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Abstract
mRNA expression profiling has suggested the existence of multiple glioblastoma subclasses, but their number

and characteristics vary among studies and the etiology underlying their development is unclear. In this study,
we analyzed 261 microRNA expression profiles from The Cancer Genome Atlas (TCGA), identifying five clinically
and genetically distinct subclasses of glioblastoma that each related to a different neural precursor cell type.
These microRNA-based glioblastoma subclasses displayed microRNA and mRNA expression signatures resem-
bling those of radial glia, oligoneuronal precursors, neuronal precursors, neuroepithelial/neural crest precursors,
or astrocyte precursors. Each subclass was determined to be genetically distinct, based on the significant
differences they displayed in terms of patient race, age, treatment response, and survival. We also identified
several microRNAs as potent regulators of subclass-specific gene expression networks in glioblastoma. Foremost
among these is miR-9, which suppresses mesenchymal differentiation in glioblastoma by downregulating
expression of JAK kinases and inhibiting activation of STAT3. Our findings suggest that microRNAs are
important determinants of glioblastoma subclasses through their ability to regulate developmental growth and
differentiation programs in several transformed neural precursor cell types. Taken together, our results define
developmental microRNA expression signatures that both characterize and contribute to the phenotypic
diversity of glioblastoma subclasses, thereby providing an expanded framework for understanding the
pathogenesis of glioblastoma in a human neurodevelopmental context. Cancer Res; 71(9); 3387–99.�2011 AACR.

Introduction

Glioblastoma is the most common and most malignant
intrinsic brain tumor (1, 2). Because of the extremely unfavor-
able prognosis of glioblastoma (median survival of 14–16
months), it is important to develop more effective diagnostic
and therapeutic strategies that are based on a biologically and
clinically relevant disease subclassification system (3). Recent
studies have proposed at least 2 mRNA-based classification
systems for glioblastoma: "proneural–proliferative–mesench-
ymal" (4) and "proneural – neural – classical – mesenchymal"
subtypes (5). These studies differ regarding the number of
subclasses, their relationship to neural differentiation, and
whether they have prognostic value. Although there is a con-

sensus that the expression signature of one of the subclasses
resembles that of a "proneural" precursor cell (4, 5), the
relationship of other glioblastoma subclasses to neural differ-
entiation is less clear. Moreover, there is disagreement regard-
ing the relationship of the subclasses to patient survival (4, 5).

MicroRNAs are short, noncoding RNAs that are key reg-
ulators of neural development and cancer. Previous studies
suggest that expression-based clustering using microRNAs
may yield more accurate histological and prognostic sample
classification than clustering based on mRNA expression (6,
7). The recently published Cancer Genome Atlas (TCGA) data
set for glioblastoma includes the expression profiles of micro-
RNAs as well as data for mRNA expression, somatic mutations,
and copy number changes for tumors from more than 260
glioblastoma patients (8). In this study, we use microRNA
expression-based clustering to identify 5 clinically and geneti-
cally distinct glioblastoma subclasses, each of which corre-
sponds to a specific neural precursor cell type. We describe the
genetic and clinical features of each glioblastoma subclass,
and we show that microRNAs help to establish these sub-
classes by regulating neurodevelopmental growth and differ-
entiation programs.

Materials and Methods

Consensus clustering of microRNA expression profiles
MicroRNA expression profiling was performed using Agi-

lent 8 � 15K Human microRNA-specific microarrays in The
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Cancer Genome Atlas (TCGA) pilot study (8). Processed (level
3) microRNA expression data as well as the clinicopathological
annotations for 261 glioblastoma patients were downloaded
from TCGA portal (http://cancergenome.nih.gov/). We first
removed viral origin microRNAs. The expression data for the
remaining 470 microRNAs were mean centered, and the
standard deviation was normalized to 1 per array. We then
filtered those with low variability in expression level (median
absolute deviation or MAD < 0.1). We used 3 additional
criteria to further select a group of highly informative
microRNAs (Supplementary Fig. S1 and Table S1). These
criteria included (i) microRNAs showing highly variable
expression (MAD > 1.0; n ¼ 45), (ii) patient survival-related
microRNAs (significance in univariate Cox model
< 0.1; n ¼ 58), and (iii) neurodevelopment-related micro-
RNAs (n ¼ 57) which were manually curated from the
published literature (Supplementary Table S2). Supplemen-
tary Table S1 also lists the regression coefficients and P
values for these microRNAs, which were estimated using a
univariate Cox regression model. The resultant group of 121
microRNAs was used for sample- and microRNA-clustering
using a consensus clustering algorithm (9). Consensus clus-
tering was performed using the hierarchical clustering
method with average linkage and 1 minus the Pearson's
correlation coefficient as the distance measure. A total of
100 permutation tests were performed with a subsampling
ratio of 0.8. Consensus clustering was performed both for
glioblastoma (n ¼ 261 patients) and microRNA (n ¼ 121
microRNAs) subgrouping. The optimal number of glioblas-
toma and microRNA subgroups was determined using a
consensus clustering cumulative distribution function
(CDF) and consensus matrices (Supplementary Fig. S2).

