via the
TCGA data portal (https://tcga-data.nci.nih.gov) for the samples.
‘Level 3’ refers to the copy number profiles obtained using a
standard TCGA SNP array processing protocols, which include
segmentation by CBS [35]. The data for the three tumor types
were processed in the same way; details are described, for ex-
ample, in the Supplement of the kidney chromophobe paper [27].
We used ‘nocnv’ segmentation, which excluded germ line CNV
events (http://www.broadinstitute.org/cancer/software/genepat-
tern/affymetrix-snp6-copy-number-inference-pipeline). CNVs
were detected from the WGS data using BIC-seq2 (bin size¼ 100,
lambda¼ 3), which contains an additional GC and mappability
normalization step compared with the original BIC-seq [36]. The
‘true’ CNVs were assumed to be the regions that overlap between
the CNVs found in the SNP array and WGS data. We evaluated

the agreement of CNVs obtained from WGS and SNP arrays and
found that they overlapped by 80.2% (SD: 10.9%). Non-overlapping
CNVs between SNP array and WGS were in the regions with low
probe density in the SNP array. Gain and loss events were ana-
lyzed separately. We obtained a total of 2592 CNVs (1155 gains
and 1437 losses) in the 50 KICH samples, 6233 CNVs (3073 gains
and 3160 losses) in the 50 BLCA samples, and 3599 CNVs (2101
gains and 1498 losses) in the STAD samples.

Parameters for the algorithms

We used the default parameter settings for each CNV tool (see
‘Discussion’ section). Additional information was provided for
the CNV tools when necessary. For example, read length was
required for Control-FREEC and ExomeCNV. CONTRA was set to
use the largeDeletion option to detect large segmentations.
ADTEx, CONTRA, Control-FREEC and EXCAVATOR used the ori-
ginal BAM files as input, whereas ExomeCNV and Varscan2
required a file conversion process. DepthofCoverage from the
Genome Analysis Toolkit (GATK v.2.4-7) [37] was used for file
conversion for ExomeCNV, and the mpileup format from
SAMtools (v.0.1.19) [38] was used for file conversion for
Varscan2. ADTEx and Control-FREEC also computed BAF data,
which we do not evaluate in this study. We assigned a target re-
gion as a gain (log2 ratio� 0.25) or loss (log2 ratio��0.25).

Results
Variation in CNV counts and sizes among algorithms

We first calculated the CNV counts and the sizes of the gain and
loss events for each algorithm. Compared with the 2592 reference
CNVs in KICH, the number of CNVs identified by WES CNV algo-
rithms spanned a wide range, from 1163 (EXCAVATOR) to 22 129
(Varscan2) across the 50 KICH samples as shown in Figure 1 and
Supplementary Figure S1 (BLCA: 6233 reference CNVs, from 2357
using EXCAVATOR to 52 434 using Varscan2; STAD: 3599 refer-
ence CNVs, from 1104 using EXCAVATOR to 19 051 using
ExomeCNV). The fractions of gain and loss events were also vari-
able, with the number of loss events ranging from 13.1% (ADTEx)
to 57.0% (Varscan2) in KICH (BLCA: from 11.1% (Control-FREEC) to
53.5% (Varscan2); STAD: from 8.0% (Control-FREEC) to 56.9%
(Varscan2). In the KICH reference set, 55.4% of the detected CNVs
were losses (BLCA: 50.7%; STAD: 41.6%). ADTEx, CONTRA,
Control-FREEC and EXCAVATOR identified more gains, while
ExomeCNV and Varscan2 identified more losses across the three
tumor types (see Figure 1 and Supplementary Figure S1). There
could be many reasons for this variation, such as how the data
were normalized for the different library sizes between the tumor
and normal samples. For example, one approach is to use a
multiplicative scaling factor to equalize the library sizes. A more
sophisticated version is to do an initial CNV calling to identify the
non-CNV regions and use only those regions to compute the
multiplicative factor. Another approach is to compute the distri-
bution of log-ratios between tumor and normal using bins and
then shift the distribution so that its mode is at zero.

