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SUMMARY

A systematic cataloging of genes affected by
genomic rearrangement, using multiple patient co-
horts and cancer types, can provide insight into
cancer-relevant alterations outside of exomes. By
integrative analysis of whole-genome sequencing
(predominantly low pass) and gene expression data
from 1,448 cancers involving 18 histopathological
types in The Cancer Genome Atlas, we identified
hundreds of genes for which the nearby presence
(within 100 kb) of a somatic structural variant (SV)
breakpoint is associated with altered expression.
While genomic rearrangements are associated with
widespread copy-number alteration (CNA) patterns,
approximately 1,100 genes—including overex-
pressed cancer driver genes (e.g., TERT, ERBB2,
CDK12, CDK4) and underexpressed tumor suppres-
sors (e.g., TP53, RB1, PTEN, STK11)—show SV-
associated deregulation independent of CNA. SVs
associated with the disruption of topologically asso-
ciated domains, enhancer hijacking, or fusion tran-
scripts are implicated in gene upregulation. For can-
cer-relevant pathways, SVs considerably expand our
understanding of how genes are affected beyond
point mutation or CNA.
This is an open access article und
INTRODUCTION

Cancer genomes are characterized by widespread somatic

genomic rearrangements, in addition to point mutations. So-

matic structural variants (SVs) resulting from rearrangement—

each SV involving two breakpoints representing different

genomic coordinates from the unaltered genome being joined

together—may represent important cancer driving events. Clas-

ses of SVs may include deletions, insertions, inversions, tandem

duplications, translocations, and more complex rearrangements

(Yang et al., 2013). SVs may exert a heavy influence on the

expression of genes through various mechanisms, including

CNAs, direct disruption of the gene by breakpoint falling within

the coding region, formation of fusion transcripts involving two

genes, disruption or repositioning of cis-regulatory elements

near genes, formation of cryptic promoters, placement of genes

into anomalous chromatin environments, and disruption of topo-

logically associated domain (TAD) organization affecting long-

range enhancer-promoter interactions (Dekker and Heard,

2015; Harewood and Fraser, 2014). Whole-genome sequencing

(WGS) enables the accurate detection of somatic rearrange-

ments in cancer; somatic SVs were characterized in several pre-

vious studies, for both individual cancer types (Bass et al., 2011;

Berger et al., 2011; Campbell et al., 2010; Davis et al., 2014; Ste-

phens et al., 2011) and pan-cancer studies (Alaei-Mahabadi

et al., 2016; Drier et al., 2013; Hillmer et al., 2011; Yang et al.,

2013). These studies typically involved a relatively modest num-

ber of cancer cases.
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Table 1. TCGA Samples Analyzed

Cancer Type TCGA Project

Cases with

WGS

Cases with

WGS + RNA-Seq

High Pass/

Low Pass

Mean Detected

SVs per Case

Bladder urothelial carcinoma BLCA 114 114 low 55.9

Breast-invasive carcinoma BRCA 89 89 high 329.3

Cervical squamous cell carcinoma and

endocervical adenocarcinoma

CESC 51 50 low 26.4

Colorectal adenocarcinoma CRC 120 118 low 12.4

Esophageal carcinoma ESCA 51 51 low 55.6

Head and neck squamous cell carcinoma HNSC 108 108 low 28.7

Kidney chromophobe renal cell carcinoma KICH 50 50 high 17.5

Kidney clear cell renal cell carcinoma KIRC 41 41 high 46.0

Kidney renal papillary cell carcinoma KIRP 38 38 high 20.1

Brain lower-grade glioma LGG 53 53 low 19.8

Lung adenocarcinoma LUAD 122 121 low 32.9

Ovarian serous cystadenocarcinoma OV 50 23 high 225.3

Prostate adenocarcinoma PRAD 116 116 low 25.4

Skin cutaneous melanoma SKCM 118 118 low 58.6

Stomach adenocarcinoma STAD 107 94 low 53.8

Thyroid carcinoma THCA 100 100 low 5.9

Uterine corpus endometrial carcinoma UCEC 114 113 low 22.5

Uveal melanoma UVM 51 51 low 48.7

Total — 1,493 1,448 — 57.3

See also Tables S1 and S2. TCGA, The Cancer Genome Atlas; WGS, Whole-genome sequencing; RNA-seq, RNA-sequencing; low pass, WGS at�6–

83 coverage; high pass, WGS at �30–603 coverage; SVs, structural variants.
There is need for a systematic identification and cataloging of

genes that are recurrently altered transcriptionally in cancer as a

result of genomic rearrangement. To date, much effort has been

made in better defining the set of recurrently and significantly

mutated genes across human cancers (Chang et al., 2016; Gon-

zalez-Perez et al., 2013; Kandoth et al., 2013; Lawrence et al.,

2014; Martincorena et al., 2017). An analogous list of candidate

driver genes resulting from rearrangement could provide further

insight into cancer-related processes and pathways and could

be relevant from the standpoint of personalized or precision

medicine approaches, which typically focus primarily on point

mutations within the coding region of genes. Previous studies

have, for example, defined broad patterns of association

involving genomic rearrangements and transcription collectively

involving large groups of genes (Alaei-Mahabadi et al., 2016;

Drier et al., 2013), defined the landscape of gene fusions in can-

cer (Hu et al., 2017; Stransky et al., 2014; Yoshihara et al., 2015),

and documented cases of individual genes altered by the rear-

rangement of cis-regulatory elements within specific cancer

types (Davis et al., 2014; Gröschel et al., 2014; Northcott et al.,

2014; Peifer et al., 2015). However, a pan-cancer, gene-by-

gene assessment of which ones appear recurrently deregulated

by genomic rearrangement, using sizable sample numbers for

greater power (Lawrence et al., 2014), remains to be carried out.