Genomic alterations in GBM subclasses
The mutation profiles as well as the genomic alteration

profiles for glioblastoma were downloaded from TCGA portal.
For mutation analyses, we first collected 1,320 validated
somatic mutations for 147 TCGA glioblastoma samples (8).
We further selected 1,065 nonsilent mutations for 140 TCGA
glioblastomas that were available for microRNA-based cluster
membership. The significance of mutation frequency across
the 5 microRNA-subclasses was calculated using a 2-sided
Fisher's exact test. For each gene, the significance was calcu-
lated as the probability of observing the mutation frequency in
each microRNA subclass given the total number of mutations
for that gene and the number of samples in each subclass. In
calculating the significance, we ignored the mutations present
in the 7 hypermutation samples (annotated in a previous
publication; ref. 8). The mutation frequency of the top 23 most
frequently mutated genes is available in Supplementary
Table S3.

For copy number profiles, we used the circular binary
segmentation (CBS) smoothed copy number profiles of Agi-
lent 244K array comparative genomic hybridization profiles
(10). Significant copy number changes for the 5 microRNA
subclasses were identified using GISTIC software (11). The
significantly recurrent amplifications and deletions (false
discovery rate or FDR < 0.25) were considered as micro-

RNA-based glioblastoma subclass-specific alterations. Sub-
class-unique alterations were further identified by filtering
significant alterations in 1 glioblastoma subclass with those in
the remaining 4 glioblastoma subclasses. Genes belonging to
unique alterations occurring in each microRNA-based glio-
blastoma subclass are provided in Supplementary Table S4.

For gene expression data analysis, we used unified expres-
sion profiles across 3 different gene expression microarray
platforms (Affymetrix U133A, Affymetrix Exon, and Agilent
custom 244K expression) as available in the published litera-
ture (4). The unified expression level of 11,861 genes was used
for expression analysis across 197 TCGA glioblastoma samples
that were available for the microRNA-based 5 cluster member-
ship. Annotations for the 4 mRNA-based glioblastoma sub-
classes (proneural, neural, classical, and mesenchymal) were
also downloaded from the published literature (4) and corre-
lated with the microRNA-based glioblastoma subclasses.

We obtained the promoter methylation status of theMGMT
gene, which was profiled using the Illumina DNA Methylation
Cancer Panel I (8). The calculated methylation values (b value)
of 2 CpG dinucleotides located at 281bp and 271bp upstream
of the MGMT transcription start site were rescaled as pre-
viously described (8). The 59 glioblastoma cases with MGMT
promoter methylation (rescaled b > 0.25) were selected and
compared with the remaining cases for survival differences in
each microRNA-based glioblastoma subclass.

Combined analysis with mRNA expression profiles
To examine the expression-level association of microRNA

and mRNA signatures, we used module and gene set matrix
analysis (12–14). First, we collected 7 gene sets (mRNA signa-
tures) whose gene members show higher expression in differ-
ent types of differentiated neural cells (4 gene sets) or stem cells
(3 gene sets). For the differentiated neural cell types, we
obtained expression profiles representing mouse neurons, oli-
godendrocytes, or (cultured) astrocytes (15). Four neural cell
types were distinguished according to the original tissue
descriptions in the data set (GEO accession, GSE9566), and
these distinctions were further confirmed by hierarchical clus-
tering. We next used a t-statistic to select the top 500 up-
regulated genes for each of the 4 neural cell types, and
subsequently used these genes as representative gene sets
for the four differentiated neural cell types. We also obtained
3 stemness-related gene signatures fromMSigDB database (16),
representing up-regulated genes in human embryonic, hema-
topoietic, and neural stem cells (STEMCELL_EMBRYONIC_UP,
_HEMATOPOIETIC_UP, and NEURAL_UP, respectively). The
correlation (Pearson's correlation coefficient) between indivi-
dual genes in each gene set and the expression of individual
microRNAs was determined. The mean correlation level in
each gene set was then converted into a Z-score and shown in a
heatmap (Fig. 1). In the heatmap, a higher Z-score indicates
that the expression level of the microRNA in question is highly
correlated with gene expression in the gene set across the
glioblastoma samples. Lower Z-scores are indicative of negative
correlations between the expression of the microRNA and that
of the gene set in the context of the glioblastoma samples. For
Supplementary Fig. S4, the 7 gene sets were measured for the
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extent of enrichment in individual glioblastoma samples by
calculating the Z-score as the normalized mean expression
intensity of genes in the corresponding glioblastoma sample.

