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SUMMARY
Molecular alterations involving the PI3K/AKT/mTOR pathway (including mutation, copy number, protein, or
RNA) were examined across 11,219 human cancers representing 32 major types. Within specific mutated
genes, frequency, mutation hotspot residues, in silico predictions, and functional assays were all informative
in distinguishing the subset of genetic variants more likely to have functional relevance. Multiple oncogenic
pathways including PI3K/AKT/mTOR converged on similar sets of downstream transcriptional targets. In
addition to mutation, structural variations and partial copy losses involving PTEN and STK11 showed evi-
dence for having functional relevance. A substantial fraction of cancers showed high mTOR pathway activity
without an associated canonical genetic or genomic alteration, including cancers harboring IDH1 or VHLmu-
tations, suggesting multiple mechanisms for pathway activation.
INTRODUCTION

The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target

of rapamycin (mTOR) signaling pathway is one of the main

growth regulatory pathways in both normal cells and cancer

(Hennessy et al., 2005; Mayer and Arteaga, 2016). This growth
Significance

Our current model of the PI3K/AKT/mTOR pathway has larg
Genome Atlas (TCGA) pan-cancer cohort represents an oppo
of human cancer. Cause-and-effect relationships embodied b
disease. Integration of genomic with proteomic data may bene
ing to assess variants for potential clinical relevance. Manifes
manifestation at the phospho-protein level, highlighting the imp
realized or underappreciatedmembers or connectionsmay be
data may aid in the process of discovery or confirmation.
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pathway begins with class IA PI3Ks, which are heterodimers

consisting of p110 catalytic and p85 regulatory subunits. Growth

factor receptor tyrosine kinases (RTKs) activate PI3K through

phosphorylation of adaptor proteins such as IRS1/IRS2 (Engel-

man et al., 2006). These adaptor proteins bind the amino-termi-

nal domain of the PI3K p85 regulatory subunits through YXXM
ely been derived from experimental systems. The Cancer
rtunity to explore these pathway relationships in the setting
y the pathway model can manifest as correlations in human
fit personalized and precision medicine approaches in help-
tation of pathways at the transcription level is distinct from
ortance of proteomic approaches. Over time, previously un-
incorporated into the standard pathwaymodel, where TCGA
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motifs, to reverse its inhibition of the p110 catalytic subunit, and

leads to movement of the p85–p110 heterodimer to the cell

membrane where p110 can phosphorylate phosphatidylinosi-

tol-4,5-bisphosphate (PIP2) to generate phosphatidylinositol-

3,4,5-trisphosphate (PIP3). RAS family members can also

activate PI3K (Mayer and Arteaga, 2016). The primary negative

regulator of PI3K activation is the phosphatase PTEN, which de-

phosphorylates PIP3 at the 30 position (Keniry and Parsons,

2008), with a secondary negative regulator being INPP4B

(inositol polyphosphate-4-phosphatase type II B). PIP3 recruits

several pleckstrin homology domain-containing proteins to the

membrane, including AKT and PDK1. AKT is phosphorylated at

Thr308 by PDK1 and at Ser473 by mTOR complex 2 (mTORC2),

which increases its kinase activity. AKT directly and indirectly

phosphorylates many downstream proteins, including the

GSKs, p27KIP1, FoxO transcription factors, MDM2, and BAD,

to enhance cell survival and growth (Manning and Cantley,

2007). Furthermore, AKT phosphorylates TSC2 at multiple sites,

to inhibit the GTPase-activating protein function of the TSC pro-

tein complex (consisting of TSC1, TSC2, and TBC1D7) toward

Rheb, a RAS family member (Dibble and Manning, 2013;

Laplante and Sabatini, 2012). Rheb-GTP binds to mTOR com-

plex 1 (mTORC1) to activate its kinase activity toward the

S6Ks, 4E-BP1, and other substrates, leading to enhancement

of multiple anabolic biosynthetic pathways that enable produc-

tion of the building blocks (e.g., nucleotides) and macromole-

cules (e.g., ribosomes) required for cell size increase and mitosis

(Dibble and Manning, 2013).