The Cancer Genome Atlas (TCGA) provides a common plat-

form for the study of diverse cancer types (Cancer Genome Atlas

Research Network et al., 2013b), with a sizable number of cases

being sequenced at the whole-genome level. With TCGA gene
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expression data, large-scale integration between WGS and

expression data is possible. TCGA WGS data were generated

with either low-depth-of-coverage (low pass) or high-depth-of-

coverage (high pass), with both types of WGS being used effec-

tively to identify SVs in previous TCGA consortium-led studies

focusing on a specific cancer type (Cancer Genome Atlas

Network, 2012, 2015a, 2015b; Cancer Genome Atlas Research

Network, 2013, 2014a, 2014b, 2015b, 2017a, 2017b; Davis

et al., 2014; Robertson et al., 2017). While low-pass WGS may

involve decreased sensitivity of detection, >1,200 cases in

TCGA have low-pass data, representing a rich resource, with

no pan-cancer study to date using these data. Previous studies

have surveyed genomic rearrangements in TCGA using whole-

exome or SNP array platforms (Weischenfeldt et al., 2017;

Yang et al., 2016); the platforms are more limited in terms of

sensitivity of detection as compared to WGS. The unified data-

sets and larger sample numbers offered by TCGA would allow

us to identify robust associations between WGS-inferred SVs

and expression that would cut across multiple cancer types of

various lineages.

RESULTS

Somatic SVs across Cancer Types
We analyzed WGS data from 1,493 individuals across 18 cancer

types represented in TCGA cohort (Tables 1 and S1), with cases

including 114 bladder urothelial carcinomas (BLCAs), 89 breast-

invasive carcinomas (BRCAs), 51 cervical squamous cell
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Figure 1. CNAs Associated with Genomic Rearrangements in Hu-

man Cancers

(A) By cancer type (denoted by TCGA project name), boxplot of cytoband-level

CNA (log2 tumor/normal copy numbers) corresponding to structural variant

(SV) breakpoints. SVs with both breakpoints occurring within the same cyto-

band are represented only once. Cytobands in X and Y chromosomes are not

represented. For each cancer type, the median log2 CNA across all cases and

cytobands is approximately zero. Boxplots represent 5%, 25%, 50%, 75%,

and 95%. Analysis involves 1,465 cases with both WGS and copy data. The

maximum log2 tumor/normal CNA value is set to 3.6 by the SNP array analysis,

approximating >24 copies.

(B) For SVs associated with cytoband-level gain (average log2 tumor/normal

copy >1) or loss (average log2 tumor/normal copy <�0.5) breakdown by SV

class. p values by chi-square test.

(C) Fraction of cancer cases with high-level amplifications for a given gene,

according to SV breakpoint occurring within the gene body, upstream of the

gene (0–20 kb, 20–50 kb, 50–100 kb), downstream of the gene (0–20 kb, 20–

50 kb, 50–100 kb), or >100 kb from the gene. Results are shown for MYC,

ERBB2, and EGFR, as well as the averages for 1,102 genes with amplification

in >4% of the cases Where multiple breakpoints occur in proximity to a gene,

the breakpoint closest to the gene is assigned to the given case. Error

bars, SDs.

See also Figure S1 and Table S3.
carcinomas and endocervical adenocarcinomas (CESCs), 120

colorectal adenocarcinomas (CRCs), 51 esophageal carcinomas

(ESCAs), 108 head and neck squamous cell carcinomas

(HNSCs), 50 kidney chromophobe renal cell carcinoma (KICHs),

41 kidney clear cell renal cell carcinomas (KIRCs), 38 kidney

renal papillary cell carcinomas (KIRPs), 53 brain lower-grade gli-

omas (LGGs), 122 lung adenocarcinomas (LUADs), 50 ovarian

serous cystadenocarcinomas (OVs), 116 prostate adenocarci-

nomas (PRADs), 118 skin cutaneous melanomas (SKCMs), 107

stomach adenocarcinomas (STADs), 100 thyroid carcinomas

(THCAs), 114 uterine corpus endometrial carcinomas (UCECs),

and 51 uveal melanomas (UVMs). Of the 1,493 cases, 1,448

had gene expression data by RNA-sequencing (RNA-seq) plat-

form available. For 5 of the 18 cancer types studied (BRCA,

OV, KICH, KIRC, KIRP, representing 268 cases), WGS was car-

ried out with �30–603 coverage, with the other cancer types

sequenced at �6–83 coverage.

With data from both tumor and germline samples for each pa-

tient to distinguish germline and somatic variants, a total of

85,560 high-confidence somatic SVs were detected, using the

Meerkat algorithm (Yang et al., 2013, 2016) (Table S2). As would

be expected, cases sequenced with higher coverage had more

SVs detected. Cases with low-pass (�6–83) WGS had 33.9

SVs detected on average, while cases with high-pass (�30–

603) WGS had 164.5 SVs detected on average. Although they

were subjected to high-passWGS, the three kidney cancer types

showed relatively fewer detected SVs (average 27.3), which is

consistent with previous findings (Chen et al., 2016; Yang

et al., 2013, 2016). As compared to somatic SVs as detectable

by whole-exome sequencing (Yang et al., 2016), low-pass

WGS detected 10 times as many SVs on average. Based on

comparisons between SV calls by either low-pass or high-pass

WGS for a subset of cases (Table S2), �20% of SVs identifiable

by high-pass WGS were identified by low-pass WGS with the

Meerkat algorithm, and �75% of SVs identified by low-pass

WGSwere identifiable by high-passWGS. Despite its decreased

sensitivity, low-pass SV analysis would be likely to yield biolog-

ically meaningful associations through identification of recurrent

patterns across multiple samples and through integration with

other data platforms.

Widespread Impact of Somatic SVs on CNAs
As may have been anticipated (Weischenfeldt et al., 2013; Yang

et al., 2016), genomic rearrangements could be associated here

with widespread patterns of CNAs. While SVs may be balanced

or unbalanced in terms of CNAs within the immediate vicinity of

the breakpoint (e.g., involving deletions, insertions, tandem du-

plications), here, we considered SV associations with CNAs at

a broad level, by cytoband region. On the basis of an analysis

of 1,465 cases with both WGS and SNP array data, tumor/

normal CNA log2 ratios were averaged by cytoband for each

cancer case. For 117,988 SV breakpoints (counting SVs with

both breakpoints occurring within the same cytoband only

once), the corresponding cytoband-level CNAs were plotted by

cancer type (Figure 1A; Table S3). For specific cancer types,

including BLCA, BRCA, ESCA, LUAD, OV, SKCM, STAD, and

UCEC, SV breakpoints on average tended to be associated

with cytoband-level copy gain (while across all cases for the
Cell Reports 24, 515–527, July 10, 2018 517



above types, the numbers of cytobands with gain versus loss

tended to be approximate). In contrast to the other cancer types,

KIRC had SV breakpoints on average associated with copy loss.