For extended functional correlation analysis, we used gene
ontology (GO) categories. Gene sets representing GO categories
were downloaded from MSigDB (http://www.broadinstitute.
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Figure 1. MicroRNAs identify 5 neural precursor-related glioblastoma subclasses. A (left), consensus clustering of 121 highly variable, survival-related
or neurodevelopmentally related microRNAs from 261 glioblastomas revealed 5 glioblastoma subclasses and 5 microRNA clusters (see also Supplementary
Fig. S3). The neurodevelopmental annotations of the 5 microRNA clusters are shown along with the microRNAs contained within each cluster. Chart
(middle) illustrates the association of selected microRNAs with 8 different stages of neural cell differentiation (see also Supplementary Table S2). Heatmap
(right) illustrates the extent of correlation between microRNAs and the mRNA signatures of neurons, oligodendrocytes, astrocytes, and hematopoietic,
embryonic, or neural stem cells. Red and blue represent positive and negative correlation, respectively. The order of 121 microRNAs in the chart (middle) and
the heatmap (left) is identical to that in the correlation heatmap (right). (B) The mRNA expression level of 34 neural differentiation markers among the
5 microRNA-based glioblastoma subclasses is illustrated in a heatmap.
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org/gsea/msigdb/; c5 GO categories). We further selected 1,268
GO terms with �5 genes and �500 genes. We first performed
parametric gene set enrichment analysis (PAGE) for 1,268 GO
sets across 121 microRNAs (17). The correlations between 121
microRNAs and 11,861mRNAswere thenmeasured and used to
calculate a Z-score. Then, the significance of the degree of
enrichment (the Z-score) was calculated by PAGE algorithm
for individual microRNA andGO category pairs (17). We further
selected1,190GOcategories that showedsignificant enrichment
(FDR< 0.05)with at least 1microRNA.Amatrixwas constructed
across 1,190GO categories and 121microRNAs by placing theZ-
score only for GO category/microRNA pairs with significant
(FDR < 0.05) enrichment. In Fig. 5, hierarchical clustering was
performed on the Z-score matrix, and the Dynamic Tree Cut
software programwasused togroup the 1190GOcategories into
15 functional categories according to the correlation similarities
(18).

Coexpression network and microRNA regulon analysis
The expression profiles of 121 microRNAs and 11,861 genes

were separately prepared and merged across 197 glioblastoma
samples for which both microRNA and mRNA expression data
was available. Pearson's correlation coefficients were mea-
sured for all possible combinations of entries in a pairwise
manner, excluding self-to-self comparisons. The distribution
of correlations for 3 different combinations (microRNA-vs-
microRNA, microRNA-vs-gene, and gene-vs-gene) is shown in
Supplementary Fig. S9. To identify the cutoff of significant
correlation for microRNA-vs-gene pairs, we performed 100
permutation tests in which the Pearson correlation was
measured for label-permuted expression profiles. The distri-
bution of Min and Max correlation levels in each permutation
test is shown in Supplementary Fig. S9. The correlation cutoff
for positive and negative correlations between microRNA-vs-
gene pairs was set to be the lowest value of upper 5 percentile
of Max correlation (þ0.60) and the highest value of lower 5
percentile of Min correlation (�0.40), respectively. Applying
these cutoffs, we obtained 8,752 significant correlations
between 74 microRNAs and 2,822 mRNAs. We measured
the connectivity (i.e., the number of directly connected
mRNAs) for individual microRNAs. In the case of miR-9, we
collected the predicted miR-9 target genes from 3 different
algorithms (miRanda, PicTar, and TargetScan). The miRanda
miR-9 targets (n ¼ 1,283) and TargetScan miR-9 targets
(n ¼ 629) were obtained from their websites (http://www.
microrna.org and http://www.targetscan.org, respectively; ref.
19, 20). The PicTar (21) miR-9 targets (5-way conserved n ¼
191 and 4-way conserved n ¼ 491) were obtained from the
UCSC Genome Browser (http://genome.ucsc.edu/). Signifi-
cant enrichment of miR-9 predicted target genes among
the total number of genes correlated with miR-9 expression
was determined by Fisher's exact test.

