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Abstract

A novel genome-wide screen that combines patient outcome
analysis with array comparative genomic hybridization and
mRNA expression profiling was developed to identify genes
with copy number alterations, aberrant mRNA expression, and
relevance to survival in glioblastoma. The method led to the
discovery of physical gene clusters within the cancer genome
with boundaries defined by physical proximity, correlated
mRNA expression patterns, and survival relatedness. These
boundaries delineate a novel genomic interval called the
functional common region (FCR). Many FCRs contained genes
of high biological relevance to cancer and were used to
pinpoint functionally significant DNA alterations that were
too small or infrequent to be reliably identified using standard
algorithms. One such FCR contained the EphA2 receptor
tyrosine kinase. Validation experiments showed that EphA2
mRNA overexpression correlated inversely with patient
survival in a panel of 21 glioblastomas, and ligand-mediated
EphA2 receptor activation increased glioblastoma prolifera-
tion and tumor growth via a mitogen-activated protein
kinase–dependent pathway. This novel genome-wide ap-
proach greatly expanded the list of target genes in glioblas-
toma and represents a powerful new strategy to identify the
upstream determinants of tumor phenotype in a range of
human cancers. (Cancer Res 2006; 66(22): 10815-23)

Introduction

Glioblastoma is one of the most malignant of all brain tumors,
with a median patient survival of 12 to 14 months (1). A detailed
analysis of DNA and mRNA alterations in glioblastoma may lead
to an understanding of why these tumors develop and to the
identification of novel therapeutic targets. Expression profiling
combined with clinical survival data have been widely used to
identify changes in mRNA expression in glioblastoma and other

human cancers (2–4). However, hundreds of genes with altered
expression may be identified in such analyses, and it is often
difficult to determine from these analyses alone which of the
changes in mRNA expression are upstream, initiating determinants
of tumor phenotype and which ones represent secondary changes
or even ‘‘bystander effects’’ with no essential role in determining
the neoplastic behavior of tumor cells.
In an attempt to identify the upstream genetic determinants of

tumor phenotype, several investigators have combined microarray-
based comparative genomic hybridization (aCGH) studies of tumor
DNA with mRNA expression profiling in human cancers (4–11).
However, the likely presence of random DNA alterations with little
functional significance within the cancer genome and the adoption
of somewhat arbitrary criteria for determining which DNA
abnormalities are ‘‘significant’’ often result in an imprecise
prediction of functionally relevant DNA alterations.
We present here a novel genome-wide method for identifying

functionally relevant genetic changes that are difficult to identify
reliably using standard aCGH analytic methods alone. We have
called this integrated method Functional Genomic Analysis of RNA
and DNA (FGARD) and have used it to show the existence of
physical clusters of genes that are statistically related to survival in
patients with glioblastoma and that display recurrent and
correlated DNA and mRNA alterations. We have called these
clusters functional common regions (FCR) to emphasize their dual
physical and functionally relevant nature. We validated the FGARD
approach by characterizing in detail one of the identified gene
products, the EphA2 receptor tyrosine kinase. We present evidence
that EphA2 expression is related to survival in glioblastoma, and
that ligand-mediated activation of the receptor promotes glioblas-
toma cell proliferation and tumor growth in a mitogen-activated
protein kinase (MAPK)–dependent manner. This functional
genomic screening method may be generally applicable to a wide
range of human cancers and can be used to identify genes related
to a variety of clinical variables on a genome-wide scale.

Materials and Methods

Tumor samples and cell lines. Frozen primary human tissue samples of
WHO grade 2, 3, and 4 astrocytomas were obtained from the Brain Tumor

Tissue Bank at Brigham and Women’s Hospital under the auspices of an
Institutional Review Board (IRB)–approved study protocol. Non-tumor

brain samples from surgical epilepsy procedures were also obtained from

the Brain Tumor Tissue Bank. In some cases, DNA was extracted from
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paraffin-embedded tumor tissues obtained from the Department of
Pathology at Brigham and Women’s Hospital. Histology of glioblastoma

samples was confirmed by H&E before inclusion in this study. Glioblastoma

cell lines were obtained from the American Tissue Type Culture Collection

(Manassas, VA; U87, U343, U251, and T98) or as a gift (D566 from D. Bigner,
Duke University).

CGH microarray analysis. CGH microarray analysis was done as

described (9) using genomic DNA isolated from 21 human glioblastoma

samples. aCGH profiles were generated at the Arthur and Rochelle Belfer
Cancer Genomic Center at Dana-Faber Cancer Institute. Control DNA was

obtained from peripheral lymphoid cells and used as a normalization

standard. The DNA was isolated using a commercially available method

(Qiagen, Valencia, CA), digested, and random prime labeled and hybridized
as described (9) using a spotted human cDNA microarray consisting of

f14,160 cDNA clones (Human Clone Set 1, Agilent Technologies, Palo

Alto, CA). This array provides a median resolution of f100 kb (9).
Log ratios of probe intensities between glioblastoma and control samples

were plotted in the order of their physical location along the chromosome.

Amplifications and deletions for each chromosome were identified using

the clustering along chromosomes (CLAC) segmentation algorithm (12)

using smoothing windows of either 3 or 5, and the results of these analyses

were combined for maximal coverage. False discovery rates for the CLAC

analysis ranged from 0.01 to 0.05. aCGH analyses were also done using other

algorithms, such as the circular binary segmentation method, a Hidden

Markov Model–based method, and various smoothing methods (13, 14) for

validation, but we chose CLAC because of its intuitive algorithm, calculation

of the false discovery rate, and clear visual representation. A comparison of

these methods using both real and simulated data has been carried out by

us previously (15).

