
Hum

Gen
Men
on t

Stéph
Jonat
Rona

Abst

Men
tem tu
origin
cord.
sis is
duals
signif

Author
Institut
France
France
Brigham
Massac

Note: S
Resear

S. Gou

Current
Calgary

Corres
urgie, 1
33-1-4
bjn.aph

doi: 10

©2010

www.a
Clinical

Cancer
esearch
an Cancer Biology

omic Profiling Reveals Alternative Genetic Pathways of
ingioma Malignant Progression Dependent

R

he Underlying NF2 Status

ane Goutagny1,2,4, Hong Wei Yang5, Jessica Zucman-Rossi1,3, Jennifer Chan6,

han M. Dreyfuss7, Peter J. Park7, Peter M. Black5, Marco Giovannini1,8,

S. Carroll5, and Michel Kalamarides1,2,4
ract
Pur

35 an
histol
are no
Exp

paired
Res

early a
NF2 g
moso
Progre
CDKN
Con

cordin

with ne
icantly el

s' Affiliation
Universitair
; 4AP-HP, H
; Departme
and Wom

husetts; an

upplementa
ch Online (h

tagny and H

address fo
, Alberta, C

ponding Au
00 Bouleva
087-5164;
p.fr.

.1158/1078-

American A

acrjourna

D
ow

nloaded from
 http://aacrjournals.org/clincancerres/article-pdf/1
pose: Meningiomas are the most common central nervous system tumors in the population of age
d older. WHO defines three grades predictive of the risk of recurrence. Clinical data supporting
ogic malignant progression of meningiomas are sparse and underlying molecular mechanisms
t clearly depicted.
erimental Design: We identified genetic alterations associated with histologic progression of 36
meningioma samples in 18 patients using 500K SNP genotyping arrays and NF2 gene sequencing.
ults: The most frequent chromosome alterations observed in progressing meningioma samples are
lterations (i.e., present both in lower- and higher-grade samples of a single patient). In our series,
ene inactivation was an early and frequent event in progressing meningioma samples (73%). Chro-
me alterations acquired during progression from grade I to grade II meningioma were not recurrent.
ssion to grade III was characterized by recurrent genomic alterations, the most frequent being
2A/CDKN2B locus loss on 9p.
clusion: Meningiomas displayed different patterns of genetic alterations during progression ac-
g to their NF2 status: NF2-mutated meningiomas showed higher chromosome instability during
ssion than NF2-nonmutated meningiomas, which had very few imbalanced chromosome seg-
6/16/4155
progre
ments. This pattern of alterations could thus be used as markers in clinical practice to identify tumors
prone to progress among grade I meningiomas. Clin Cancer Res; 16(16); 4155–64. ©2010 AACR.
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ingiomas are the most common central nervous sys-
mors in the population of age 35 and older (1). They
ate from the meningeal coverings of brain and spinal
The only well-established gene in meningioma gene-
NF2 (Neurofibromatosis 2 OMIM 101000). Indivi-
urofibromatosis type 2 (NF2) are at
evated risk for developing meningiomas,

(3). In
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sting that the NF2 gene might play a central role in
ting leptomeningeal cell proliferation (2). Biallelic
vation of the NF2 gene on chromosome 22 has been
in 30% to 70% of sporadic meningiomas, leading to
ss of the NF2 gene product, merlin/schwannomin
addition, NF2 inactivation is thought to be an early
in sporadic meningioma pathogenesis and is ob-
as frequently in grade I tumors as in high-grade tu-
(4). NF2 mouse modeling also supports a strong
ement of this gene in meningioma tumorigenesis.
ene inactivation in meningeal cells using conditional
ockout mice induces meningioma development (5).
ording to the 2000 WHO classification (6), about
f meningiomas are slow-growing grade I benign tu-
Atypical grade II meningiomas constitute 15% to
of meningiomas, and their incidence has been in-
ng since the WH0 2000 classification (7). One to
percent of meningiomas are grade III tumors and be-
s true malignant neoplasms. Histologic progression
ningiomas has been recently depicted (8, 9): 17% to
f grade II meningiomas derive from grade I tumors
4% to 70% of grade III meningiomas derive from

I or II tumors. Several studies have been done to
fy genes involved in meningioma progression using
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Translational Relevance