Cell culture and reagents
The human U251 glioblastoma cell line was authenticated

by and obtained from the American Tissue Type Culture
Collection (ATCC) within the last 10 years. The cells were
expanded by culturing for less than 2 passages, and were

subsequently frozen in liquid nitrogen for storage. For experi-
ments, low passage cells were thawed and used within 4
months. Primary human CD133þ glioblastoma cancer stem
cells were isolated from surgical specimens and expanded as
tumorspheres in serum-free medium for less than 3 passages
as described (22), and were subsequently frozen in liquid
nitrogen for storage. For experiments, low passage cells were
thawed and used within 4 months. Methods for lentivirus
construction, immunoblotting, BrdU proliferation assays, and
the use of microRNA mimics, inhibitors, and controls (100
mmol/L) were as described (22). Antibodies used were STAT3,
phospho-STAT3 (Cell Signaling); JAK1, JAK2, JAK3, CD44,
GCM1, CEBP-b, and b-actin (Abcam).

Results

Consensus clustering using microRNA expression
profiles

We obtained microRNA expression profiles for 261 glio-
blastomas from The Cancer Genome Atlas portal (8). We
selected for analysis 121 microRNAs (Supplementary Fig. S1
and Table S1) that demonstrated highly variable expression,
were related to patient survival or were previously associated
with neural development (23–28; see Materials and Methods).
Consensus clustering of 261 glioblastomas using these 121
microRNAs identified 5 microRNA clusters and 5 distinct
glioblastoma subclasses (Fig. 1A; Supplementary Figs. S2
and S3).

A review of published literature (Supplementary Table S2)
revealed that 4 of the 5 microRNA clusters were enriched for
microRNAs expressed in oligoneuronal precursors, multipo-
tent neural precursors, neuronal precursors, or astrocytes,
respectively (Fig. 1A; middle). The remaining cluster contained
microRNAs that regulate differentiation and metabolism in
both neural and mesenchymal tissues. For example, miR-206,
a muscle-enriched microRNA that is also highly expressed in
the cerebellum and dorsal root ganglion, inhibits oligoden-
drocyte and osteoblast differentiation and promotes muscle
differentiation (25, 29, 30). MiR-451 is expressed in the cortex
and in dorsal root ganglion, regulates invasion and metabo-
lism in glioblastoma and promotes erythroid differentiation
(25, 31, 32).

A highly orchestrated and unique progression of microRNA
expression accompanies each stage of development. We there-
fore examined the correlation between the expression of
individual microRNAs and several differentiation-related
mRNA signatures across the glioblastoma samples, and sub-
sequently rendered these correlations as a heatmap (Fig. 1A;
right). mRNA signatures representing 4 murine neural cell
types and 3 human stem cell types were used (see Materials
and Methods). MicroRNA expression in the oligoneuronal
precursor microRNA cluster correlated with mRNA signatures
from oligodendrocytes, embryonic stem cells, and neural
stem cells. The multipotent precursor cluster was associated
with the mRNA expression patterns of astrocytes as well
as hematopoietic, embryonic, and neural stem cells. The
neuronal precursor microRNA cluster was associated with
neuronal and oligodendrocyte mRNA expression patterns. The
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neuromesenchymal microRNA cluster was associated with the
mRNA signature of cultured astrocytes and, to a lesser degree,
embryonic and neural stem cells. The astrocytic microRNA
cluster was accompanied by mRNA patterns characteristic of
cultured astrocytes and neural/hematopoietic stem cells.
Thus, both the microRNA and mRNA signatures associated
with each microRNA cluster corresponded to a specific stage
of neural precursor differentiation.
These 5 differentiation-related microRNA clusters contrib-