As compared to all SV breakpoints, SV breakpoints associated

with cytoband-level copy gain were significantly enriched for

breakpoints involving inversion SVs or deletion with insertion

SVs, while SV breakpoints associated with cytoband-level

copy loss were significantly enriched for breakpoints involving

deletion SVs (Figures 1A and 1B).

In addition to CNA at the cytoband level, we considered CNAs

at the gene level to be associated with SV breakpoints. We sepa-

rately considered SV breakpoints occurring 0–20 kb upstream of

any gene, 20–50 kb upstream, 50–100 kb upstream, within a

gene body, 0–20 kb downstream of a gene, 0–20 kb down-

stream, 20–50 kb downstream, and 50–100 kb downstream. Ac-

cording to specific SV classes—interchromosomal transloca-

tion, deletion with inversion, deletion with insertion, tandem

duplication, and inversion classes in particular—SV breakpoints

on average tended to be associated with gene-level copy gain

(Figure S1). In considering 1,102 genes with high-level amplifica-

tions (approximating >5 copies) in >4%of cases, SV breakpoints

tended to occur >100 kb away from the gene; however, for key

genes such as EGFR and ERBB2, a substantial fraction of cases

(�30%–40%) involved SV breakpoints occurring within the gene

(Figure 1C); for ERBB2, 64% of amplified cases involved an SV

breakpoint within 100 kb of the gene.

Widespread Impact of Somatic SVs on Gene Expression
Patterns
We carried out a systematic, pan-cancer analysis of all coding

genes for patterns of expression affected by genomic rearrange-

ments. We aimed to identify genes for which the nearby pres-

ence of an SV breakpoint could be significantly associated

with changes in expression (based on an analysis of 1,448 cases

with bothWGS and RNA-seq data available). Because SV break-

points in the region 0–20 kb upstream of TERT were previously

associated with its upregulation in KICH (Davis et al., 2014), we

considered fixed windows of genomic distance from each

gene. Specifically, we considered SV breakpoints occurring

0–20 kb upstream of the gene, 20–50 kb upstream, 50–100 kb

upstream, within the gene body, 0–20 kb downstream of a

gene, 0–20 kb downstream, 20–50 kb downstream, and

50–100 kb downstream (Figure 2A). For each of the above re-

gions, we assessed each gene for correlation between associ-

ated SV breakpoint occurrence and expression. Because each

cancer type as a groupwould have a distinct molecular signature

(Hoadley et al., 2014) and because genomic rearrangements

may be involved in CNA (Figures 1A and S1), both were factored

into our analysis using linear models, which also factored in dif-

ferences in WGS coverage according to TCGA project.

For each of the genomic regions relative to genes that were

considered (i.e., genes with at least three samples associated

with an SV breakpoint within the given region), we found wide-

spread associations between SV event and expression, after

correcting for expression patterns associated with tumor

type or CNA (Figures 2B and S2A; Table S4). For gene body,

0–20 kb upstream, 20–50 kb upstream, 50–100 kb upstream,

0–20 kb downstream, 20–50 kb downstream, and 50–100 kb
518 Cell Reports 24, 515–527, July 10, 2018
downstream regions, the numbers of significant genes at false

discovery rate (FDR) <0.1 (Storey and Tibshirani, 2003) (correct-

ing for both cancer type and CNA) were 594, 101, 94, 150, 83,

119, and 158, respectively. For each of these gene sets, more

genes were positively correlated with an SV event (i.e., expres-

sion was higher when SV breakpoint was present) than were

negatively correlated, except for SV breakpoints occurring within

the gene body, where many more genes were negatively versus

positively correlated (420 versus 174 genes, respectively).

Without correcting for copy number, even larger numbers of

genes with SVs associated with increased expression were

found (Figure 2B), reflectingmany of these SV breakpoints as be-

ing strongly associated with copy gain (Figure 1A). Many of the

genes found to be significant for one SV group were also signif-

icant for other SV groups (Figure 2C).

As an additional confirmation of the non-random associa-

tions observable between SV breakpoint events and gene

expression, we carried out permutation testing. For the entire

window of �100 to 100 kb in relation to genes, we con-

structed a somatic SV breakpoint matrix by annotating for

every sample the presence or absence of at least one SV

breakpoint within the given region. In each of 1,000 tests,

we randomly shuffled the SV event profiles and computed

correlations with expression. With the actual dataset, 599

genes were found to be significant (FDR <0.1) after correcting

for cancer type and CNA. In contrast, the permutation results

yielded an average of 25.4 ‘‘significant’’ genes with an SD of

7.5 (Figure S2B). These results indicate that despite the bio-

logical and technical noise involved in each of the two data

platforms, the vast majority of the significant genes observed

using the actual dataset would not be explainable by noise,

chance, or multiple testing.

Key Driver Genes in Cancer Affected by SVs
Genes with altered expression associated with nearby SV break-

points included many genes previously associated with cancer

(Figure 2C). Genes with decreased expression associated with

SV breakpoints located within the gene included PTEN (n = 39

cases with SV breakpoint of 1,448 cases with RNA-seq data

available), STK11 (n = 7), TP53 (n = 12), RB1 (n = 33), and

SMAD4 (n = 4), where genomic rearrangement would presum-

ably have a role in disrupting important tumor suppressors; for

other genes, SV breakpoints within the gene could affect intronic

regulatory elements or they could represent potential fusion

events. Examining the set of 541 genes positively correlated

(FDR <0.1, with cancer type and CNA corrections) with occur-

rence of SV breakpoint upstream or downstream or within the

gene (significant for any of the genomic regions in Figures 2A–

2C), enriched gene categories by Gene Ontology (GO) analysis

(Figure 2D) included G-protein-coupled receptor activity

(41 genes), transmembrane receptor activity (57 genes), b-cate-

nin-TCF complex assembly (MYC, BCL9, TCF7L1, TERT,

HIST1H4I, HIST1H4D, and HIST1H4E), positive regulation of

cell size (AKT3, CDK4, SLC26A5, and RET), and phosphatidyli-

nositol 3-kinase activity (NRG1, FGF4, KIT, FGF10, FGFR1,

ERBB2, FGFR3, PIK3CG, and FGF19). When taken together,

SVs involving the above categories of genes could affect a sub-

stantial fraction of cancer cases, for example, on the order of
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Figure 2. Genes with Altered Expression

Associated with Nearby SV Breakpoints

(A) Numbers of SV breakpoints identified as

occurring within a gene body, upstream of a gene

(0–20 kb, 20–50 kb, 50–100 kb) or downstream of

a gene (0–20 kb, 20–50 kb, 50–100 kb). For each

SV set, the breakdown by alteration class is indi-

cated. SVs located within a given gene are not

included in the other upstream or downstream SV

sets for that same gene.