Up to 25% of meningiomas show aggressive histo-
logic features and are characterized as grade II or III ac-
cording to the WHO classification. A subset of these
tumors originate from grade I tumors that undergo
malignant progression. This study focuses on a unique
series of 36 paired meningioma samples (18 patients)
that showed tumor recurrence with histologic malig-
nant progression. High-density 500K SNP array geno-
typing allowed the fine cartography of genomic
alterations by comparing samples and their subse-
quent progressing counterparts in the same patient.
The main finding of this study is that genomic altera-
tions associated to date with grade II or III meningio-
mas, such as 1p, 6q, and 14q losses, are also observed
in grade I meningiomas with NF2 mutations that un-
dergo malignant progression. This chromosome insta-
bility phenotype associated with NF2 status could be
used as a marker in clinical practice to identify grade I
meningiomas prone to progress.

Goutagny et al.
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microarray and low-density comparative genomic
dization (10–14). A comparison of independent
from grade I, II, and III tumors identified homozy-
DKN2A/CDKN2B deletions in almost half of grade
ningiomas (15). In grade III meningiomas, 9p21 de-
s encompassing CDKN2A/CDKN2B are associated
oorer survival (16). Very few studies including suc-
e, recurrent specimens from the same patient whose
had progressed to a more malignant histologic phe-
e have been conducted (17–20). They showed losses
romosome 22q in samples of all grades, associated
p, 9q, 10q, and 14q losses, sometimes solely ob-
in high-grade tumors. These studies were limited

e small numbers of tumors involved (one to four
ssing cases) and by the fact that analyses were con-
at the cytogenetic level.

h-density SNP arrays are new powerful tools, en-
the fine mapping of the tumor genome. Genomic

ranscriptional studies have been successfully con-
in a variety of cancers, such as lung cancer (21),

te cancer (22), and melanoma (23). In particular,
ensity SNP arrays, such as 500K Single Nucleotide
orphism array (500K SNP), enable detailed and ge-
-wide identification of both loss of heterozygosity
) events and copy number alterations in cancer (24).
his study, we identified genetic alterations associat-
th histologic progression of 36 paired meningioma
es in 18 patients using 500K SNP genotyping ar-
major event associated with progression to grade

s loss of the CDKN2A/CDKN2B locus on 9p. Me-
mas displayed different patterns of alteration dur-

rogression according to their NF2 status; NF2-
ted meningiomas showed higher chromosome

man M
the m

ancer Res; 16(16) August 15, 2010
ility during progression than NF2-nonmutated
giomas.

rials and Methods

ts and tumor samples
otal of 18 progressing meningioma cases, corres-
ng to 37 tumor samples, were selected (17 patients
samples and 1 patient with 3 samples). Clinical da-
depicted in Table 1. Each sample had frozen mate-
nd paraffin-embedded blocks available to be
ed in this study. All the patients were recruited in
ance with French law and consented under the In-
onal Review Board of Partners Healthcare. Patients
ultiple meningiomas or NF2 were excluded from

udy. Two independent pathologic reviews by two
pathologists were conducted on each case. A neuro-
logist at the hospital where the surgery occurred re-
d each tumor specimen, and a neuropathologist at
am and Women's Hospital (J.C.) reviewed all paraf-
des and confirmed the diagnosis, grade, and histo-
subtype (Supplementary Table S1). All tumors were
d according to the WHO 2000 grading scheme (6).
y 20-μm frozen sections were allocated for purifica-
f genomic DNA with AllPrep DNA/RNAminikit (QIA-
mbH) following themanufacturer's protocol for each
en. The tumor cell content was quantified by H&E
g of the frozen section. Only samples with a tumor
ntent >90% were retained for subsequent analysis.

haracterization
17 NF2 exons were amplified by PCR and se-

ced using Big Dye terminator chemistry on an
10 (Applied Biosystems) following the manufac-
recommendations. PCR protocols and primers se-

ce are available on request. Sequences were
zed using Sequencher 4.7 software (Gene Codes).
no NF2mutation was identified, DNA samples were
r examined for large alterations using multiplex liga-
ependent probe amplification (MRC Holland) fol-
g the manufacturer's protocol.

h for alterations in NF1 and CDH7 genes
lecular investigation of NF1 gene was done at the
level. Briefly, after reverse transcription of 1 μg of
RNA, eight overlapping PCR products were se-
ed (BDT Cycle Sequencing Ready Reaction Kit, Ap-
Biosystems) using a panel of 25 sequencing
rs covering the entire 8,520-bp NF1 coding se-
e. CDH7 mutations were investigated by direct se-
ing of tumor DNA. Primer sequences and reaction
tions are available on request.