uted in various combinations to define 5 subclasses of glio-
blastoma, suggesting a relationship between each subclass
and a distinct stage of neural differentiation. We therefore
examined the expression of mRNAs for stage-specific markers
of neural differentiation in each microRNA-based glioblas-
toma subclass (Fig. 1B). Subclass I, which was dominated by
expression of the oligoneuronal precursor microRNA cluster,
showed increased oligodendrocyte/neuronal precursor mar-
kers such as NKX2-2, OLIG2, SOX2, SOX10, SLC1A1, and ASCL1.
Subclass II showed increased expression of the astrocytic,
oligoneural, and multipotent precursor microRNA clusters
and expressed numerous radial glia markers, including
PAX6, SOX2, NES, FABP7, SLC1A3, GFAP, and others. Subclass
III displayed increased expression of the neuronal precursor
microRNA cluster and expressed neuronal markers such as
TBR1, SLCA1, and NEUROD2. Subclass IV showed increased
expression of the neuromesenchymal microRNA cluster, was
enriched for SOX1, PAX2, PAX9, and HAND1, and displayed
modest upregulation of radial glia markers. SOX1 inhibits the
differentiation of neuroectoderm into radial glia (33). HAND1,
PAX2, and PAX9 are expressed in cephalic neural crest
precursors (34–37) and regulate their neuromesenchymal
differentiation repertoire (i.e., neurons, glia, melanocytes,
osteocytes, chondrocytes, and myofibroblasts). Subclass V
showed increased expression of the astrocytic microRNA
cluster and astrocyte markers such as GCM1 and REST (38,
39). Furthermore, sample-wise gene expression in the 5 glio-
blastoma subclasses was closely related to the expression
signatures of the differentiated progeny of the parent neural
precursors (Supplementary Fig. S4). Based upon these find-
ings, we have named each glioblastoma subclass according to
its associated stage of neural precursor cell differentiation,
that is "oligoneural," "radial glial," "neural," "neuromesenchy-
mal," and "astrocytic."

Clinical characteristics of GBM subclasses
When compared to the glioblastoma subclasses identified

using mRNA consensus clustering (4), the microRNA-based
oligoneural, radial glial, and astrocytic subclasses were
enriched in tumors from the mRNA-based proneural, classical,
and mesenchymal subgroups, respectively (Fig. 2A). However,
20% to 50% of the tumors in the mRNA-based subclasses were
reclassified into other groups using microRNA expression. The
neural and neuromesenchymal subclasses contained a mix-
ture of tumors from all 4 mRNA-based glioblastoma sub-
classes.
We observed that microRNA-based consensus clustering

yielded robust survival differences among glioblastoma sub-
classes (Fig. 2B, P ¼ 0.009, log rank). Patients with oligoneural

glioblastomas lived significantly longer than patients with
radial glial (P ¼ 0.018, log rank), neural (P ¼ 0.006, log rank),
or astrocytic tumors (P ¼ 0.002, log rank), and those with
neuromesenchymal glioblastomas showed a trend toward
longer survival (P ¼ 0.084, log rank) when compared to
patients with astrocytic tumors (Fig. 2B). In contrast to our
findings, previous reports using mRNA-based consensus clus-
tering failed to identify significant survival differences among
glioblastoma subclasses (4, 40). Consistent with these reports,
we also do not observe significant survival differences among
mRNA-based glioblastoma subclasses (Fig. 2C). Detailed ana-
lysis revealed that the difference derives primarily from a 50%
increase in median survival for the microRNA-based oligo-
neural subclass when compared to the median survival for the
mRNA-based proneural subclass (see Fig. 2B and C). When the
proneural subclass was further divided into those samples
that were also categorized as oligoneural and those that were
not, we observed a significant survival advantage for proneural
tumors that were also designated as oligoneural (P¼ 0.039, log
rank; Supplementary Fig. S5). Furthermore, we continued to
observe significant survival differences between glioblastoma
subclasses when clustered using only the highly variable (n ¼
45; log-rank P ¼ 0.001), survival-related (n ¼ 58; log-rank
P ¼ 0.002) or neurodevelopment-related (n ¼ 57; log-rank
P ¼ 0.043) microRNA subsets as independent data sets
(Supplementary Fig. S6).

The age at diagnosis was significantly different (P ¼ 0.011,
1-way ANOVA) among glioblastoma subclasses. On average,
patients with oligoneural glioblastomas developed disease at a
younger age (Fig. 2D; Supplementary Fig. S7; refs. 4 and 5). In
addition, we observed significant racial differences across
microRNA-based glioblastoma subclasses (P ¼ 0.021, Fisher's
exact test; Fig. 2E and Supplementary Fig. S7). An increased
percentage of non-Caucasian patients was observed among
the neural and astrocytic subclasses when compared to the
radial glial subclass (P ¼ 0.03, Proportion test).