(B) For each of the SV sets from (A), numbers of

significant genes (FDR <0.1) showing correlation

between expression and associated SV event.

Numbers above and below the zero point of the

y axis denote positively and negatively correlated

genes, respectively. Linear regressionmodels also

evaluated significant associations when correct-

ing for cancer type (red) and for both cancer type

and gene-level CNA (green).

(C) Heatmap of significance patterns for genes

from (B) (from themodel correcting for both cancer

type and CNA). Significant positive correlation

(red), significant negative correlation (blue), not

significant (p > 0.05) or not assessed (<3 SV events

for given gene in the given genomic region) (black).

(D) Significantly enriched Gene Ontology (GO)

terms for genes positively correlated (FDR <0.1,

with corrections for cancer type and CNA) with

occurrence of SV breakpoint in proximity to the

gene (for any region considered). p values by one-

sided Fisher’s exact test.

(E) Patterns of SV versus expression for selected

gene sets from (D) (positive regulation of cell size

[top], b-catenin-TCF complex assembly [middle],

phosphatidylinositol 3-kinase activity [bottom]).

Differential gene expression patterns relative to

the median across sample profiles. Cases with

genes associated with high-level gene amplifica-

tion or with gene fusion event are respectively

indicated.

See also Figure S2 and Table S4.
2%–8% of cases across various types (Figure 2E). ‘‘High-level’’

gene amplification events and gene fusion events could be

observed for a number of genes and cases associated with SV

breakpoints, but other cases showed elevated expression pat-

terns without associated amplification or fusion (Figure 2E).

A substantial number of SV breakpoints identifiedwithin genes

by WGS analysis represented gene fusions by RNA-seq anal-

ysis. From the TumorFusions database (Hu et al., 2017; Yoshi-

hara et al., 2015), we obtained 20,731 high-confidence RNA

fusion events identified in TCGA cases, of which 2,398 involved

cases in our cohort of 1,448 with both WGS and RNA-seq data.

Of these 2,398 fusion events by RNA-seq, 46% also had support

from our WGS results (Figure 3A; Table S5). For the 174 genes

with within-gene SV breakpoints associated with increased

expression (FDR <0.1, correcting for cancer type and CNA),
C

only a fraction—7%—of the related

1,318 events involved fusion with the

associated gene (Figure 3B). An addi-

tional 20% of the 1,318 events involved
high-level gene amplification, which would plausibly contribute

to overexpression, leaving a substantial number of events

whereby other mechanisms of deregulation could conceivably

be involved. The vast majority of gene fusions identified were

not recurrent; in other words, the gene pairing represented by

the fusion was unique to just one case in the analysis (Figure 3C).

Themost recurrent fusion identified (of 23 total recurrent fusions)

was TMPRSS2-ERG fusion in PRAD (n = 58 cases), while other

recurrent fusions involved two to four cases, including

TMPRSS2-ETV4 (PRAD), FGFR3-TACC3 (BLCA and ESCA),

CCDC6-RET (THCA), EML4-ALK (LUAD), ESR1-C6orf97

(BRCA), ETV6-NTRK3 (THCA), and TBL1XR1-PIK3CA (PRAD

and BRCA). For a number of ‘‘singleton’’ fusions (i.e., fusions

with gene pairing identified in only one case), one of the involved

genes would be cancer associated or part of a recurrent fusion,
ell Reports 24, 515–527, July 10, 2018 519
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Figure 3. Identification of Gene Fusions by Both RNA-Seq and WGS

(A) Of 2,398 candidate fusion events identified by RNA-seq analysis (Yoshihara

et al., 2015), numbers of events with support fromWGS analysis are indicated

(SV found within both genes, SV found within one gene, or fusion found to have

both RNA-seq and WGS support in another sample).

(B) Of the 1,318 gene body SV events associated with overexpressed genes

(from Figure 2C and Table S4, 174 genes with FDR <0.1 correcting for cancer

type and CNA), the fractions of events associated with either gene fusion by

RNA-seq analysis or high-level gene amplification are indicated.

(C) Across 433 cancer cases with at least one gene fusion identified (with both

RNA-seq and WGS support), incidences for 20 recurrent fusions (fusions be-

tween two specific genes identified in more than one cancer case) are shown.

Of the 433 cases, 98 harbored a recurrent fusion and the rest harbored at least

one ‘‘singleton’’ fusion (i.e., a fusion between two specific genes being iden-

tified in a single case). Named singleton fusions involve at least one gene also

involved in a recurrent fusion. For cases with recurrent fusion, the ‘‘gene

overexpressed’’ track indicates whether at least one of the two involved genes

also showed relatively higher mRNA levels (defined as >0.4 SDs from the

median across all sample profiles). Cancer type (denoted by TCGA project) is

indicated along the bottom and in the coloring of the recurrent fusion event, as

well as in the coloring of the text in cases of highlighted singleton fusions.

See also Table S5.
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including ALK, NTRK3, FGFR3, RET, ERG, ETV4, PTK2, and

PIK3CA (Figure 3B).

SV breakpoints within genes affected a number of tumor sup-

pressors and associated pathways. Previously, pathway-level

alterations—according to somatic mutation, CNA, or epigenetic

silencing—were surveyed across TCGA, pathways including

p53-related (e.g., TP53, RB1), the mammalian target of rapamy-

cin (mTOR), receptor tyrosine kinase (RTK) signaling, chromatin

modification, SWI/SNF complex, Wnt/b-catenin, and MYC

(Chen et al., 2017, 2018; Zhang et al., 2017). When considering

oncogene- or tumor suppressor-associated genes represented

by the above pathways, a high overlap was observed between

tumor suppressor genes and genes with decreased expression

associated with SV breakpoints (Figure 4A, p < 1E�9, one-sided

Fisher’s exact test). For each pathway, SV events alone could

extend the number of affected cases beyond what would be

observed by mutation or CNA or methylation data alone (Fig-

ure 4B; Table S6), with RTK, mTOR, and p53-related pathways

showing the most SV-altered cases. SVs affecting gene sup-

pressors of themTOR pathway have been highlighted elsewhere

(Zhang et al., 2017). Of 1,493 cases with WGS data, 48 cases

(�3%) harbored an SV breakpoint within TP53 or RB1 tumor

suppressor genes (39 and 12 cases, respectively; Figure 4C),

the genes of which have been found to be altered by rearrange-

ment in individual cancer types such as small-cell lung cancer

(George et al., 2015). By SV or high-level copy loss (approxi-

mating near total loss) involving TP53 or RB1, 6.8% of cancers

with both WGS and RNA-seq data were altered (Figure 4D); a

number of cases with SV breakpoint showed only partial copy

loss or no loss. In considering TP53 orRB1 expression according

to alteration classes defined by SV breakpoint, copy loss, or mu-

tation, cases with SV breakpoint showed the lowest expression

for both genes (Figure 4E).