and copy number analysis
h-resolution genome-wide copy number variation
OH analyses were carried out using GeneChip Hu-

apping 500K Array Set (Affymetrix, Inc.) following
anufacturer's instructions. Eight HapMap samples

Clinical Cancer Research
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provided by Affymetrix) and normal blood DNA
two patients (mh117 and mh179) were used for
alization. LOH was inferred by paired comparison
ples in the same patient. SNP data were analyzed
dChip software (25). Genomic alterations were clas-
as loss, homozygous deletion, gains, and hemizygos-
eletions and gains were deduced following a hidden
v model with a smoothing window of five-SNP
s using dChip. LOH regions were determined in
by paired analysis of the two (or three) samples of
atient. When blood was available, it was compared
ach sample of the case. We then used two strategies
ine regions of gain and loss. Raw data output from
was analyzed using customized program written in
sion 2.0.1, http://www.R-project.org). In brief, SNP
rs were searched (10 consecutive SNP, 8 of them
ponding to the search criteria) for homozygous dele-
raw copy number <0.5), loss (raw copy number <1
OH), gain (raw copy number >3), or neutral copy
er LOH regions (raw copy number >1 and <3, and
. Each region was then manually checked to confirm
teration and define borders. The physical positions
detected deletions were determined based on the
n hg17 assembly (National Center for Biotechnology
ation Build 35). Imbalanced chromosome segments

were defined as the sum of gains, losses, neutral copy
er LOH, and homozygous deletion.

was i
ferred

le

e Gender Localization Size I

mide; G, gefitinib; H, hydroxycarbamide; I, imatinib mesylate.

acrjournals.org
tional allele loss (FAL; ref. 26) in a meningioma
le was defined as the number of chromosome arms
ich allele loss was observed, divided by the num-

f chromosome arms studied. Unpaired t tests were
to compare values in GraphPad Prism 4.0 software.
.

lts

nactivation is an early and frequent event in
essing meningioma samples
or DNA sequencing identified a NF2 gene muta-
n DNA from 26 of 37 progressing meningioma
les, and one additional whole exon deletion was
in one sample by multiplex ligation-dependent
amplification (Table 2). Twenty mutations were
ted to lead to a premature stop codon (direct stop
meshift); six were splice site mutations. When a pa-
arbored a NF2 gene mutation in a more advanced
the mutation was always present in the lower-grade
r, suggesting that NF2 loss is an early event in me-
ma genesis. These 27 samples (14 patients) are
ter referred to as NF2-mutated. No NF2 mutation

dentified in 10 samples (6 patients), hereafter re-
to as NF2-nonmutated. On SNP analysis, 100%

erres/article-pdf
/16/16/415
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2-mutated samples harbored 22q loss, whereas 2 of
0%) of samples without a NF2 mutation had a loss
q (P < 0.001), suggesting biallelic NF2 inactivation
2-mutated samples.

osome alterations are frequent even in grade I
essing meningioma samples
the 37 meningioma samples examined, 35 exhib-
arious ICS (losses, gains, homozygous deletion,
eutral copy number LOH), with only 2 samples

tient) free of any chromosome aberrations. The
ity of aberrations encompassed a large segment

chrom
<5 M

le F2 s f 37 enin sam

e amp xon rotei

86.1 c.4 5 p.
86.2 c.4 5 p.
86.3 c.4 5 p.
89.2 c.9 10 P
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ple tested by multiplex ligation-dependent probe amplification.

ancer Res; 16(16) August 15, 2010
hromosome arm or even the whole chromosome.
were a median number of 13 ICS per meningio-
mple (range, 0–39). Losses were more frequently
ed than gains at the chromosome arm level (total
er of aberrations, 317 versus 90). The most com-
chromosome arm loss was at 22q [30 meningioma
es (81%)], encompassing the NF2 tumor suppres-
ene. Frequent losses of chromosome arms 1p
), 6q (62%), 14q (49%), 3p (43%), 10q (43%), and
43%) were observed. Losses involving the whole

osome arm were seen in 29% of cases and were

b in 36.6%. The frequencies of chromosome arm
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Overview of all ICS observed in 37 progressing meningioma samples. Each chromosome is depicted as a vertical black bar with the position of
tromere. All alterations in a defined tumor are depicted as a vertical bar with sample ID indicated on top. Early alterations (i.e., present in each
s for one patient) are indicated on the left side of the chromosome. Specific grade I, II, or III alterations (present only in the grade I, II, or III sample of
ient) are depicted on the right side of the chromosome on a gray scale background representing the three grades. Losses are in blue, gains in

d neutral copy number LOH regions in yellow. Black circles, homozygous deletions. *, the alteration is also observed in blood DNA, when available.
ertical braces highlight recurrent alterations (early on the left side and specific grade I, II, or III on the right side of the chromosome).