Multiple genetic events have been described that lead to

activation of the PI3K/AKT/mTOR pathway in cancer (Thorpe

et al., 2015). Activating mutations in PIK3CA, which encodes

the PI3K p110a catalytic subunit, are common in many cancer

types (Samuels et al., 2004; Thorpe et al., 2015). There are

highly focal hotspots of mutation in PIK3CA, E542, and E545

in the helical domain, and H1047 and G1049 in the kinase

domain, which activate the kinase through different mecha-

nisms. Other PI3K p110 isoforms are rarely mutated in cancer

overall, but PIK3CA and PIK3CB, as well as the class II PI3K
PIK3C2B, are all amplified in one or more cancer types (Thorpe

et al., 2015). PIK3R1, and less commonly PIK3R2, which

encode the p85a and p85b regulatory subunits of PI3K, are

commonly mutated, resulting in reduced ability to inhibit PI3K

p110a (Cheung et al., 2011; Thorpe et al., 2015). PTEN is sub-

ject to both genomic deletion and small point mutations that

inactivate its function, and is one of the most commonly

mutated cancer genes overall (Keniry and Parsons, 2008).

AKT1 is occasionally activated by mutation at a single site,

E17K (Carpten et al., 2007). Inactivating mutations in both

TSC1 and TSC2 have been identified in cancer at low frequency

(Hornigold et al., 1999), as well as activating mutations inMTOR

(Grabiner et al., 2014). RHEB mutations are rare but focal at

Y35, suggesting a driver effect.

With the recent conclusion of the data generation phase of

The Cancer Genome Atlas (TCGA), there is opportunity for sys-

tematic analyses of the entire TCGA pan-cancer cohort,

including analyses focusing on specific oncogenic pathways.

The aim of our study was to comprehensively examine the

entire PI3K/AKT/mTOR pathway and its components in over

10,000 human cancers and 32 cancer types profiled by

TCGA, using multiple molecular profiling platforms, including

proteomics.

RESULTS

Proteomic Analysis of the PI3K/AKT/mTOR Pathway
Our study involved 11,219 human cancer cases representing 32

different major types, for which TCGA generated data on one or

more of the following molecular characterization platforms

(Table S1): whole-exome sequencing (WES, n = 10,224 cases),

whole-genome sequencing data (WGS, n = 1,363), somatic

DNA copy by SNP array (n = 10,845), RNA sequencing

(n = 10,224), and reverse-phase protein array (RPPA). We used

the RPPA proteomic platform to analyze 7,663 patient samples

from 31 cancer types (with no data available for AML patients).

The RPPA dataset comprised 225 high-quality antibodies that

target 166 total proteins and 56 phosphorylated proteins. In
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Figure 1. Proteomic Signatures of PI3K/AKT

and mTOR across Human Cancers

(A) Heatmap of RPPA features considered core to

either PI3K/AKT or mTOR pathways across 7,663

cancers. Red, higher expression (values normalized

to SDs from the median across all cancers); blue,

lower expression. PI3K/AKT and mTOR features

were each summarized into pathway activity scores

for each tumor profile (yellow, higher inferred ac-

tivity; blue, lower activity; bright yellow/blue denotes

change of 1 SD or SD, from the median). Cancer

types (denoted by TCGA project name) are ordered

by low to high average mTOR pathway score.

(B) Boxplots of PI3K/AKT (top) and mTOR (bottom)

pathway activities scores, as inferred using RPPA

data. Boxplots represent 5%, 25%, 50%, 75%,

and 95%.