For each subclass, we compared the clinical response of
patients treated with radiation (at least 54 Gy) and temozo-
lamide (2 or more cycles administered separately or concur-
rent with radiation) to that of patients treated with all other
regimens (Fig. 3A). A significant survival benefit of radiation
and temozolamide was observed for patients with tumors in
the astrocytic subclass, but not for those with tumors in the
oligoneural, neural, or neuromesenchymal subclasses. A trend
toward improved survival was observed in the radial glial
subclass (P < 0.085, log rank), and this trend became signifi-
cant (P < 0.014, log rank) after exclusion of a single long-
surviving outlier.

We also analyzed the relationship between MGMT promo-
ter methylation and patient survival in each of the microRNA
subclasses (Fig. 3B). Overall, we observed that tumors harbor-
ing MGMT promoter methylation have a more favorable
prognosis (P¼ 0.045, log rank). However, individual subclasses
showed differential patterns of survival with respect toMGMT
promoter methylation. In particular, a significant association
between MGMT promoter methylation and longer survival
was observed in the neuromesenchymal glioblastoma subclass
(P ¼ 0.046, log rank).

MicroRNA-Based GBM Subclassification
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Figure 2. Distinct clinical
characteristics define
glioblastoma subclasses. A, the
relationship between the
microRNA-based glioblastoma
subclassification scheme (vertical
columns) and the previously
published mRNA-based
subclassification (horizontal rows)
is shown using the same tumors
for analysis. B (left), Kaplan–Meier
survival plots for the 5 microRNA-
based glioblastoma subclasses.
(Top right) Table listing P values
for survival differences calculated
in a pairwise manner between
microRNA-based subclasses.
(Bottom right) The median survival
of individual microRNA-based
subclasses (error bar represents
standard error of the mean).
C, Kaplan–Meier survival plots are
shown for four mRNA-based
glioblastoma subclasses (left) with
the significance of survival
differences between subclasses
(top right) and median survival
(bottom right). D, box plot
illustrates the mean age at
diagnosis for 5 microRNA-based
glioblastoma subclasses
(P < 0.001, ANOVA). E, graph
illustrates percentage of Non-
Caucasian (Asian and Black)
patients in each glioblastoma
subclass (P ¼ 0.021, Fisher's
exact test).
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Mutation and copy number profiles of GBM subtypes
Each microRNA-based glioblastoma subclass displayed a

distinct pattern of somatic mutations, some of which were

observed in studies using mRNA for glioblastoma subclas-
sification (Fig. 4A; Supplementary Table S3; ref. 4). The
oligoneural subclass was enriched for IDH1 and PIK3R1
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Figure 3. Subclass-specific treatment response and the effect of MGMT methylation on survival. A, Kaplan–Meier survival analyses for glioblastoma
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mutations, but lacked NF1 mutations. Interestingly, 6 of 7
"hypermutator" tumors (8) were grouped into the oligo-
neural subclass. EGFR mutations were more common in
the radial glial subclass. The neuromesenchymal subclass
was enriched for PTEN and FKBP9mutations but lacked RB1

mutations, whereas the astrocytic subclass was enriched for
PTEN and RB1 mutations.

Each subclass also displayed a unique pattern of copy
number alterations (Fig. 4B and C; Supplementary Fig. S8
and Table S4). For example, MYC, PIK3CA, WT1, and MYCN
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were amplified in the oligoneural, radial glial, neuromesench-
ymal, and astrocytic subclasses, respectively, whereas loci
containing CASP3 and NF1 were deleted primarily in the
neuromesenchymal subclass.

Integrative functional analysis using microRNA and
mRNA profiles
To identify pathways activated in each glioblastoma sub-

class, we measured the extent of correlation between the
expression of individual microRNAs and that of mRNAs in
1,190 curated GO categories. The GO categories were further
grouped into 15modules based upon hierarchical clustering of
the correlation matrix linking the individual microRNAs with
their putative functions (Fig. 5A). From this analysis, we
inferred upregulation of proliferative and neurodevelopmental

pathways in the oligoneural, radial glial and neural subclasses,
and downregulation of RNA and DNA metabolism in the
neuromesenchymal and astrocytic subclasses. Importantly,
the neuromesenchymal and astrocytic subclasses displayed
upregulation of the NFkB and JAK/STAT pathways.