Clin Cancer Res; 16(16) August 15, 2010acrjournals.org 4159
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 .2/16q22.1
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/68.253
54.739
.2 21q Loss 21q22.2/21q22.2 0.01 1 DSCAM
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ingle patient, are depicted on the left side of each
osome. Of note, we observed clusters of chrom-
e alterations: 43% (16 of 37) of meningioma
es harbored simultaneous 22q, 1p, 6q, and 14q de-
s.

osome alterations acquired during progression
grade I to grade II meningioma are not recurrent
patients had progression from grade I to grade II
gioma. A mean of 3.7 ICS observed in grade II

les were not observed in the corresponding grade
imens (Table 3). None of these alterations were
in more than two individuals. Thus, in this series,
case had a unique genetic progression pathway

reviation: HD, homozygous deletion.
id not point to a specific gene or chromosome
.

ping
the C
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ession to grade III is characterized by recurrent
ic alterations, the most frequent being
2A/CDKN2B loss
rteen meningioma samples showed progression to
III tumors: 2 patients from grade I to III, 1 patient
grade I to II to III, and 10 patients from grade II
. A mean of 4.5 de novo grade III alterations per
e were identified. Twenty-eight alterations were re-
t (Table 4). Chromosome regions are depicted in
in Fig. 1. Most of these regions were larger than 2
nd encompassed several genes. Three overlapping
zygous deletions were found on chromosome
3 (patients 117, 119, and 179). The smallest ho-
gous deletion spanned a 0.2-Mb region overlap-
e 4. R
ngioma
ecurrent new
s

alter
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bserved during progression
with the
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from g
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7, 179, 207 9p
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s 9p13.1
/9p13.1 (38.664/38.758) 0.01
 None

86, 93
, 115, 119 16q
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s 16q24.
2/16q24.3 (86.060/88.691) 2.1
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ed eight grade III samples (86.3, 89.3, 100.3, 103.3,
, 115.3, 117.3, and 119.3) for NF1 gene mutations.
utation was identified, suggesting that NF1 alteration
amajor event inmeningiomamalignant progression.

F2 status is associated with the pattern of
ic alterations in progressing meningiomas

rule out factors associated with the accumulation of
osome alterations, FAL was calculated for each sam-
here was a tendency toward increase of FAL accord-
histologic grade (P = 0.17); there was no difference
ing to sex or previous radiation therapy (data not
). When divided according to theirNF2 status, menin-
samples showed significantly different FAL. Whether
e into account lower- or higher-grade samples of each
F2-nonmutated meningioma samples showed very
romosome alterations (mean FAL, 0.09 and 0.11 in
- and higher-grade samples of each case, respectively).
trast, mean FAL in NF2-mutated tumors was 0.23
.27 in lower- and higher-grade samples, respectively
.024, lower-grade; P = 0.014, higher-grade (unpaired
; Fig. 2]. To further rule out a genetic unstable pheno-
icrosatellite instability was assessed in these tumors.
icrosatellite instability was found in 29 samples
uted in the three grades, independent of the presence
NF2 mutation (data not shown).

onmutated samples showed very few ICS
.6-Mb interstitial deletion in 18q22, encompassing
the CADHERIN 7 gene (CDH7), was shown in case
DH7 is a cadherin expressed in the nervous system
as been linked to carcinogenesis (33). Thus, CDH7
potential candidate gene for meningioma develop-
We searched for mutations in the 11 coding exons
H7 in 16 meningioma samples, including case 111.
utation was found, suggesting that CDH7 is not
vated by biallelic events in meningioma genesis.

ssion

strength of this work is the direct comparison be-
a meningioma and its subsequent recurrence with
ogic malignant progression in the same patient. To
owledge, this series is the largest in the literature an-
g such tumors. In addition, the use of 500K SNPmap-
rrays allowed high-density genome-wide analysis.