(C) Pearson’s correlations between RPPA features

across all cancers, involving features core to PI3K/

AKT or mTOR pathways, as well as involving fea-

tures representing proteins that may act peripher-

ally upon either pathway. See also Figure S1 and

Tables S1 and S2.
this study, we carried out data normalization and batch correc-

tion to allow for direct comparisons between different cancer

types. In general, mRNA levels were significantly correlated

with protein levels, but strong correlations between mRNA and

phospho-protein levels involving PI3K/AKT/mTOR pathway

members were not observed (Figure S1A). In this study, we re-

garded mTOR signaling as a separate pathway from PI3K/AKT,

where the former integrates information from the PI3K/AKT,

Ras/MAPK, and LKB1/AMPK pathways (Laplante and Sabatini,

2012). Following previous studies (Akbani et al., 2014), we devel-

oped pathway signatures for both PI3K/AKT and mTOR compo-

nents, based on member proteins selected by literature review,

as a means of assessing the overall level of pathway activity

given the variations of individual members.

For each tumor, RPPA signatures for PI3K/AKT and mTOR

were summarized into activity scores (Figure 1A and Table S2).
822 Cancer Cell 31, 820–832, June 12, 2017
On average, mTOR scores differed by

tumor lineage, with, for example KICH (kid-

ney chromophobe) tumors showing the

lowest levels of mTOR activity, and with

PCPG (pheochromocytoma and paragan-

glioma) showing the highest levels (fol-

lowed by glioblastoma multiforme and

brain lower grade glioma (LGG), or glio-

blastoma and LGG, respectively); at the

same time, within each tumor type a

wide range of activity levels were evident

(Figure 1B). Across tumor profiles, PI3K/

AKT and mTOR activity scores were highly

significantly correlated (Pearson’s r = 0.50,

p � 0), although many cancer cases

showed high mTOR activity but low PI3K/

AKT activity or vice versa (Figures 1A and

1B), indicative of a certain degree of

decoupling between the two pathway

branches. Individual members of the
PI3K/AKT signature were strongly correlated in protein expres-

sion with each other across cancers (Figure 1C). mTOR

pathway-related members were also highly inter-correlated (Fig-

ure 1C), with distinct clusters involving 4EBP1- and S6-related

features, respectively, and with phospho-RICTOR negatively

correlated with phospho-mTOR (r = �0.14, p < 1E–30). Other

protein features strongly correlated with PI3K/AKT/mTOR

signaling included members of the MAP Kinase pathway (Fig-

ures S1B and S1C). When considering a number of additional

RPPA features for proteins understood to act peripherally on

PI3K/AKT or mTOR signaling, these tended to show weaker cor-

relations with PI3K/AKT and mTOR features (Figure 1C). INPP4B

and AMPK were negatively correlated with mTOR activity as ex-

pected, while within subsets of tumors other proteins would pre-

sumably have pathway-related roles that may not be reflected in

more global analyses.
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Figure 2. Somatic Mutations and DNA Copy and Structural Alterations Involving Components of the PI3K/AKT/mTOR Pathway across Hu-

man Cancers

(A) Diagram of somatic mutation and copy-number alteration (CNA) frequencies involving components of the PI3K/AKT/mTOR pathway. Key genes (with sig-

nificant or sizable frequencies of alteration) are indicated by rectangles, with the percentages of somatic mutations and CNAs shown in the left and right portions

of each rectangle, respectively. Significantly altered genes (from Chang et al., 2016; Kandoth et al., 2013; Lawrence et al., 2014; Zack et al., 2013; percentages

representing significant alterations are underlined) are bounded by orange lines. Red, potentially activating genetic alterations; blue, potentially inactivating

genetic alterations. Copy loss represents either ‘‘high-level’’ deletion (approximating homozygous deletion) or mutation in combination with ‘‘low-level’’ deletion

(partial loss).

(B) By cancer type, percentages of somatic mutation or copy alteration for each indicated gene. Amplification denotes ‘‘high-level’’ copy gain. Numbers of cases

denote representation on WES data platform.

(C) Genomic rearrangements (represented in circos plot) involving PTEN, INPP4B, STK11, TSC1, TSC2, PIK3R1, or PPP2R1A, based on analysis of 1,363 cases

with WGS data.