MicroRNA contribution to subclass phenotype
Analysis of microRNA–mRNA correlations (41, 42) revealed

significant correlations between 74 microRNAs and 2,822
genes (Supplementary Fig. S9). Some microRNAs (such as
miR-9, miR-9*, and miR-222) displayed disproportionately
high connectivity (Fig. 5B and C), suggesting that they might
serve as core regulators of subclass-specific gene expression in
glioblastoma. To investigate this possibility, we focused on
miR-9, which was up-regulated in the oligoneural subclass and
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identified as the microRNA with the largest correlated gene
expression network. Genes correlated with miR-9 showed
significant enrichment for predicted miR-9 target genes (Sup-
plementary Fig. S9). Importantly, miR-9 promotes neural stem
cell differentiation and cooperates with miR-124a to inhibit
STAT3 phosphorylation in neural stem cells by an unknown
mechanism (24). We used microRNA target prediction algo-
rithms (http://www.targetscan.org; http://www.microrna.org)
to identify putative binding sites for miR-9 in the 3’-UTR of
JAK1, JAK2, and JAK3, all of which phosphorylate STAT3. MiR-9
was anticorrelated with JAK2 and JAK3 mRNA expression in
glioblastoma (Pearson's correlation coefficient or PCC of
�0.34 and �0.56, respectively), and a miR-9 mimic decreased
expression of luciferase mRNA fused to the JAK1 or JAK2 3’-
UTR (Supplementary Fig. S10). In human U251 glioblastoma
cells or in CD133þ glioblastoma cancer stem cells (GCSCs)
obtained from surgical specimens, exposure to a miR-9 mimic
(100 mmol/L) or lentiviral-mediated overexpression of miR-9
decreased JAK1, JAK2, and JAK3 protein expression (Fig. 6A).
Furthermore, miR-9 alone (but not miR-124a; ref. 25)
decreased STAT3 phosphorylation in U251 glioblastoma cells
and in primary human CD133þ glioblastoma stem-like cells,
and it also decreased expression of the STAT3 transcriptional
target, CEBP-b, in CD133þ glioblastoma cells (Fig. 6B). An
essential role for STAT3 and CEBP-b in maintaining the
mesenchymal phenotype in glioblastoma has been reported
(43). Accordingly, the miR-9 mimic decreased expression of
astrocytic/mesenchymal markers (GCM1, CD44, and GFAP),
increased expression of the neuronal marker, TuJ1 (Fig. 6C)
and inhibited GCSC proliferation (Fig. 6D).

Other developmentally regulated microRNAs also contri-
bute to glioblastoma subclass maintenance. For example, we
identified miR-124a as a hub microRNA in the neural glio-
blastoma subclass (Fig. 5B). This microRNA has been reported
to play an instructive role during neuronal differentiation of
neural precursors (25), and we and others find that it induces
neuronal differentiation and inhibits growth in GCSCs (44).

Discussion

MicroRNAs reveal a greater diversity of glioblastoma sub-
classes than previously recognized. We identified 5 glioblas-
toma subclasses with concordant microRNA and mRNA
expression signatures corresponding to each major stage of
neural stem cell differentiation. This marked degree of corre-
spondence provides some of the strongest evidence yet in
humans that glioblastomas arise from the transformation of
neural precursors, as suggested by animal studies (45). Impor-
tantly, the signatures correspond to neural precursors at
multiple stages of differentiation, suggesting that glioblasto-
mas can arise from cells at each of these stages. Our finding
that the largest glioblastoma subclass displays a neurome-
senchymal signature resembling that of early neuroepithelial
or cephalic neural crest precursors is supported by reports of
neuromesenchymal differentiation in CD133þ GCSCs from
recurrent glioblastomas (46). The latter result raises the
possibility that this signature results from oncogenic repro-
gramming to a neuromesenchymal-like state (5, 44, 46).

These observations place previously reported effects of
microRNAs on glioblastoma growth (23, 32, 44, 47) into a
neurodevelopmental context, and reveal that microRNA-
dependent regulation of growth and differentiation programs
contributes significantly to glioblastoma diversification and
patient outcome. The importance of this phenomenon is
underscored by the fact that microRNA-defined glioblastoma
subclasses display robust differences in genetic alterations,
patient demographics, response to treatment, and patient
survival (Supplementary Fig. S11).