As another approach to identify cancer-relevant genes

affected by SVs, we focused on genes in the Sanger Cancer

Consensus Gene list (https://www.sanger.ac.uk/science/data/

cancer-gene-census), for which SV breakpoints—either within

the region 0–20 kb upstream, the region 20–50 kb upstream, or

the region 50–100 kb upstream—were associated with

increased expression after corrections for both cancer type

and CNA (FDR <0.1). Eight genes (TERT, ERBB2, CDK12,

CDK4, CLTC, SMARCE1, FGFR1, and TRIM33) met the above

criteria, with the first four involving the most number of cases.

Genomic rearrangements involving the region 0–100 kb up-

stream of TERT (this gene was previously found to be affected

by SVs in individual solid cancer types such as kidney [Davis

et al., 2014] and neuroblastoma [Peifer et al., 2015]) included

47 SV breakpoints and 29 cancer cases (Figures 5A and S3A;

Table S7), with cases showing elevated TERT expression (>0.4

SDs from the median, 17 cases) involving cancer types kidney

(n = 7), breast (n = 3 cases), melanoma (n = 2), bladder (n = 2),

esophageal or stomach (n = 2), and lung (n = 1). While some

cases showed levels of copy number gain for TERT, CNA pat-

terns overall did not account for the extent of deregulated

expression observed. In contrast, most cases with overex-

pressed ERBB2 or CDK12 (36 and 27 cases, respectively, with

breakpoint and associated expression >0.4 SDs from the me-

dian)—both genes residing on cytoband 17q12—involved gene

https://www.sanger.ac.uk/science/data/cancer-gene-census
https://www.sanger.ac.uk/science/data/cancer-gene-census
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B Figure 4. SVs Associated with Key Onco-

genic or Tumor-Suppressive Pathways,

Including p53 and Rb1

(A) For the set of genes with differential expression

patterns associated with SV breakpoints occurring

within the gene (from Figure 2C and Table S4, FDR

<0.1 with cancer type and CNA corrections, over-

expressed and underexpressed gene sets consid-

eredseparately), respectiveoverlapswithpredefined

(Chen et al., 2018) sets of 31 oncogene-associated

genes and 72 tumor suppressor-associated genes.

p values by one-sided Fisher’s exact test.

(B) For selected predefined pathways, associated

non-silent genemutations (single nucleotide variant

[SNV]), CNA events, and DNAmethylation silencing

were cataloged across 1,379 TCGA cancers as

previously described (using cases with available

exome sequencing, RNA-seq, and WGS data)

(Chen et al., 2017). For each pathway, the number

of cases also affected by SV is shown (for tumor

suppressor genes, expression <�0.4 SDs from the

median and within-gene SV breakpoints associ-

ated with underexpression per Figure 3C and Table

S4; for oncogenes, SV breakpoint events and

genes taken from Figure 2E, for which expression is

>0.4 SDs from the median). Cases affected by SV

but not by mutation or CNA are highlighted.

(C) Genomic rearrangements (represented in cir-

cos plot) involving TP53 or RB1, based on analysis

of 1,493 cases with WGS data.

(D) Alterations involving TP53 or RB1 (somatic

mutation, copy alteration, SV) found in the set of

1,448 cancer cases having both WGS and RNA-

seq data available.

(E) Boxplots of expression for RB1 (left) and for

TP53 (right) by their respective alteration classes.

Boxplots represent 5%, 25%, 50%, 75%, and

95%. p values by t test on log-transformed values.

See also Table S6.
amplifications and complex genomic rearrangements (Figures

5B, 5C, S3B, and S3C). Although a plurality of cases with SV

breakpoints and amplifications for these genes involved breast

cancers, other involved cancer types included bladder, head

and neck, stomach, and gastric. CDK12 is often encompassed

by the ERBB2 amplicon in breast cancer, with phosphoproteo-

mic profiling showing CDK12 and HER2 to be activated within

the same tumors (Mertins et al., 2016). SV breakpoints associ-

ated with overexpression (>0.4 SDs from the median) of CDK4

involved 11 cases (Figures 5D and S3D), including melanoma

(n = 3 cases), lung (n = 3), glioma (n = 2), breast (n = 1), stomach

(n = 1), and ovarian (n = 1).

SVs Associated with TAD Disruption and Enhancer
Hijacking
TADs can confine physical and regulatory interactions between

enhancers and their target promoters, and disruption of TADs

can result in ectopic expression of the associated genes (Dixon

et al., 2012; Hnisz et al., 2016; Weischenfeldt et al., 2017). Using

published data on TAD coordinates in human cells (Dixon et al.,

2012), we categorized all SVs in our pan-cancer dataset by those

that were TAD disrupting (i.e., the breakpoints span two different
TADs) versus those that were non-disrupting (i.e., both break-

points fell within the same TAD). Among all 78,496 SVs in the da-

taset (for cases with RNA-seq data), on the order of 61% were

TAD disrupting (this percentage not being considered unusually

high, see Experimental Procedures). For SVs with breakpoints

located in proximity to a gene and associated with its overex-

pression (FDR <0.1 for the gene within the given region window,

with corrections for cancer type and CNA, and expression >0.4

SDs from the median for the case harboring the breakpoint),

an enrichment for TAD-disrupting SVs was observed (Figures

6A and S4; Table S8). In breaking down the SVs associated

with overexpression, according to their breakpoint occurrence

upstream of the gene (0–20, 20–50, and 50–100 kb) or down-

stream of the gene (0–20, 20–50, and 50–100 kb), the percent-

ages of TAD-disrupting SVs ranged from 68% to 75% (with cor-

responding enrichment p values ranging from 0.001 to <1E�12,

one-sided Fisher’s exact test). SVs with breakpoints occurring

within the gene body associated with overexpression also

showed modest enrichment for TAD-disrupting SVs (65%, p =

0.003, one-sided Fisher’s exact test).