(D) Left: alterations involving PTEN (somatic mutation, copy alteration, structural variation, or SV) found in the set of 1,093 cancers cases having both WGS and

RPPA data available (protein values normalized to SDs, or SDs, from the median). Right: boxplot of PTEN protein expression by alteration class. Boxplots

represent 5%, 25%, 50%, 75%, and 95%. p Values by t test on log-transformed values. See also Figure S2 and Tables S3 and S4.
Somatic DNA Alterations Involving the PI3K/AKT/mTOR
Pathway
Weexamined genemutations (usingWES, n = 10,224 cases) and

somatic DNA copy alterations (by SNP 6.0 arrays, n = 10,845

cases), focusing on genes in the canonical PI3K/AKT/mTOR

pathway (Figure 2A and Table S3). Frequencies of somatic alter-

ation for key genes in the pathway were tabulated across all

cancers as well as within each cancer type according to TCGA

project (Figure 2B and Table S4). A number of genes in the

pathway were found significantly mutated or copy altered in

pan-cancer analyses (Chang et al., 2016; Kandoth et al., 2013;

Lawrence et al., 2014; Zack et al., 2013), including PIK3CA
(14% mutated across all cancers; 6% amplified), PTEN (9%

mutated; 7% deletion or two-hit loss), PIK3R1 (4% mutated),

PPP2R1A (2% mutated), AKT1 (1% mutated), AKT1 (3% ampli-

fied), TSC1 (2% mutated), STK11 (2% mutated; 1% deletion or

two-hit loss), RICTOR (3% amplified), andMTOR (4% amplified).

With the notable exception of AKT3, copy number alterations of

PI3K/AKT/mTOR pathwaymember genes were highly correlated

with their mRNA expression (Figure S2A). When overlaid with

mutation frequency data from human tumors, the model of the

PI3K/AKT/mTOR pathway (Figure 2A) can indicate which

pathway members or interactions may be most relevant in the

context of cancer. However, even genes with a low frequency
Cancer Cell 31, 820–832, June 12, 2017 823



of DNA alterations (e.g., AKTS1,MAPKAP1,MLST8, PDK1) may

be critical in individual cancer cases or in specific cancer types

or subtypes not included here, in which they may be more

commonly altered.

Genomic rearrangements represent another class of somatic

alterations impacting gene function. Out of 1,363 cases with

WGS data available (1,218 by low-pass sequencing), 63 cases

(�5%) harbored a rearrangement within pathway suppressor

genes PTEN (39 cases), INPP4B (14), STK11 (5), TSC1 (2),

TSC2 (2), PIK3R1 (2), or PPP2R1A (2) (Figure 2C). By structural

variation (SV), copy loss (partial or total), or mutation, PTEN

was found altered in 40% of cancers with both RPPA and

WGS data, with PTEN protein expression most impacted in tu-

mors with SV, homozygous loss, or nonsense/indel/frameshift

mutations (Figure 2D). In addition to PTEN, SVs within STK11

and TSC1were also associated with decreased expression (Fig-

ure S2B). Furthermore, high- and low-level copy number loss for

several pathway genes were strongly correlated with reduced

mRNA levels (Figure S2B), and 20 cases harbored candidate

gene fusions involving PIK3CA, AKT1, AKT2, AKT3, or MTOR

(Figure S2C and Table S3).

Recurrently Mutated Residues in Key Genes Associated
with Protein Activation
A large proportion of mutations identified in driver genes that

activate PI3K/AKT/mTOR are of low occurrence, highlighting

the need to functionally annotate the long tail of infrequent muta-

tions present in heterogeneous cancers (Dogruluk et al., 2015).

For example, PIK3CA is the gene most commonly activated by

mutation in the cancer genome, with mutations being most

frequent at positions E542, E545, and H1047 (Figure 3A); on

the other hand, 13% of PIK3CA mutations observed occurred

in a single case and showed no significant pattern of occurrence.