The distribution of the CNV sizes detected from the three
tumor types varied across the six algorithms. In Figure 2, we clas-
sified the CNVs into bins of different sizes on a logarithmic scale,
with gains in Figure 2A and losses in Figure 2B (BLCA and STAD
data in Supplementary Figure S2). Whereas the most frequent
size range in the reference set is 10–100 M (KICH), it is <1 K for
CONTRA, Control-FREEC, ExomeCNV, Varscan2. For example, the
total CNV counts from CONTRA and the reference set were
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similar, but 38.5% of the CNVs detected by CONTRA were smaller
than 1 K despite applying the ‘largeDeletion’ option. Although
these algorithms appeared to be limited in detecting arm-level
CNVs, it is likely that portions of these arm-level CNVs were de-
tected and classified into other bins. This ‘hypersegmentation’ is
a common feature, and a heuristic re-merging step is often used
with varying effectiveness in different algorithms. In contrast,
EXCAVATOR identified larger CNVs between 1 Mb and 100 Mb
often but failed to detect CNVs below 10 Kb. Control-FREEC,
ExomeCNV and Varscan2 tended to detect smaller CNVs, while
ADTEx most frequently detected medium-size CNVs.

As an illustrative example, Figure 3 shows the results of apply-
ing the six tools to one of the BLCA samples (TCGA-4Z-AA7O). All
tools were able to detect prominent CNVs in the reference except
for CONTRA. The known recurrent homozygous deletion region
(9p21; CDKN2A) [39] and several focal or large amplifications/dele-
tions were detected by most of the tools. However, CONTRA and

Control-FREEC also called many more focal amplifications and
deletions (see other samples in Supplementary Figure S3). For a
higher resolution view, Chromosomes 8 and 9 of Figure 3 (TCGA-
4Z-AA7O) are shown in Supplementary Figure S4. Our results
suggest that most WES CNV tools can reliably detect homozygous
deletions or high-level amplifications but not heterozygous dele-
tions or low-level amplifications.

Overlap between WES CNVs and reference CNVs

To examine the accuracy of the WES CNV tools at the segment
level, we first conducted an overlap analysis, measuring the
fraction of WES CNVs covered by reference CNVs. We divided
the CNVs into gain and loss events, and examined 50% and 90%
overlaps (by base pair) of WES CNVs with reference CNVs
(Figure 4 and Supplementary Figure S5). We only considered the
length of WES CNVs and marked each CNV as a ‘match’ when a

Figure 2. The number of CNVs stratified by CNV lengths from the reference set and the six WES CNV detection tools for CNV gain (A) and loss events (B). A colour ver-

sion of this figure is available at BIB online: http://bib.oxfordjournals.org.

Figure 1. Boxplots of the total numbers of copy number gains (red) and losses (blue) from the reference set and the six WES CNV detection tools. Empty circles represent

the number of CNVs in each KICH sample. A colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.
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Figure 3. An example of CNVs detected by the reference set and six WES CNV tools (sample ID: TCGA-4Z-AA7O). The red and blue bars indicate gain and loss events, re-

spectively. All six tools were able to detect the recurrent homozygous deletion in 9p21. A colour version of this figure is available at BIB online: http://

bib.oxfordjournals.org.

Figure 4. The percentages of WES-based CNVs overlapping with the reference CNV set. Match: a CNV region overlaps with the reference at the specified level.

Mismatch: no overlapping area is found. Opposite direction: an overlapping gain region was called as a loss, and vice versa. The mean percentages across the 50 KICH

samples are shown. A colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.