Consistent with previous reports (4, 40), we observed that
mRNA-based glioblastoma subclasses do not exhibit signifi-
cant survival differences. In contrast, microRNA-based glio-
blastoma subclasses showed robust survival differences
among them. Although the mRNA-based proneural subclass
has been associated with longer survival (5), our data shows
that patients with proneural tumors can be further segregated
into 2 subgroups with significant survival differences using
microRNA-based consensus clustering. These findings indi-
cate that the mRNA-based proneural subclass represents a
heterogeneous population in terms of survival. This observa-
tion is supported by a recent study examining DNA methyla-
tion in glioblastoma, which identified a subpopulation of
proneural tumors with a hypermethylation phenotype and
prolonged survival (40). Such heterogeneity may be partially
responsible for the previous inability to build a prognostic
model using mRNA expression data (4, 40).

We observed that all of the initial microRNA subsets used in
this study [i.e., highly variable (n ¼ 45), neurodevelopmental
(n ¼ 57), and survival-related (n ¼ 58) microRNA] yield
significant survival differences among glioblastoma subclasses
when used independently to cluster the glioblastoma samples
(Supplementary Fig. S6). This analysis also revealed that each
of the 5 microRNA-based glioblastoma subclasses was dis-
tinguished in at least 1 of the 3 alternative clustering para-
digms, and 4 of the 5 subclasses were identified in at least 2 of
the clustering paradigms, despite the fact that roughly one half
to one third the original number of microRNAs was used each
time (Supplementary Fig. S6). The neural subclass was only
identified clearly using the neurodevelopmental microRNA
subset. Importantly, clear evidence for the newest subclass of
glioblastoma (neuromesenchymal) was obtained using either
the survival-related or the neurodevelopment-related micro-
RNA subsets alone for clustering glioblastoma samples. Thus,
the survival and development-related differences observed in
our study are not due solely to the inclusion of one (i.e.,
survival- or development-related) of the microRNA subsets.

The difference in racial composition observed among
glioblastoma subclasses is of particular interest, given the
existence of racial differences in the overall incidence of
gliomas. Similarly, the finding that only a subset of glioblas-
toma subclasses responds to standard treatment (i.e., radia-
tion and temozolamide) agrees with a previous report (4)
and has significant clinical implications for treatment. We
also observed that, overall, MGMT promoter methylation is
associated with a more favorable prognosis. This effect is
most pronounced in the neuromesenchymal subclass of
glioblastoma, and may contribute to the relatively prolonged
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median survival observed in this glioblastoma subclass.
Surprisingly, however, this subclass did not demonstrate
responsiveness to temozolamide and radiation. The reasons

for this discrepancy are unclear. One possibility is that, in
addition to increasing the response to standard therapy,
MGMT promoter methylation may be associated with the
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presence of other molecular changes that contribute to
improved survival. Indeed, MGMT methylation is known
to promote the acquisition of specific types of mutations
that regulate growth in glioblastoma (8).

Although genomic alterations involving microRNAs and
their upstream regulators occur in glioblastoma (22), our
findings indicate that developmental programs underlie
the overall framework of microRNA expression in this
cancer. Numerous reports have described important roles
for microRNAs in regulating the growth of glioblastoma
and other cancers (22, 31, 44, 47). Until now, these reports
were interpreted independently. However, our data reveal
that many of these "aberrant" microRNA expression pat-
terns and microRNA-target interactions derive from highly
coordinated, differentiation-related microRNA expression
programs. Importantly, we find that miR-9 downregulates
the JAK/STAT pathway and serves as a switch that reg-
ulates oligoneural versus mesenchymal decisions in glio-
blastoma. In addition, we and others have found a role for
miR-124 (which is highly expressed in the neural glioblas-
toma subclass) in promoting neuronal differentiation and
decreasing growth in glioblastoma. Thus, our findings
reveal a new role for microRNAs in organizing and main-

taining the phenotypic and molecular architecture of glio-
blastoma subclasses.

MicroRNAs are thus useful for subclassifying glioblastomas
in a manner that allows for more accurate prognosis and for
the development of molecular-based treatment decisions.
Taken together, these findings support the adoption of a
microRNA-based, neurodevelopmental taxonomy for glioblas-
toma. The use of such a classification system may aid in
prognosis and in the selection of subclass-specific therapies
that will improve outcome for glioblastoma patients.
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