mRNA expression profiling. Total RNA was isolated from an
independent set of 21 frozen glioblastoma samples and 5 non-tumor human

brain samples. Affymetrix U133A expression data for two additional non-

tumor brain samples (16) was obtained from public databases (Gene

Expression Omnibus: GSM18929 and GSM18930). The mRNA was reverse-
transcribed to generate cDNA, which was then biotinylated and hybridized

to Affymetrix HG-U133A oligonucleotide probe arrays (Affymetrix, Santa

Clara, CA). Differentially expressed genes between glioblastoma and non-

tumor brain samples were identified using the t test. To account for multiple
hypothesis testing, we calculated both Ps and Qs (ref. 17; Q is similar to P but

measures significance in terms of the false discovery rate). Because

additional filtering for significant gene clusters is done subsequently, a
conservative threshold value (unadjusted P = 0.05, which corresponds to

Q = 0.03) was applied in this step. Unsupervised hierarchical clustering of

differentially expressed probe sets was done using average linkage and 1 � r

as the distance measure, where r is the Pearson correlation coefficient.
Survival analysis. Patient survival data was obtained from hospital

records under an approved IRB human subjects protocol. Survival was

calculated from the time of initial diagnosis of glioblastoma to the time of

death and was measured in months. Using a Cox regression model, mRNA
expression in a panel of 21 glioblastomas was analyzed to determine the

relationship to patient survival. A list of genes significantly related to

survival was generated using the significance level of P < 0.05
(corresponding to a false discovery rate of Q < 0.29). As in the differential

expression analysis, this threshold was not stringent after correcting for

multiple testing, but it was more important to minimize false negatives at

this stage. Because the subsequent step involving cluster identification is
robust, false positives do not have a large effect on the overall analysis. The

log-rank test was used to confirm that a subset of genes that were chosen

for more detailed study was predictive of patient survival.

Cluster detection algorithm. The idea behind the method is to scan
along the genome and find clusters of genes correlated with survival. The

Ps from the Cox regression are first discretized into 1s and 0s, with 1s

corresponding to genes with P V 0.05. The problem then is to find regions
with a high density of 1s compared with 0s. Because the size of a cluster is

not known in advance, every possible size (up to some limit) is considered

at every probe location, and a score is calculated based on the binomial

distribution. These scores allow comparison among clusters of varying

sizes, and the sequences of 1s (usually with 0s interspersed) that are least

likely to have arisen by chance are selected and ordered by their

probabilities. Mathematically, those clusters whose scores are below a

given threshold are identified using the following formula:

min
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where {ai} is the sequence of 1s and 0s along the chromosome, and L

indicates the maximum size of the cluster (L = 15 in our computations).

Further processing is done to sort out overlapping clusters. Other methods

without the discretization of survival Ps may be possible, but it is not clear

how to rescale the Ps effectively in those cases. The present method seems

to work well and is relatively robust to the changes in the threshold value.

Additional details regarding this method are described in the

Supplementary Methods.

Generation of stable clones expressing EphA2 short hairpin RNA.

Two expression vectors containing short hairpin RNA (shRNA) sequences

directed against EphA2 (Origene, Rockville, MD) were transfected into U343

glioma cells using LipofectAMINE 2000 (Invitrogen, San Diego, CA)

according to the manufacturer’s protocol. A control shRNA vector supplied

by the manufacturer was used as a control. The cells were maintained

in DMEM/F12 growth medium containing 10% serum and puromycin

(0.5 Ag/mL) for several weeks to select for stable clones. Two sets of clones,
each expressing one of the two shRNAs directed against EphA2 and

displaying a 60% reduction in EphA2 protein expression, were then used for

further experiments.

Western blot analysis. Protein extracts from glioblastoma samples were

prepared in SDS, separated by gel electrophoresis (10-12% Tris-HCl gel), and

transferred to 0.2-Am nylon membranes at 100 V and 4jC for 90 minutes.

Membranes were then blocked and incubated overnight in primary

antibody. Primary antibodies used were anti-EphA2 (1:500; Santa Cruz

Biotechnology, Santa Cruz, CA), anti-ephrinA1 (1:200; Santa Cruz

Biotechnology), anti-TAX1BP1 (1:100; Santa Cruz Biotechnology), anti-

cyclooxygenase-2 (1:50; Transduction Laboratories, Lexington, KY), and

anti-SRI (1:1,000; Zymed, South San Francisco, CA). Membranes were then

washed and incubated in biotinylated secondary antibodies for 1 hour.

Specific immunoreactivity was visualized using enhanced chemilumines-

cence (Amersham, Piscataway, NJ).

Real-time PCR. Real-time PCR for EphA2 was done using total RNA

from primary glioblastomas and from non-tumor brain samples, a Taqman

PCR EphA2 probe kit, and an ABI 7300 Real Time PCR Thermocycler

(Applied Biosystems, Foster City, CA) according to the manufacturer’s

protocol.
Reverse transcription-PCR for EphA2. Total RNA was isolated from

primary glioblastomas and from non-tumor brain samples as a control

using a commercially available kit (RNeasy, Qiagen). PCR primers were

designed to amplify the full 2,930-bp sequence, with the exception of the

NH2-terminal of 154 bp. Reliable PCR primers including this 154-bp region

of the gene could not be obtained due to its high GC content. The

PCR primers used were 5¶-GGGACCTGATGCAGAACATC-3¶ and 3¶-AA-
GGTCGGCTTGGGAATATC-5¶ and were derived from exon 1 and from the

3¶-untranslated region of the human EphA2 gene.

Bromodeoxyuridine ELISA cell proliferation and 3-(4,5-dimethylth-

iazol-2-yl)-2,5-diphenyltetrazolium bromide cell growth assays. Quan-

titation of cell proliferation was done using a bromodeoxyuridine (BrdUrd)

ELISA assay (Roche Applied Science, Indianapolis, IN). Briefly, U343

glioblastoma cells were plated at a density of 1 � 104 per well in 96-well

microtiter plates and maintained in growth medium containing 10% serum.

The cells were then incubated in 1 Amol/L BrdUrd for 16 to 18 hours. Newly
synthesized BrdUrd-DNA was assayed using colorimetric detection on an

ELISA plate reader according to the manufacturer’s protocol.