Somatic CNVs using exome data | 189

http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/


WES CNV region overlapped the reference CNVs at greater than
or equal to the specified percentage, ‘mismatch’ when the speci-
fied minimum overlap was not detected, or ‘opposite direction’
when regions overlapped but a loss region were identified as a
gain region or vice versa. For example, in the 50% overlap analysis
of KICH samples, 73% and 53% of the gain events in EXCAVATOR
and ADTEx had at least 50% covered by the reference CNVs, re-
spectively (77% and 70% for loss events, respectively). The over-
laps were less for the other four tools; as we described above,
those tools predicted too many CNVs. The results across the dif-
ferent overlap percentages are similar for each algorithm except
for ADTEx and EXCAVATOR, because the CNV calls tend to be
wholly contained within the reference CNVs (see Figure 2).
Overall, ADTEx and EXCAVATOR have higher true positive rates
compared with the other algorithms. However, in the 90% overlap
analysis, the overlap of the ADTEx and EXCAVATOR-detected
CNVs with the reference CNVs decreased to 46% and 53% for gain
events and 58% and 57% for loss events, respectively. Because the
majority of the CNVs detected from ADTEx and EXCAVATOR
were large, some relatively small CNVs from the reference set
were included under the 50% criterion but were removed under
the 90% criterion. Strikingly, a large number of ‘opposite direction’
CNVs were observed with all six tools. Approximately 1% of the
CNVs detected by EXCAVATOR and >10% of the CNVs detected by
each of the other tools were classified as ‘opposite direction’.

We also examined the fraction of reference CNV regions cov-
ered by the WES CNV tools. For this analysis, the reference CNVs
and the six WES CNV results were divided into groups of 50%
and 90% reciprocal overlap [40] for comparison. Reciprocal over-
lap was defined as an instance in which a CNV region from the
reference set additionally showed 50% and 90% overlap with the
lengths of the WES CNV regions (base pair). In the 50% reciprocal
overlap analysis of KICH samples, 194 of the 641 CNVs (30.3%)
that EXCAVATOR detected as gains matched with 16.8% of the
1155 gain events from the reference CNVs. Of the 522 CNVs that
EXCAVATOR detected as losses, 206 (39.5%) matched with 14.3%
of the 1437 loss events from the reference CNVs (Supplementary
Table S2A). In other tumor types, the results of the six tools were
similar to KICH (Supplementary Table S2B, C). A lower coverage
rate was obtained with the 90% overlap criteria.

Precision, recall and the F1-score

To further assess the performance of the six algorithms, we
estimated the precision (positive predictive value), recall

(sensitivity) and F1-scores. True positive CNVs are defined as
concordant CNVs between reference CNVs and WES CNVs, false
negatives are reference-only CNVs and false positives are WES-
only CNVs. The precision was calculated as the ratio of the
number of correctly detected CNVs (i.e. the overlap between
each tool and the reference set) to the total number of CNVs de-
tected by a specific tool. The recall was calculated as the ratio of
the number of correctly detected CNVs to the total number of
CNVs in the reference set. The F1-score was estimated as a
weighted average of the precision and recall, with 1 as the best
score and 0 as the worst score. We applied the 50% and 90% re-
ciprocal overlap criteria. Figure 5 and Supplementary Figure S5
show the precision, recall and F1-scores under the two overlap
percentages in the three tumor types. Under the 50% overlap
criterion, the F1-scores across the five algorithms are highly
variable, but under the 90% overlap criterion, the differences of
the F1-scores become smaller.

ADTEx and EXCAVATOR had good performance based on
the F1-score using the 50% overlap criterion. ADTEx had slightly
higher recall than EXCAVATOR, whereas EXCAVATOR had
higher precision than ADTEx. Although the recall rates ex-
hibited by Control-FREEC, ExomeCNV and Varscan2 were high
owing to the large number of CNVs detected, the F1-scores were
low owing to the small number of true positives identified. The
features of the six tools are summarized in Table 2 and
Supplementary Table S3.

Discussion

We evaluated the capability of six WES CNV algorithms to de-
tect somatic CNVs from 150 paired TCGA tumor samples.
Overall, our results are consistent with previous analyses
[30–34] that suggested variable performance of the available
methods. We confirmed that the CNV counts obtained from
each tool varied significantly from the reference set. We found
that there may be a bias in detection of gain versus loss—for ex-
ample, the predictions from ADTEx, CONTRA and Control-
FREEC seemed to be biased toward detecting copy gains. We
also found that some methods, notably CONTRA and Control-
FREEC, tend to give hyper-segmented profile, with most likely a
large fraction of false positives. Although CONTRA uses the CBS
algorithm on the region-level log ratio to detect large CNVs, we
found that CONTRA detected mainly small CNVs and therefore
may be unsuitable for large CNV detection. Control-FREEC had a
higher accuracy for losses than gains among its detected CNVs.