Somatic copy alteration represents another potential mecha-

nism for altering gene function where, for example, amplification

of PIK3CA impacts p110a protein expression (Figure 3B). Previ-

ous pan-cancer sequence analyses (Chang et al., 2016) have

identified recurrent mutational hotspots, where such hotspots

would presumably have greater impact on protein function. In

the case of PIK3CA, 73% of somatic, nonsilent mutation variants

identified in TCGA pan-cancer cohort involved a hotspot residue

as identified by Chang et al., while 13%of PIK3R1mutations and

7%ofMTORmutations involved a hotspot residue (Figure 3C). In

addition, algorithms such as Mutation Assessor (Reva et al.,

2011) have predicted the likely functional impact of somatic mu-

tation, e.g., based on evolutionary conservation of the affected

amino acid in protein homologs.

As the above genes, as well as PTEN, presumably act upon

AKT (Figure 2A), phospho-protein expression of AKT was exam-

ined in relation to tumor groups as defined by somatic alteration

of a key gene (Figure 3D). For each gene considered, mutations

were separated on the basis of whether or not a prediction ofmu-

tation functionality could be made (by residue hotspot, by Muta-

tion Assessor, by manual literature review, or by nonsense/

frameshift/indel involving PTEN or PIK3R1). For each of the

genes considered (AKT1, MTOR, PIK3CA, PIK3R1, and PTEN),

tumors harboring mutations that were predicted to have func-

tional effects had elevated phospho-AKT levels on average,

compared with tumors that did not harbor an alteration; in addi-
824 Cancer Cell 31, 820–832, June 12, 2017
tion, tumors with mutations not predicted to be functional

showed either a lesser effect or no significant effect on

phospho-AKT. PTEN copy losses were also associated with

AKT activation, while, interestingly, PIK3CA amplifications and

copy alterations involving other specific genes (Figure S3)

were not.

In addition to analysis of significantly mutated residues and of

phospho-protein expression, functional studies using cell lines

represents another way to annotate mutations in terms of their

oncogenic potential. UsingMCF10A andBa/F3 cells, 69 different

nonsilent PIK3CA mutation variants were functionally assessed

in vitro for their activating potential (Figures 4A and S4; Table

S5). Most variants tested showed some level of functionality

(from weak to strong) in at least one of the two cell lines, while

14 variants showed no functional effects and two showed inhib-

itory or inactivating effects. The degree of growth activation var-

ied considerably, with the three highly recurrent PIK3CA site

(E542, E545, and H1047) mutants showing some of the highest

degrees of activity in this assay. In another experiment, 35

different nonsilent PIK3R1 mutation variants were functionally

interrogated in Ba/F3 cells (Figure 4B). When the results of the

functional studies were aligned with data from TCGA, a signifi-

cant trend was observed for both PIK3CA and PIK3R1, whereby

variants that were associated with functionality in vitro had a

higher frequency of occurrence in human tumors (Figure 4C),

suggesting that natural selection favored tumor development

for those variants with greater functional effects. Most variants

showing some functionality also had higher phospho-AKT on

average, compared with tumors with the corresponding wild-

type gene (Figures 4A and 4B), although variants associated

with higher phospho-AKT were not necessarily associated with

higher phospho-TSC2 (downstream in the pathway from AKT).

Transcriptomic Analysis of PI3K/AKT/mTOR Pathway
Signaling pathways that influence cell growth transduce signals

to the nucleus, leading to activation or deactivation of the tran-

scription of specific genes (Hanahan and Weinberg, 2000). Pre-

viously, we had defined a PI3K/AKT/mTOR transcriptional

(mRNA) signature, based on the set of genes either induced or

repressed by PI3K or mTOR inhibitors (Creighton et al., 2010).