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell
growth assays (Roche Applied Science) were also done. Briefly, U343

glioblastoma cells were plated at a density of 1 � 104 per well in 96-well

microtiter plates and maintained in growth medium containing 10% serum.
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MTT was added to the cultures and incubated at 37jC for 4 hours. MTT
reaction product was then measured using an ELISA plate reader at 590 nm

according to the manufacturer’s protocol.

MAPK pathway studies. U343 glioblastoma cells were exposed to

ephrinA1-Fc (2 Ag/mL; Sigma-Aldrich, St. Louis, MO), and total protein was
isolated for Western blot. Antibodies directed against total extracellular

signal-regulated kinase (ERK), phosphorylated ERK1/2 (pT202/pY204),

pan-c-Jun NH2-terminal kinase/stress-activated protein kinase 1 (pan-JNK/

SAPK1), phosphorylated JNK (pT183/pY185), p38a, and phosphorylated p38
MAPK (pT180/pY182) were purchased from BD Biosciences (San Jose, CA).

Immunoreactive bands were visualized using chemiluminescence. Assays

were done in triplicate.

For MAPK inhibition studies, U343 cells were preincubated in the
presence of p38 or MAP/ERK kinase (MEK) inhibitors for 1 hour before

exposure to ephrinA1-Fc (2 Ag/mL) for 1 hour. The inactive control

compound (SB202474) and specific inhibitors for p38a/hMAPK (SB202190),
p38 MAPK (SB203580), MAPK kinase/MEK (PD-98059), and MEK1/MEK2

(U0126) were purchased from Calbiochem (La Jolla, CA). All inhibitors were

dissolved in DMSO and used at a concentration of 10 Amol/L. Cell
proliferation was measured using the BrdUrd assay. MAPK inhibition assays
were done in duplicate.

In vivo tumor assay. A mouse xenograft model was used to examine the

effect of EphA2 on glioblastoma tumor growth. U343 glioblastoma cells

(1 � 106) with stable expression of an shRNA vector directed against EphA2
(Origene) were implanted s.c. in the right flank of nude mice (n = 7) under

the auspices of an approved animal subjects protocol. An equivalent

number of U343 glioblastoma cells containing a control shRNA vector
supplied by the manufacturer were implanted s.c. in the left flank. The mice

were followed for a period of 7 weeks. Tumor volume for each group was

measured weekly.

Results

Identification of FCRs. Commonly used aCGH segmentation
algorithms detect regions of interest by identifying consecutive
probes that show copy number alterations (12–14). The FGARD
approach incorporates other types of data to select regions more
likely to be functionally and clinically important. The method is
based upon the observation that genes that are differentially
expressed because of gains or losses at the DNA level often have
neighboring genes that exhibit correlated changes in mRNA
expression (18–21). We hypothesized that this phenomenon should
lead to the formation of physical clusters of genes that exhibit
statistically correlated functional relationships.
To identify these clusters, we first did expression analysis using

21 glioblastomas and 7 non-tumor brain samples. Unsupervised
hierarchical clustering illustrated the marked distinction between
the mRNA expression profiles of the glioblastoma and non-tumor
brain samples (Supplementary Fig. S1). Several of the differences in
gene expression were confirmed by Western blot analysis
(Supplementary Fig. S2). Second, we used clinical annotations
and Cox regression analysis to identify survival-related genes and
ordered them according to their location within the genome. We
then implemented a new algorithm based on the binomial
distribution to look for clustering of survival-related genes within
each region. Because the size and location of each putative cluster
were unknown at the outset, the statistic was calculated for
variable cluster sizes at every possible location, and the gene
cluster that was least likely to have arisen by chance was selected.
These clusters were examined for overlap and rank-ordered
according to their Ps. Because this algorithm does not define
clusters by the number of consecutive survival-related genes, it is
robust to noise in the data. This approach is also relatively
insensitive to the effect of variable gene density along the genome,

as it identifies survival-related clusters independent of the number
of genes within a specified genetic interval (Supplementary Fig. S3).
On average, genes in close physical proximity within the genome
display a slightly increased correlation in mRNA expression when
compared with genes that are widely separated (19, 20). Based
upon previous studies showing correlations between DNA copy
number and regional expression changes, we sought to assess in
our data set whether the genes within survival clusters had an even
greater correlation among their mRNA expression patterns than
similarly grouped genes that were not within these clusters. This
phenomenon can be readily appreciated by examining known
regions of DNA alteration containing genes of clinical relevance in
glioblastoma. As shown in Fig. 1, amplicons containing the target
genes EGFR or PDGFRA also contain adjacent genes that show
highly correlated changes in gene expression within each tumor
sample examined. In many cases, these ‘‘bystander’’ genes also
show a statistical relationship to survival, thereby creating a cluster
of survival-related genes that corresponds to the location of the
DNA alteration.
To further investigate this phenomenon, we determined the

probability density function of the correlations between mRNA
expression patterns for probe sets located within the survival
clusters (Fig. 2). For comparison, we calculated the distribution of
correlations for mRNA probe sets in similarly sized genomic
regions located outside of the survival clusters, as well as for
randomly shuffled mRNA probe sets from throughout the genome.
The density distribution plot of correlations for probe sets located
within the survival clusters was asymmetrical and skewed to the
right, indicating the presence of a significantly stronger correlation
between mRNA expression patterns for genes located within the
survival clusters than for genes located outside these clusters
(P < 10�15, Kolmogorov-Smirnov test). This confirmed that our