TAD-disrupting SVs include those associated with the TERT

locus (Figure 6B), where, for example, for two of the six KICH
Cell Reports 24, 515–527, July 10, 2018 521
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Figure 5. SVs Associated with CNA and

Increased Expression of TERT, ERBB2,

CDK12, and CDK4

(A) Circos plot showing all intra- and inter-

chromosomal rearrangements within TERT or

0–100 kb upstream (left). Gene expression levels

of TERT corresponding to SVs located in the

genomic region 20 kb downstream to 100 kb up-

stream of the gene (47 SV breakpoints involving

29 cases) (middle); dotted lines denote break-

points within the same sample and solid lines

denote common SV event. Gene expression levels

of TERT corresponding to CNA (log2 tumor/

normal ratio) (right). The maximum log2 tumor/

normal CNA value is set to 3.6 by the SNP array

analysis, approximating >24 copies.

(B) Similar to (A), but for the ERBB2 gene (circos

plot, rearrangements within ERBB2 or 0–100 kb

upstream; scatterplot, genomic region 20 kb

downstream to 100 kb upstream, 243 breakpoints

involving 41 cases).

(C) Similar to (A), but for the CDK12 gene (circos

plot, rearrangements within CDK12 or 0–100 kb

upstream or 0–20 kb downstream; scatterplot,

genomic region 20 kb downstream to 100 kb up-

stream, 185 breakpoints involving 40 cases).

(D) Similar to (A), but for the CDK4 gene (circos

plot, rearrangements within CDK4 or 0–20 kb up-

stream or 0–50 kb downstream; scatterplot,

genomic region 0–50 kb downstream to 50 kb

upstream, 22 breakpoints involving 13 cases).

See also Figure S3 and Table S7.
cases, SVs previously associated with TERT overexpression—

having breakpoints within 20 kb upstream of the gene (these

SVs being validated by PCR [Davis et al., 2014])—were TAD dis-

rupting. For two additional KICH cases, other TAD-disrupting

SVs with breakpoints further upstream or downstream of

TERT were observable here (Figure 6B). When evaluating SVs

with breakpoints associated with gene underexpression, we

observed a trend for SVs, with breakpoints located downstream

of the gene showing modest enrichment for TAD-disrupting

SVs and a significant enrichment for TAD-disrupting

events within SVs having breakpoints associated within a
522 Cell Reports 24, 515–527, July 10, 2018
gene body and underexpression (Fig-

ure S4A). While TAD disruption would

represent one plausible mechanism

for deregulated gene expression in

many cases, a substantial fraction of

SVs involved with deregulation are TAD

preserving and could therefore involve

other mechanisms.

We went on to examine potential

enhancer hijacking events involving SVs,

focusing here on a set of active, in vivo-

transcribed enhancers as cataloged pre-

viously (Andersson et al., 2014). This pro-

vides enhancer-specificity information

across a range of human cell types and

tissues relevant to the respective tissues
of origin represented by our pan-cancer cohort. For the entire

set of 80,824 SV breakpoint associations occurring 0–100 kb up-

stream of a gene and with breakpoint mate on the distal side

from the gene, SV breakpoint associations involving the translo-

cation of an active in vivo-transcribed enhancer within 0.5 Mb of

the gene (assuming no other disruptions involving the region),

where the unaltered gene had no enhancer within 1 Mb, were

tabulated. For the subset of 885 SV breakpoint associations

involving gene overexpression (FDR <0.1 for the gene, with cor-

rections for cancer type and CNA, and expression >0.4 SDs from

the median for the case harboring the breakpoint), there was a
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Figure 6. SVs Associated with Disruption of

TADs and Translocated Enhancers

(A) As compared to all SVs (based on cases with

both WGS and RNA-seq data), a fraction of the

SVs involving TAD disruption (i.e., SVs with

breakpoints spanning TAD boundaries), for SVs

with breakpoints located in proximity to a gene

and associated with its overexpression (FDR <0.1

for the gene within the given region window, with

corrections for cancer type and CNA, and

expression >0.4 SDs from the median for the case

harboring the breakpoint). SVs are broken down

according to their breakpoint occurrence within

the gene body, upstream of the gene (0–20 kb,

20–50 kb, 50–100 kb), and downstream of the

gene (0–20 kb, 20–50 kb, 50–100 kb). p values by

one-sided Fisher’s exact test.

(B) Depiction of the TERT locus and associated

TADs and SVs. Top: TADs as Hi-C-based contact

maps (Dixon et al., 2012), with gray shading indi-

cating locus interactions (darker shading indicates

stronger interactions as measured by Hi-C) (adapt-

ed from Weischenfeldt et al., 2017). Bottom: gene

expression levels of TERT corresponding to SV

breakpoints (involving 65 cases and 15 cancer

types) located in the genomic region. SV break-

points are annotated as TAD preserving (i.e., both

breakpoints fall within the same TAD) or TAD dis-

rupting; forSVbreakpoints involving caseswith high

TERT expression (defined as expression >0.4 SDs

from the median), dotted lines denote breakpoints

within the same sample and solid lines denote

common SV event. Of all of the genes listed, only TERT was associated with increased expression in proximity to SV breakpoints (Table S4).

(C) For the entire set of SV breakpoint associations occurring 0–100 kb upstream of a gene and with breakpoint mate on the distal side from the gene (for cases

with WGS), as well as for the subset of SV breakpoint associations involving gene overexpression (defined as expression >0.4 SDs from the median for the case

harboring the breakpoint and FDR <0.1 for gene overexpression, with corrections for cancer type and CNA), the fraction of SV breakpoint associations involving

the translocation of an active in vivo-transcribed enhancer (Andersson et al., 2014) within 0.5 Mb of the gene (where the unaltered gene had no enhancer within

1 Mb). p value by chi-square test.

(D) By gene and by cancer type, the number of SV breakpoint associations involving the translocation of an active in vivo-transcribed enhancer, which involved

41 genes and 83 SV events.

See also Figure S4 and Table S8.
statistically significant percentage (9.4%) involving putative

enhancer translocation events (Figure 6C; p = 0.002, chi-square

test). A number of the genes involved with both enhancer trans-

location and overexpression reside on either the 17q12 (e.g.,

ERBB2, CDK12, STARD3) or the 11q11-q13 (e.g., FGF19) cyto-

band regions (Figure 6D).