Figure 5. The precision-recall plots of the six WES CNV tools according to the reciprocal overlap criteria. The gray curve indicates constant F1-scores. The best F1-score

is 1 and the worst F1-score is 0. The up-triangles represent gain events and the down-triangles indicate loss events. (A) 50% overlap criterion; (B) 90% overlap criterion.

A colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.
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For these tools, parameters for conservative segmentation and
a filter with a high log2 ratio may be helpful in reducing false
positives. The high recall of Control-FREEC, ExomeCNV and
Varscan2 may be attributed to the higher number of CNVs that
were predicted. In addition, the considerably larger number of
small CNVs detected by these algorithms suggests that their
normalization and segmentation algorithms were not applied
properly.

The CNVs called by ADTEx and EXCAVATOR had a higher
proportion matching with the reference set, while the other
CNV tools only had <50% of CNV calls matching the reference
set. ADTEx and EXCAVATOR also had a relatively low rate of op-
posite-direction CNVs compared with the other tools. However,
ADTEx and EXCAVATOR tended to detect large CNVs, and thus,
the matching rates dropped when a 90% overlap criterion was
used. In terms of precision and recall, ADTEx and EXCAVATOR
had the best performance based on the F1-score. Although
ADTEx and EXCAVATOR appear to be the best choice for som-
atic CNV detection based on our analysis, we do note that re-
sults are likely to vary depending on the specific data sets and
parameters.

There are three important limitations to the current study.
The first is that we did not attempt to obtain optimal perform-
ance for each algorithm by tuning its parameters. For instance,
in Control-FREEC, there is a parameter called ‘minCNAlength’
that specifies the minimum number of consecutive windows.
We used the default value of 1 in our runs, but setting this value
larger removes smaller segments (a related parameter is ‘win-
dow’, for which we used the 500 bp recommended for exome
data; setting this parameter larger would also remove smaller
segments). Although such tuning might improve the perform-
ance of each algorithm, it may also make the comparisons more
subjective and prone to bias. In addition, these algorithms often
have multiple parameters (Control-FREEC has >15 parameters),
and attempting to obtain an optimal combination of these par-
ameters is difficult for general users. The second limitation is
that there are multiple ways to measure overlap between two
segmentation profiles and that none is perfect. We chose to use
two measures based on how much a CNV in one profile is cov-
ered by CNVs from the other profile (and vice versa). Another
possible way is to measure overlap based only on exonic re-
gions, as CNVs covering genes are often most relevant. The
third limitation is that, although better than other choices, the
‘reference’ CNV profiles we generated using SNP array and WGS
data are not perfect. In particular, the use of SNP array profiles
reduces the resolution of CNVs, and it becomes difficult to
evaluate the correctness of small CNVs identified from exome
data.

We note that, regardless of the method chosen, it would be
important to experiment with its parameters to check if the

resulting profiles are reasonable (e.g. no hypersegmentation)
and to confirm at least a subset of the final call set using add-
itional data from wet-lab experiments or orthogonal platforms.
Finally, while some methods do perform more reliably than
others, it is clear that more accurate and robust approaches are
needed for the growing number of exome data sets.

Key Points

• Somatic copy number variants (CNVs) can be detected
using paired (tumor and matched normal) whole-
exome sequencing (WES) data, but current methods
give highly variable results.

• Among the six evaluated CNV tools, ADTEx and
EXCAVATOR showed the most reliable results for the
data sets tested.

• Incorporation of whole-genome data is helpful in eval-
uating the performance of WES-based CNV methods.

• More accurate and robust approaches are needed to
take full advantage of the large number of exome data
sets.
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Supplementary data are available online at http://bib.
oxfordjournals.org/.
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