Figure 1. FCRs identify functionally significant DNA alterations. A, integrated
aCGH data, mRNA expression profiles, and survival data for two separate FCRs
containing the genes for PDGFRA and EGFR. Top, genomic positions of
differentially expressed genes (orange squares ). Second, genomic positions of
survival-related genes (blue squares ). Middle, vertical bars represent mRNA
expression heat maps for each gene in the top row. Expression data for 21
glioblastomas. The location of each gene on a physical map of the genome
generated using the aCGH data set for 21 glioblastomas (bottom ) is as indicated.
Each colored line (bottom ) represents log-transformed data from one of the 21
glioblastoma samples analyzed by aCGH. The size of the genomic interval
depicted differs slightly in each panel. Note the correspondence of survival gene
clusters with DNA alterations, as well as the correlation of mRNA expression
patterns for genes within the clusters.
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cluster-finding algorithm successfully identified clusters of survival-
related genes with boundaries defined by common functional
relationships, highly correlated mRNA expression patterns, and
physical proximity. These boundaries, thus, delineate a novel
genomic interval that we have called the FCR. Highly significant
FCRs, as well as their associated survival-related target genes, are
listed in Table 1. A complete list of FCRs may be found in
Supplementary Table S1.
Identification of cryptic DNA alterations using FCR map-

ping. The identification of FCRs was derived solely from the
clinical and mRNA expression data sets, with no contribution from
direct DNA analysis. The independently derived FCRs were thus
mapped onto a physical map of genome-wide copy number
alterations of 21 primary glioblastomas generated by a cDNA aCGH
platform with a median resolution of 100 kb. The effect of DNA
alteration on the genesis of survival-related FCRs is clearly
illustrated for EGFR and PDGFRA , two genes known to play a
role in gliomagenesis (Fig. 1). Visual inspection of 104 FCRs
indicated that >85% seemed to be associated with focal regions of
DNA abnormality. Further analysis of 550 genes located within the
FCRs indicated that 68% of the survival-related genes were
associated with focal DNA alterations, whereas only 29% of the
non–survival-related genes were associated with such alterations.
This difference was statistically significant (P < 0.00001, proportion
test). In addition to genes with a previously reported role in
glioblastoma, a large number of survival-related genes not
previously known to be amplified or deleted in glioblastoma were
identified within FCRs (see Table 1).
Comparison with aCGH analysis. To place the ability of

FGARD to identify functionally relevant DNA alterations into
context, an analysis of the cDNA aCGH data set using a commonly
used algorithm was done for comparison. This copy-number-only
aCGH analysis differed from prior reports (21–27) in that it used
mRNA expression and clinical data to locate novel high-probability
target genes within the aCGH loci in a manner that has not been
previously reported for glioblastoma. Genome-wide aCGH profiling
of copy number alterations (CNA) in 21 glioblastomas using the

CLAC algorithm (12) identified 82 aberrant loci occurring in at
least 14% of the samples (Fig. 3). A frequency plot of the CNAs
detected here closely matched that reported in a meta-analysis of
334 cases of astrocytoma analyzed by traditional CGH methods
(ref. 22; data not shown). The median size of the identified loci was
400 kb, with >65% being <2 Mb. Previously reported loci in
glioblastoma were identified in this analysis, including CNAs on
chromosomes 12q15 (MDM2), 12q14.1 (CDK4), 9p21 (CDKN2A),
7p11.2 (EGFR), and 19p13.2 (CDKN2D ; refs. 21–27).
The differentially expressed mRNA probe sets were cross-

referenced with the list of survival-related mRNA probe sets and
subsequently mapped to the CNAs identified by CLAC analysis. In
this manner, 293 differentially expressed, survival-related genes
residing in 36 loci were identified (see Supplementary Table S2).
Comparison of the FGARD results with these 36 survival CNAs

defined by the aCGH algorithm revealed <10% overlap. FGARD
identified 382 loci that were not detected by the CLAC aCGH
analysis. Of the 36 survival CNAs defined by CLAC aCGH, 33 were
also identified by FGARD (92%). Of the remaining three survival
CNAs not detected by FGARD, all three contained a single survival-
related gene, thus providing an explanation for why they were not
detected by the FGARD cluster-based approach.
Increased expression of the EphA2 receptor tyrosine kinase

in glioblastoma. To show the use of FGARD, we chose an FCR
corresponding to a low-amplitude low-frequency amplicon for
further study (listed in Supplementary Table S1). This FCR
amplicon was located on chromosome 1p36.13 and covered
f400 kb (Fig. 4A). We identified evidence for single copy number
gain in 3 of 18 probes (17%) reporting at this locus. Because of its
focal nature and low amplitude, this DNA alteration could not be
reliably identified as significant using the CLAC aCGH algorithm
alone. We chose EphA2 as the likely target gene within this FCR
because of its location near the peak of the amplicon, its correlated
degree of mRNA expression, its statistical relationship to survival,
and its known biological function in other tissues.
Microarray analysis identified increased EphA2 mRNA expres-

sion in 5 of 21 glioblastoma tissue samples examined (24%). We
obtained further confirmation of EphA2 mRNA overexpression in a
subpopulation of glioblastomas when compared with non-tumor
brain using real-time PCR (Fig. 4B). We did reverse transcription-
PCR (RT-PCR) for EphA2 to look for splice variants of this protein
in glioblastoma cells (Fig. 4B). mRNA for EphA2 RT-PCR was
isolated from four primary glioblastomas and three non-tumor
control brain samples. RT-PCR for EphA2 was also done in an
additional primary glioblastoma and in five glioblastoma cell lines
(U87, U343, D566, T98, and U251; data not shown). A single mRNA
band corresponding to the expected size for EphA2 of 3 kb was
detected in the 10 glioblastoma samples and in the 3 non-tumor
brain samples examined.
Western blot analysis revealed increased EphA2 protein

expression in glioblastoma when compared with non-tumor brain
(Fig. 4C). Analysis of 14 glioblastoma and 3 non-tumor brain
samples indicated that 9 of 14 glioblastomas (64%) showed
increased EphA2 expression, with 5 of 14 (36%) showing strong
expression when compared with non-tumor brain. Two of the
seven low-grade astrocytomas examined (WHO grade 2) showed
elevated EphA2 protein expression when compared with non-
tumor brain (Fig. 4C). In addition, all glioblastoma cell lines
examined showed high EphA2 expression (Fig. 4C).
EphrinA1 is an endogenous ligand for the EphA2 receptor (28).