DISCUSSION

Here, we have reported a comprehensive catalog of somatic re-

arrangements and their associated transcriptional patterns

across >1,400 human cancers. DNA CNAs associated with

SVs would show the most influence on gene expression. More

than 400 genes, including many key tumor suppressor genes,

were directly disrupted by SV breakpoints falling within the

gene boundary. A small fraction of SVs associated with gene

overexpression represented gene transcript fusions. For on the

order of 500 genes—including important cancer driver genes—

SV breakpoints in proximity to the gene or within non-coding

elements of the gene were associated with overexpression inde-

pendent of CNA; these events in most cases would likely repre-
sent disruption or repositioning of cis-regulatory elements. In

considering SVs in addition to point mutations and CNA, our

study results would considerably extend upon the types of alter-

ations—potentially observable in cancer patients—leading to

dysregulation of specific cancer genes and pathways.

While overall trends involving TAD disruption and enhancer hi-

jacking involving genes deregulated by SVs have been identified

here, multiple mechanisms of deregulation would likely be

involved. For any given gene, there may be no single mechanism

affecting all involved cases for us to confidently explain the

observed deregulated expression patterns in every case;

different cancer cases may have different types of alterations

that achieve the same result. Unlike oncogenic point mutations,

which typically need to affect specific domains or residues or

regulatory motifs (Chang et al., 2016), SVs affecting non-coding

regions near or within the gene can involve any one of a number

of possiblemechanisms, with evolutionary pressures not likely to

favor one mechanism over another. In addition, there are limita-

tions in using WGS data to infer mechanisms of SV-mediated

deregulation, because SV breakpoint data primarily provides

only genomic coordinates and whether the corresponding
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upstream or downstream sequence at each breakpoint would

be involved at the breakpoint junction. Multiple breakpoints

may be involved within a given genomic region, not all of which

may be identifiable within a WGS profile, making it difficult to

trace the precise upstream or downstream sequence near a

gene resulting from a given SV breakpoint. Also, in many cases,

the orientation of the SV breakpoint may not allow conjecture as

to what new sequences are being positioned directly adjacent to

the gene. Nevertheless, because our expression analysis ap-

proaches to identifying SV-deregulated genes do not assume a

particular mechanism, we were able to identify recurrent pat-

terns, regardless of the mechanisms involved.

Future work can further identify and refine the set of cancer-

relevant SV-altered gene transcripts, which may involve larger

sample numbers and deeper sequencing. As has been the

case with pan-cancer somatic mutation analyses (Chang et al.,

2016; Gonzalez-Perez et al., 2013; Kandoth et al., 2013; Law-

rence et al., 2014; Martincorena et al., 2017), over time and as

more data become available, additional WGS studies can build

upon our own gene compendium involving SVs. While the low-

pass WGS involving many of the cases in our cohort would entail

lower sensitivity of SV detection, the larger sample numbers

used also provided increased power, which is better able to

tolerate false-negative events and other sources of noise in iden-

tifying recurrent patterns. To an extent, our analytical approach

was also more tolerant of false negatives, whereby in our exam-

ining fixed genomic regions near a given gene, multiple SV

breakpoints may exist, but only one would need to have been

identified by WGS to contribute to associations found. Genes

identified as significant tended to show patterns that cut across

multiple cancer types, involving cases with low-pass as well as

high-pass WGS. The integration involving WGS and RNA-seq

in this study was a key step in identifying genes with significance

levels (whether by statistical modeling or permutation testing)

rising above noise. While we sought to take advantage of data

resources offered by TCGA, future studies may use more

cases with higher-coverage WGS in which we would expect

the overall trends and phenomenon identified in this present

study to be substantiated, with potentially even more genes be-

ing implicated.

Our study provides a valuable resource for future studies,

including studies focusing on a specific gene or cancer type

that seek to examine associated SV breakpoints and differential

expression patterns. At the same time, limitations regarding low-

passWGShave been noted above, namely decreased sensitivity

and specificity compared to deeply sequenced genomes result-

ing from missing coverage in the tumor and normal samples,

respectively, with issues that may arise in conjunction with impu-

rity and genetic heterogeneity in this context. In addition to the

present study, the Pan-Cancer Analysis of Whole Genomes

(PCAWG) consortium is in the process of comprehensively

analyzing >2,800 cancer WGS profiles shared between TCGA

and the International Cancer Genome Consortium (ICGC)

(Campbell et al., 2017). At a future date, the PCAWG datasets

are to be released to the research community at large. The num-

ber of cancer cases in the PCAWG cohort with both WGS and

RNA-seq data is �1,200, which would be on the order of the

1,448 cases analyzed in the present study. Of these 1,448
524 Cell Reports 24, 515–527, July 10, 2018
TCGA cases in our study, only 369 would be represented in

the PCAWG cohort, leaving >1,000 cancer cases with SV data

unique to our study. Differences involving the respective plat-

forms and processing of the two studies may not facilitate a

direct merging of our data and PCAWG data into a common da-

taset. However, as PCAWGdata on SVs become available, over-

all patterns and trends identified in our study can be re-evaluated

in the PCAWG cohort and vice versa. Future analyses of SVs in

cancer will continue to yield insights into the important role of

genomic alterations occurring outside exome boundaries.

EXPERIMENTAL PROCEDURES

Further details and an outline of resources used in this work can be found in

Supplemental Experimental Procedures.

Datasets

The results here are based upon data generated by TCGA Research Network.

Whole-genome sequence analysis was carried out for 1,498 cases (with paired

normal samples, high-pass coverage for BRCA, KICH, KIRC, KIRP, and OV

cases, low-pass for BLCA, CESC, CRC, ESCA, HNSC, LGG, LUAD, PRAD,

SKCM, STAD, THCA, UCEC, and UVM). All of the coordinates are based on

the hg19 human reference genome.

WGS profiling and SV calling was carried for individual TCGA projects as

previously described (Cancer Genome Atlas Network, 2012, 2015a, 2015b;

Cancer Genome Atlas Research Network, 2014a, 2014b, 2015a, 2015b,

2017a, 2017b; Cancer Genome Atlas Research Network et al., 2013a; Chen

et al., 2016; Davis et al., 2014; Robertson et al., 2017), as well as detailed in

the Supplemental Experimental Procedures. Previous studies show that on

the order of 96%–98% of high-confidence SVs from high-pass WGS data de-

tected by the Meerkat algorithm are able to be validated by PCR (Davis et al.,

2014; Yang et al., 2013). For a subset of 123 cases, both high-pass and low-

pass data were available; in comparingMeerkat algorithm calls from both plat-

forms (Table S2), 75% of SV calls by low-pass data were also identifiable by

the high-pass data, and 20% of the SV calls by high-pass data were identified

using the low-pass data.