isited meningioma genesis scheme based on the
tatus of tumors
ningioma tumorigenesis should be divided into two
arms according to the NF2 status of the tumor sam-
bout one third of meningiomas arise in the absence
2 loss. These tumors are characterized by the scarcity
omosome alterations. The underlying genetic events
ed in initiation of NF2-nonmutated meningiomas
n to be elucidated. On the other hand, about two

of meningiomas arise through an NF2-dependent
ma multiforme (32). Based on this observation, we

FAL is significantly different between NF2-mutated meningiomas
2-nonmutated meningiomas. Top, lower-grade sample of
rogressing meningiomas. Bottom, higher-grade sample of paired
ay. For these cases, most of grade I meningiomas
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t progress to a higher grade and are characterized by
w chromosome alterations, mainly isolated 22q loss
5). A subset of grade I tumors are able to progress to
r grades and are characterized by a pattern of chro-
me alterations including 1p, 6q, and 14q losses.
alterations have been associated with grade II and
ningiomas (14, 20, 35–37), but they are also present
er-grade samples (grade I or II) in our series. This ob-
ion suggests that these chromosome alterations are
te events involved inmeningiomamalignant progres-
18) because they exist in grade I meningiomas. On
tion that the NF2 status of samples is determined,
chromosome alterations could certainly be used
rkers in clinical practice to identify tumors prone to
ss among grade I meningiomas. In case of aggressive
ypic signature, partially resected grade I meningiomas
benefit from adjuvant therapies (surgery, radio-
y, radiotherapy) before any tumor regrowth. This
hesis must be evaluated in appropriate clinical trials.

oss is associated with chromosome instability in
essing meningioma samples
s raises the question whetherNF2 drives chromosome
ility in meningioma precursor cells, or whether NF2
the consequence of an earlier event responsible for
osome instability. Of note, the effect of NF2 loss
romosome instability and malignant transformation
to be tissue specific because different situations occur
ious tumor types havingNF2 gene mutations as com-
enominator. In schwannoma, a benign tumor of the
eral nervous system, NF2 inactivation is universal,
ary, and sufficient for tumor development in the ab-
of chromosome instability (38, 39). Rare cases of
nnomas undergo malignant transformation, gener-
ter radiation therapy, which possibly induces p53mu-
s (40). Cases of “somatic” NF2 instability have been
bed in schwannomas: different NF2 mutations have
ound in seven different tumors from one patient with
ic schwannomatosis (41), suggesting additional un-
ng genetic events predisposing to NF2 loss. INI1/
CB1 has recently been implicated in familial schwan-
tosis (42) but this role does not seem to be related to
tion of genomic instability. In malignant mesothelio-
highlymalignant tumor of the pleura, half of the cases
r NF2 gene mutations and 22q losses (43) and they
chromosome instability (44). Similarly to malignant
giomas, loss of CDKN2A/CDKN2B on 9p is another
event (80%) observed inmesothelioma genesis (45).

ingle patient (case 179) in the NF2-nonmutated

ans DG, Sainio M, Baser ME. Neurofibromatosis type 2. J Med
net 2000;37:897–904.
ttledge MH, Sarrazin J, Rangaratnam S, et al. Evidence for the

co
nin

4. Pe
na
wit

5. Ka

acrjournals.org
les. Of note, this sample is the only one in the
onmutated group that harbors 22q loss; thus, this
e might indeed have NF2 inactivation through, for
ple, epigenetic mechanisms. In the literature, the
tatus of meningioma samples is seldom determined,
view of literature clustering samples according to
2q status also finds an association between 22q loss
AL in the meningiomas studied (14, 35, 36, 46–48).
studies are in agreement with our finding that NF2
vation in meningiomas is associated with greater
osome instability.

lity
aired analysis, comparing progressing samples in the
patient, showed a clonal evolution during progres-
n 16 of 18 patients: the two (or three) samples of the
patient sharing common alterations, and few alteration
s being found only in one of the samples. Twopatients
d 103) did not fit in this model of clonal evolution.
grade II samples showed a pattern of genetic altera-
including 22q loss and a NF2 gene mutation. The
ponding grade III tumors, arising from the remnant
first surgery, had none of the alterations of the paren-
de II tumor, including the NF2 mutation, suggesting
ese two grade III meningiomas originated from a dif-
clone. Interestingly, these two patients both received
herapy before their second surgery. Thus, radiothera-
ld have been the impetus for this new clone to arise.
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