Microarray analysis in 21 glioblastomas revealed a 1.8-fold increase

Figure 2. FGARD methodology. Probability density function of the correlations
between mRNA expression patterns for probe sets located within the survival
clusters (solid line ), for similarly sized genomic regions located outside of the
survival clusters (dotted line ), and for randomly shuffled mRNA probe sets from
throughout the genome (dashed line ). No correlation was observed between
mRNA expression patterns of randomly shuffled probe sets. A small but
significant correlation of mRNA expression patterns was observed for probe sets
in close physical proximity generally. The probability density function of
correlations for probe sets located within the survival clusters was asymmetric
and skewed to the right, indicating the presence of a strong correlation between
mRNA expression patterns for genes located within the survival clusters
(P < 10�15, Kolmogorov-Smirnov test).
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Table 1. FGARD FCRs

Chromosome Position (Mb) Binomial statistic FCR sequence Genes within FCR

6p21.1 43.5-44.2 0.000124659 111110011 EGFL9, TJP4, POLR1C, POLH, GTPBP2, MAD2L1BP,

MRPS18A, VEGF, CAPN11

5q23.3-5q31.1 132.3-134 0.000124937 10101101110101 AF5Q31, ZCCHC10, HSPA4, FSTL4, C5orf15, VDAC1, TCF7,
SKP1A, PPP2CA, CDKL3, UBE2B, PHF15, SARA2

2p22.2-2p22.1 37.5-39 0.000159168 11111 QPCT, CDC42EP3, CYP1B1, SFRS7

11p15.1 17.4-18 0.000159168 11111 USH1C, MYOD1, KCNC1, DELGEF
12q13.3 55.9-56.1 0.000164898 1111011 NXPH4, SHMT2, LOC56901, KIAA1002, INHBC, INHBE

5q31.3 139.5-140.1 0.000212289 101011001111 PURA, PFDN1, DTR, MASK-BP3, ANKHD1, APBB3, PRO1580,

CD14, NDUFA2, FLJ20195, DND1, HARS

8p12-8p11.21 38-39.8 0.000263933 110011110010101 STAR, LSM1, BAG4, DDHD2, WHSC1L1, FGFR1, TACC1, PLEKHA2,
ADAM9, ADAM5, ADAM3A, ADAM18, ADAM2, INDO

17q25.1 73.6-73.8 0.000561616 10110111 ATP5H, KCTD2, SLC16A5, FLJ22160, HN1, SUMO2

1q32.1 200.9-201.3 0.000816591 101111 ATP2B4, LAX, KIAA0663, SNRPE, SOX13, FLJ10761

13q21.32-13q21.33 65-68.5 0.000816591 110111 KLHL1, SCA8
17p11.2 18.1-18.4 0.000816591 111011 C17orf39, DRG2, MYO15A, LLGL1, FLII, TOP3A

1q41-1q42.11 218.9-220.9 0.000915136 1111 DUSP10, FLJ13840, FLJ12806, CAPN2

4p16.3 3-3.1 0.000915136 1111 C4orf10, C4orf9, GRK4

4q28.2-4q28.3 129.3-139.1 0.000915136 1111 FLJ21106, PGRMC2, PHF17
5q31.2 137.9-138.3 0.000915136 1111 ETF1, HSPA9B, CTNNA1

5q31.3 140.1-140.1 0.000915136 1111 NDUFA2, FLJ20195, DND1, HARS

6p21.33 30.2-30.4 0.000915136 1111 TRIM10, TRIM15, TRIM26
10q24.32 103.7-103.8 0.000915136 1111 PITX3, GBF1, NFKB2

16p12.1-16p11.2 28.7-28.9 0.000915136 1111 CLN3, EIF3S8, A2LP, TUFM

18p11.22 9.1-9.5 0.000915136 1111 NDUFV2, ANKRD12, TWSG1, RALBP1

20q13.12 46-47 0.000915136 1111 SLC2A10, EYA2, PRKCBP1, NCOA3
17p13.1 7.5-7.8 0.000924093 11001100110011 CHRNB1, POLR2A, TNFSF12, TNFSF13, SENP3, EIF4A1, CD68, MPDU1,

SOX15, FXR2, SHBG, ATP1B2, TP53, FLJ10385

4q23 100.5-101.3 0.00143553 111001011 ADH5, ADH6, ADH1A, ADH1B, ADH1C, ADH7, MTP, DAPP1, MAP2K1IP1

9p21.3 21.2-22 0.00143553 111001101 IFNA4, IFNA21, IFNA10, IFNA8, IFNA5, KIAA1354, IFNA2, IFNA1, MTAP
19p13.11 18.2-18.5 0.00143553 101011011 PDE4C, JUND, LSM4, PGPEP1, GDF15, ISYNA1, ELL, FKBP8, MGC2749

1q41-1q42.11 217.3-221.4 0.001678561 110001001111001 FLJ10326, RAB3-GAP150, MARK1, FLJ14146, FLJ20605, FLJ22390, HLX1,

DUSP10, FLJ13840, FLJ12806, CAPN2, TP53BP2, KIAA0483, DEGS
11p15.2-11p15.1 14.6-18 0.001678561 100101000011111 PDE3B, CYP2R1, CALCA, CALCB, SMAP, PIK3C2A, NUCB2,

ABCC8, USH1C, MYOD1, KCNC1, DELGEF

12q13.13 52.1-52.7 0.001678561 101010011100011 AMHR2, DKFZP564J157, PCBP2, MAP3K12, TARBP2, NPFF, ATF7,

ATP5G2, KIAA1536, HOXC13, HOXC11, HOXC10, HOXC8,
HOXC4, HOXC6

1p36.11 25.2-26.2 0.001679229 110010011011 RHCE, RHD, ARH, MAN1C1, MGC2603, STMN1, PAFAH2, EXTL1,

FLJ14050, ZNF593, CNKSR1, DKFZP434L0117

4q11-4q12 52.8-55.1 0.002445824 1010111 SGCB, FLJ11850, USP46, RASL11B, FIP1L1, CHIC2, PDGFRA
12q13.13 51.4-51.7 0.002445824 1110011 HUMCYT2A, KRT3, KRT4, KRT18, EIF4B, PRO1843, TENC1