Regarding CNA data, low-level gene gain, high-level gene amplification,

low-level copy loss, or high-level copy loss were inferred using the ‘‘thresh-

olded’’ calls as made by the Broad GDAC Firehose pipeline (http://gdac.

broadinstitute.org/). High-level amplifications (approximating >5 copies)

denote amplifications above the threshold and larger than the arm level ampli-

fications observed for the given sample. Low-level copy deletions represent

deletion above the threshold (approximating heterozygous deletions in the

absence of whole-genome doubling); high-level copy deletions denote copy

loss above the threshold and greater than the minimum arm-level deletion

observed for the sample (approximating homozygous deletions in the absence

of whole-genome doubling). Gene-level log base 2 (tumor/normal) copy values

were used to evaluate CNA as a continuous variable. The maximum log2 tu-

mor/normal CNA value was set to 3.6 by the Firehose SNP array analysis,

approximating >24 copies. For analysis of cytoband-level CNA, the gene-level

log base 2 (tumor/normal) copy values were collapsed, or averaged, into cyto-

band regions.

RNA-seq data were obtained from the Broad Institute Firehose pipeline.

Gene fusion transcripts by RNA-seq analysis, as identified using the Pipeline

for RNA Sequencing Data Analysis (PRADA) across 9,966 TCGA cancer sam-

ples, were obtained from http://tumorfusions.org/(Hu et al., 2017; Yoshihara

et al., 2015). For fusion candidates by RNA-seq involving any of the 1,498

cases in our own cohort, SV breakpoints by WGS were examined for any

that fell within at least one of the two genes.

Integrative Analyses between SVs and Gene Expression

For each of a number of specified genomic region windows in relation to

genes, we constructed a somatic SV breakpoint matrix by annotating for every

sample the presence or absence of at least one SV breakpoint within the given

region. For the set of SVs associated with a given gene within a specified

http://gdac.broadinstitute.org/
http://gdac.broadinstitute.org/
http://tumorfusions.org/


region in proximity to the gene (0–20 kb upstream, 20–50 kb upstream,

50–100 kb upstream, 0–20 kb downstream, 20–50 kb downstream,

50–100 kb downstream, or within the gene body), correlation between expres-

sion of the gene and the presence of an SV breakpoint was assessed using a

linear regression model (with log-transformed expression values). (SV break-

points located within a given gene were not included in the other upstream or

downstream breakpoint sets for that same gene.) In addition to modeling

expression as a function of SV event, models incorporating cancer type (one

of the 18 major types listed in Table 1) as a factor in addition to SV and models

incorporating both cancer type and CNA (using log2 tumor/normal values from

Firehose) were considered. Using cancer type according to TCGA project as a

covariate was carried out to factor in differences involving either WGS coverage

or tissue-specific gene expression. For these linear regression models, genes

with at least three samples associated with an SV within the given region

were considered. Genes forwhich SVswere significant (FDR<0.1) after correct-

ing for both cancer type and CNA were explored in downstream analyses.

Integrative Analyses Using TAD andEnhancer Genomic Coordinates

To identify breakpoints associated with TAD disruption, we used recently pub-

lished TAD data from the IMR90 cell line (Dixon et al., 2012), where TADs have

been found to be largely invariant across cell types (Weischenfeldt et al., 2017).

TAD-disrupting SVs were defined as those SVs for which the two breakpoints

did not fall within the same TAD. Of all the SVs in the entire dataset, on the

order of 61% were found to be TAD disrupting (taking the number of SVs

with breakpoints in the same TAD and subtracting this from the total number

of SVs, based on cases with gene expression data). The above percentage

(61%) was not considered unusually high, given that all interchromosomal

SVs are by definition TAD disrupting. In addition, for just the intrachromosomal

SVs on chromosome 1, 100 simulations were performed, with the SVs coordi-

nates randomly shuffled; on average the simulations had a number of TAD-dis-

rupting SVs that slightly exceeded the number found using the actual data

(average of 2,994 compared to the actual 2,728).

For each SV breakpoint association 0–100 kb upstream of a gene (each as-

sociation involving unique breakpoint and gene pairing), the potential for the

translocation of an active in vivo-transcribed enhancer near the gene that

would be represented by the rearrangement was determined (based on the

orientation of the SV breakpoint mate). We used the enhancer annotations

as provided by Andersson et al. (2014). Their study categorized a set of

�40,000 enhancers according to tissue- or cell-specific expression, with a

small subset of enhancers categorized as ‘‘ubiquitous’’ or associated with

expression in the majority of tissue and cell types examined. The ubiquitous

enhancers were therefore applied to all of the cases in our TCGA cohort. In

addition, for each one of the 18 TCGA cancer types in our study, any applicable

Andersson group tissue- or cell-specific enhancer subsets for that particular

cancer type were also applied (e.g., mammary epithelial cell-specific en-

hancers for TCGA-BRCA, epithelial cell of prostate and prostate gland for

TCGA-PRAD; see Table S8). Only enhancers that were either ubiquitous or

with tissue or cell specificity relevant to a given cancer type were applied to

the SVs found for cases of that cancer type.

SV breakpoint-to-gene associations involving the translocation of an active

in vivo-transcribed enhancer within 0.5 Mb of the gene (assuming no other dis-

ruptions involving the region), where the unaltered gene had no enhancer

within 1 Mb, were tabulated. Only SVs with breakpoints on the distal side

from the gene were considered in this analysis; in other words, for genes on

the negative strand, the upstream sequence of the breakpoint (denoted as

positive orientation) should be fused relative to the breakpoint coordinates,

and for genes on the positive strand, the downstream sequence of the break-

point (denoted as negative orientation) should be fused relative to the break-

point coordinates.

Statistical Analysis

All p values were two-sided unless otherwise specified. Linear regression

models were used to associate the expression of genes with nearby SV break-

points, as described above. One-sided Fisher’s exact tests or chi-square tests

were used to determine the significance of the overlap between two given

feature lists. The method of Storey and Tibshirani (2003) was used to estimate

FDR for significant genes.
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