2q11.2 98.8-100.8 0.00305984 1010110101 UNC50, MGAT4A, MGC42367, TSGA10, TXNDC9, EIF5B, REV1L,

LAF4, CHST10, PDCL3
6p21.32 32.8-33.1 0.00305984 1101100101 TAP2, PSMB8, TAP1, PSMB9, HLA-DMA, BRD2, HLA-DOA, HLA-DPA1

1q23.3 158.4-158.8 0.003939005 10111 APOA2, NR1I3, MPZ, SDHC, FCGR2A

3q27.2 186.4-187 0.003939005 10111 MAP3K13, SENP2, IMP-2, SFRS10

3q29 197.4-198 0.003939005 11011 KIAA0794, PAK2, SENP5
4p16.3 0.9-1.2 0.003939005 11101 DGKQ, SLC26A1, IDUA, SPON2, CTBP1

6p22.1 27.3-27.5 0.003939005 10111 PRSS16, POM121L2, ZNF204

6q21 112-114.2 0.003939005 11011 FYN, WISP3, LAMA4, MARCKS

7p15.2 26.9-27 0.003939005 11011 HOXA5, HOXA6, HOXA7, HOXA9, HOXA10
14q11.2 22.9-23 0.003939005 10111 KIAA1305, KIAA0323, C14orf124, CMA1, CTSG

18q11.2 20.3-22.7 0.003939005 11101 IMPACT, HRH4, SS18, TAF4B, AQP4

22q13.1 36.8-36.9 0.003939005 10111 PLA2G6, MAFF, C22orf5, KIAA1660, CSNK1E

NOTE: Identification of FCRs. A novel algorithm based on the binomial distribution was used to identify clusters of survival-related genes throughout

the genome. The statistic was calculated for variable cluster sizes at every possible location, and the gene cluster that was least likely to have arisen by

chance was selected. These physical gene clusters, thus, displayed boundaries defined by physical proximity, correlated mRNA expression patterns, and

survival relatedness and were called FCRs. These FCRs were examined for overlap and rank-ordered according to their Ps. Within each cluster, the
presence of survival-related or survival-unrelated genes is indicated by either a 1 or a 0, respectively.
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in ephrinA1 mRNA expression when compared with non-tumor
brain (P < 0.026, unpaired t test). We confirmed increased ephrinA1
protein expression in glioblastoma by Western blot (Fig. 4C). In
general, tumors that displayed elevated expression of EphA2
protein also displayed increased levels of ephrinA1 protein
(Supplementary Fig. S4).
Initial FGARD analysis indicated that EphA2 mRNA expression

was related to survival in patients with glioblastoma (P < 0.016, Cox
regression). We have validated this result using Cox regression
analysis of data from an independent set of 50 glioblastomas
(ref. 29; P < 0.024). To examine this correlation further, we did a
Kaplan-Meier analysis of EphA2 mRNA expression in our set of
21 glioblastomas. We divided the tumors into two groups based
upon the mean level of EphA2 expression: those with high EphA2
expression (n = 10) and those with low expression (n = 11).
Increased EphA2 mRNA expression correlated significantly with
decreased survival in patients with malignant glioma (Fig. 4E ;
P < 0.034, Mantel-Cox log-rank test).
Functional role of EphA2 in glioblastoma. Activation of the

EphA2 receptor by addition of the soluble EphA2 receptor ligand
ephrinA1-Fc (2 Ag/mL) resulted in a concentration-dependent
increase in cell proliferation (P < 0.01, unpaired t test; Fig. 5A). The
EphA2 receptor tyrosine kinase has been reported to activate the
MAPK signaling pathway in several cell types (30). To investigate
whether MAPK lies downstream of EphA2 activation in glioblas-
toma, we stimulated U343 glioblastoma cells with ephrinA1-Fc
(2 Ag/mL), collected total protein at various time points, and
assayed by Western blot for evidence of ERK1/2, JNK/SAPK1, or
p38 MAPK activation (Fig. 5B). Increased phosphorylation of
ERK1/2, p38 MAPK, and JNK was observed 4 hours after EphA2
receptor activation. No change in the overall expression of these
kinases was observed over the same time period. ERK1/2 phos-
phorylation was detected as early as 20 minutes after ephrinA1-Fc
exposure (data not shown).
We sought additional evidence for EphA2-induced MAPK

pathway activation in U343 cells using specific inhibitors for
MEK (PD-98059 and U0126) and p38 MAPK (SB203580 and
SB202190). We used the inactive compound SB202474 as a control
(Fig. 5C). Inhibitors for either MEK or p38 MAPK decreased the

EphA2-induced mitogenic response by up to 60% for MEK
inhibitors (SB202190; n = 8; P < 0.0001, unpaired t test) and up
to 80% for p38 MAPK inhibitors (U0126; n = 8; P < 0.0001, unpaired
t test).
To confirm a role for the endogenous EphA2 receptor in the

control of glioblastoma cell proliferation, we transfected an
expression vector containing an shRNA sequence directed against
EphA2 into U343 glioblastoma cells and selected stable clones.
Western blot indicated a significant reduction in EphA2 protein
expression in the shRNA-transfected cells when compared with
cells transfected with a control vector (Fig. 5D). Knockdown of
EphA2 expression decreased BrdUrd incorporation by 35% when
compared with control-transfected U343 cells (P < 0.0004, unpaired
t test). Separate experiments using a colorimetric MTT growth

Figure 3. Comparison of standard aCGH analysis to FGARD analysis of
glioblastoma. Top, aCGH locus diagram generated using the CLAC algorithm
(12). The cDNA microarray platform used contained approximately 14,160 cDNA
elements (21). For 21 glioblastoma samples. Chromosomes 1 through 22 are
represented. Areas of gain (red ) and areas of loss (green ). Bottom,
chromosomal locations for loci identified by FGARD analysis are illustrated for
comparison with the CLAC algorithm results. Only FCRs for P < 0.03 are shown.

Figure 4. EphA2 mRNA and protein expression in human gliomas correlates
with histologic grade and survival. A, identification of a survival-related gene
cluster (top ) on chromosome 1p36.13 containing the EphA2 receptor tyrosine
kinase. The FCR covers f400 kb and corresponds to a low-frequency,
low-amplitude DNA alteration (bottom ) involving 3 of 18 (17%) informative
glioblastoma samples. The EphA2 gene is located near the peak of the amplicon
and displays increased mRNA expression in a subset of tumors, as can be
seen in the heatmap for the EphA2 gene (middle ). B, top, quantitative real-time
PCR for EphA2 mRNA expression in 11 glioblastoma and 4 non-tumor brain
samples. EphA2 mRNA was overexpressed in a subpopulation of glioblastomas.
Columns, mean; bars, SE. Bottom, RT-PCR for EphA2 mRNA expression in
4 primary glioblastoma samples and 3 non-tumor brain samples. A single 3-kb
mRNA splice variant for EphA2 was detected. C, top, Western blot analysis of
protein extracts derived from 6 glioblastoma and 4 non-tumor brain (NTB ) tissue
samples using a specific anti-EphA2 antibody. h-Actin is shown as a control.
Middle top, Western Blot analysis of EphA2 expression in tissue samples from
7 low-grade astrocytomas and 2 glioblastoma samples. Middle bottom, Western
blot analysis revealed significant EphA2 protein expression in all four
glioblastoma cell lines examined. Bottom, Western blot analysis of ephrinA1
protein levels in glioblastoma. Increased ephrinA1 protein levels were detected in
five of six glioblastomas examined. Microarray expression analysis revealed a
1.8-fold increase in ephrinA1 mRNA expression in glioblastoma when compared
to non-tumor brain (see text). D, Kaplan-Meier analysis of EphA2 mRNA
expression using microarray data obtained from 21 glioblastomas. The tumors
were divided into two groups based upon the level of EphA2 expression: those
with high EphA2 expression (n = 10) and those with low expression (n = 11).
Increased EphA2 mRNA expression correlated significantly with decreased
survival in patients with glioblastoma (P < 0.034, Mantel-Cox log-rank test).
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assay confirmed a 33% decrease in the growth of U343 glioblastoma
cells after EphA2 knockdown (P < 0.001, unpaired t test; Fig. 5D).
An additional shRNA directed against EphA2 also promoted cell
growth when overexpressed in U343 glioblastoma cells (Supple-
mentary Fig. S5).
We also assayed the role of EphA2 in glioblastoma tumor growth

in vivo using a mouse xenograft model. U343 glioblastoma cells
expressing EphA2 shRNA were implanted s.c. into nude mice. U343
glioblastoma cells transfected with a control shRNA vector were
implanted on the contralateral side. Knockdown of endogenous
EphA2 significantly inhibited glioblastoma tumor growth (n = 7;
P < 0.0002, paired t test; Fig. 5E).

Discussion

We have developed a novel genomic screening method called
FGARD that combines expression profiling and functional
variables in humans (in this case survival) with aCGH to identify
functionally relevant DNA alterations that may be too small or
infrequent to be reliably identified as significant using aCGH data
alone. The use of this method results in the identification of a
highly selected subset of DNA alterations and associated target
genes, all of which display multiple criteria predictive of biological
importance in cancer. A significant fraction of the genes identified

by FGARD in the current study are likely to represent the upstream
determinants of tumor phenotype in glioblastoma and will thus
serve as fruitful targets for further study and/or therapeutic
intervention.
One finding of the FGARD method is the discovery of physical

clusters of survival-related genes scattered throughout the cancer
genome. These clusters demarcate a novel genomic interval called
the FCR that has boundaries defined by physical proximity of the
genes, correlated mRNA expression patterns, and functional
significance. FCRs generally contained genes of high biological
relevance to cancer, and >85% were associated with DNA
alterations. Presumably, the minority of FCRs that were not
associated with DNA alterations arose as a result of other factors
that coordinately regulate gene expression on a regional basis such
as gene duplication events with generation of similar promoters,
DNA methylation, changes in chromosomal structure, etc. The
advantage of the FGARD method remains relevant, even when
currently available high-resolution aCGH platforms are used.
Direct comparison of FGARD with standard aCGH analysis

revealed a significant advantage of FGARD for identifying
functionally relevant DNA alterations. Using the additional
information provided by the functional gene clustering effect
described here, we were able to identify these alterations more
accurately. The statistical clustering of functionally related genes,

Figure 5. EphA2 receptor activation increases proliferation and tumor growth in glioblastoma. A, measurement of ephrinA1-induced BrdUrd incorporation in
cultured U343 glioblastoma cells. Points, mean; bars, SE. EphrinA1-Fc increased BrdUrd incorporation in U343 cells in a dose-dependent fashion (n = 7; P < 0.01,
unpaired t test). Similar results were obtained from four separate experiments. B, EphA2 receptor activation leads to MAPK pathway activation in cultured U343
glioblastoma cells. Western blot analysis for evidence of ERK, p38, or JNK/SAPK1 activation in U343 cells after EphA2 receptor activation by ephrinA1-Fc. Total ERK,
total JNK, and p38 were unchanged up to 18 hours after EphA2 receptor activation. However, increases in phosphorylated ERK1/2 (p*-ERK1/2), phosphorylated JNK
(p*-JNK ), and phosphorylated p38a (p*-p38a ) were observed 4 and 8 hours after exposure to ephrinA1-Fc, indicating activation of the MAPK signaling pathway.
C, MAPK inhibition decreases the ephrinA1-induced mitogenic response in U343 glioblastoma cells. Specific inhibitors for either MEK or p38 MAPK inhibited the EphA2-
induced mitogenic response by up to 60% for p38 inhibitors (SB202190; n = 8; P < 0.0001, unpaired t test) and up to 80% for MEK inhibitors (U0126; n = 8; P < 0.0001,
unpaired t test). The inactive control compound SB202474 was used as a control. Columns, mean; bars, SE. Each experiment was repeated in duplicate.
D, knockdown of EphA2 mRNA using shRNA-mediated RNA interference in U343 glioblastoma cells (left). An expression vector containing a shRNA sequence directed
against EphA2 (Origene) was transfected into U343 glioma cells. Control U343 glioblastoma cells were transfected with a control shRNA vector provided by the
manufacturer. A 60% reduction in EphA2 protein expression was observed in U343 glioblastoma cells transfected with an shRNA vector directed against EphA2.
Middle left, EphA2 receptor knockdown leads to decreased DNA synthesis and cell growth in U343 glioblastoma cells. DNA synthesis was measured in U343
glioblastoma cells after EphA2 knockdown using a BrdUrd-ELISA assay as described in Materials and Methods. A 35% decrease in DNA synthesis was observed
after EphA2 knockdown (n = 7; P < 0.0004, unpaired t test). Middle right, cell growth of U343 glioblastoma cells after EphA2 knockdown was measured using an MTT
cell growth assay as described in Materials and Methods. EphA2 knockdown resulted in a 33% reduction in cell growth (n = 7; P < 0.001, unpaired t test) For
DNA synthesis and cell growth. Columns, mean; bars, SE. Experiments using two separate stable clones yielded similar results. Right, EphA2 receptor knockdown
leads to decreased glioblastoma tumor growth in vivo . U343 glioblastoma cells expressing either the EphA2 shRNA vector or a control shRNA vector were
injected s.c. into the right flank of nude mice (n = 7). Tumor growth was significantly reduced in the U343 glioblastoma cells expressing the EphA2 shRNA vector
when compared with glioblastoma cells expressing a control shRNA vector (n = 7; P < 0.0002 at 6 weeks, paired t test).
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as evidenced by the increased correlation of mRNA expression
within these clusters, and the association of the clusters with DNA
alterations all contribute to the ability of FGARD to select for
functionally relevant genetic alterations over background noise.
Although solitary survival-related genes were sometimes associated
with DNA alterations, we found that the occurrence of such
associations was only 50% (n = 63), compared with a nearly 90%
association rate that was observed when clusters of survival-related
genes were examined (n = 100).
Some genes that are known to play a role in glioblastoma, such

as PTEN and RB1 , were not identified in this study. This was
primarily because these genes were not significantly associated
with survival in our series. Cox regression analysis of expression
data in a larger, independent set of 50 glioblastomas (29) identified
PTEN and RB1 as related to survival (P < 0.003 and P < 0.001,
respectively). Thus, the use of larger data sets will allow for greater
ability to correctly identify functionally relevant genes using the
FGARD approach. However, in cases where mutations within a
gene affect gene function, changes in mRNA expression may not
correlate with survival.
The use of the FGARD approach was validated using an FCR

containing the EphA2 receptor tyrosine kinase. EphA2 is a
transmembrane receptor tyrosine kinase that is activated by
ephrinA1, which is a cell surface molecule (28). The EphA2-
ephrinA1 interaction is thought to play a role in contact inhibition,
as stimulation of the EphA2 receptor by ephrinA1 under normal
conditions inhibits proliferation and cell migration (31–34). Over-
expression of endogenous EphA2 has been correlated with
increased malignancy in a variety of human cancers, including
pancreatic, prostatic, breast, and renal carcinomas (33–39).
Enforced overexpression of the receptor using transfection
techniques can transform epithelial cells (40), suggesting that
EphA2 may act as an oncogene under some conditions. In contrast,
several reports indicate that EphA2 receptor activation inhibits
tumor growth and angiogenesis (32, 33, 41). This apparent
contradiction may be explained by studies suggesting that the
function of EphA2 may differ, depending upon whether it is
expressed under conditions of cell-cell contact that allow for
intercellular receptor activation, or whether it is expressed in
malignant cells that lack normal intercellular interactions (42). The
EphA2 receptor has a different epitope display in normal versus
malignant cells, suggesting that it may exist in an altered state in
tumors (42).
Although the Eph receptor family has been widely implicated in

nervous system morphogenesis (28) and in some cancers (30–39),
studies indicating a functional role for EphA2 in promoting brain
tumor growth have not been published previously. We have used
FGARD to identify EphA2 as a receptor tyrosine kinase that is
overexpressed and inversely related to survival in a subset of
glioblastomas. The endogenous EphA2 ligand ephrinA1 is also

overexpressed in glioblastoma, indicating that this signaling system
is dysregulated in these tumors. EphA2 activation increased
glioblastoma cell proliferation and activated the MAPK/ERK
pathway. Knockdown of endogenous EphA2 by RNA interference
resulted in decreased proliferation and decreased tumor growth in
a mouse xenograft model, supporting a role for EphA2 as a novel
regulator of tumorigenesis in glioblastoma. Because EphA2 is
expressed at relatively low levels in non-tumor adult brain, the
possibility exists for the use of antagonists to this receptor in
the treatment of malignant gliomas. Caution must be used in the
development of such therapies, however, as decreased expression
of other members of the Eph receptor family can promote
tumorigenesis (43).
While this article was in preparation, two reports describing

overexpression of EphA2 in glioblastoma were published (44, 45).
One of these reports (44) examined the functional role of this
overexpression and suggested that EphA2 activation inhibited
anchorage-independent growth of glioblastoma cells. This report
is in an apparent disagreement with reports that EphA2 over-
expression can transform other cell types (40) and with our
observations of increased proliferation and tumor growth in
glioblastoma cells after EphA2 activation. One explanation for
this discrepancy may lie in the duration of ligand exposure,
as prolonged exposure to ephrinA1 leads to down-regulation of
EphA2 receptor expression and function (data not shown). Further
studies may help to reconcile the apparent pleiomorphic effects
of EphA2 receptor activation in human gliomas and in other
cancers.
Overall, these findings show the power of FGARD analysis for the

study of human cancers on a genome-wide scale. This innovative
method is not limited to the use of survival as a functional
criterion. Other functional variables relevant to cancer biology,
such as response to therapy or metastatic potential, could also be
used in FGARD to identify genes with copy number–driven
changes in expression that are upstream determinants of tumor
phenotype.
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