We applied this signature to the Library of Integrated Network-

based Cellular Signatures (LINCS) database (Duan et al., 2014)

of perturbational expression profiles across multiple cell and

perturbation types. In the LINCS L1000 expression dataset (con-

sisting of �1,000 genes), the PI3K/AKT/mTOR mRNA signature

was inversely associated with the transcriptional responses of

cell lines to PI3K/AKT/mTOR inhibitors (Figure 5A). We evaluated

the signature against the LINCS expression profiles of cells

treated with short hairpin RNA (shRNAs) for �6,000 different

genes; knock down of pathway effectors (e.g.,MTOR orRPTOR)

resulted in gene signature patterns inversely correlated to those

of our PI3K/AKT/mTOR signature, while knock down of pathway

suppressors (e.g., PTEN or INPP4B) resulted in signature pat-

terns positively correlated with those of our signature (Figure 5B

and Table S6). Notably, knock down ofMYC andKRAS also sup-

pressed the PI3K/AKT/mTOR signature; furthermore, when

scoring TCGA pan-cancer mRNA profiles for pre-defined signa-

tures of PI3K/AKT/mTOR, MYC, and k-ras, cancers scoring high

for PI3K/AKT/mTOR also tended to score high forMYC and k-ras
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Figure 3. Distributions of Mutations in Key

PI3K/AKT/mTOR Pathway Genes and Asso-

ciation with Protein Activation

(A) PIK3CA nonsilent, somatic variant frequencies

and distribution across domain-annotated p110a

protein structure. ‘‘Recurrent’’ denotes mutation

event observed in two or more tumor cases. ‘‘Hot-

spot’’ denotes recurrently mutated residues as

identified by pan-cancer sequence analyses (Chang

et al., 2016). ‘‘MA’’ denotes ‘‘medium’’ or ‘‘strong’’

functional prediction by Mutation Assessor algo-

rithm (Reva et al., 2011).

(B) Boxplot of p110a expression by PIK3CA alter-

ation class (gene amplification, gain of one to two

copies, mutation, or none of the above, i.e. ‘‘un-

aligned’’). p Values by t test on log-transformed

values.

(C) Distributions of nonsilent and somatic variants

within PIK3R1 (top) andMTOR (bottom) across their

respective domain-annotated protein structures.

(D) Boxplot of AKT pS473 phospho-protein ex-

pression by mutation (mut.) or copy alteration class,

with the unaligned cases having none of the

listed alteration types. p.f., predicted functional

mutations (by hotspot, Mutation Assessor analysis,

literature review, or nonsense/frameshift/indel

involving PTEN or PIK3R1); amp., high-level gene

amplification; low-lev. and high-lev., low- and high-

level copy deletions, respectively. p Values by t test

on log-transformed values. n.s., not significant

(p > 0.05). Boxplots represent 5%, 25%, 50%, 75%,

and 95%. Points in boxplots are colored according

to tumor type as defined by TCGA project as indi-

cated in (D). See also Figure S3.
(Figures 5C, S5A, and S5B), suggesting that multiple oncogenic

signaling pathways may converge on similar sets of transcrip-

tional targets. The above mRNA signatures would represent

more than cell proliferation processes, given how the signatures

were originally derived (Creighton et al., 2010), the lack of cell-

cycle regulators in the top LINCS shRNA results (Figure 5B),

and the signature association with key alterations in human tu-

mors (Figure 5C).
C

As a means of identifying a transcrip-

tional signature associated with the

PI3K/AKT/mTOR pathway, we examined

datasets from Garnett et al. (2012), which

included both gene expression and

drug sensitivity data for 131 drugs on a

set of 594 human cancer cell lines. To

derive gene expression correlates of

sensitivity to pathway inhibition, half

maximal inhibitory concentration values

for 11 different inhibitors to PI3K/AKT/

MTOR were normalized and averaged to

obtain a single drug sensitivity score

across cell lines. After correcting for

expression differences specific to tumor

type, 146 genes were significantly asso-

ciated (p < 0.01, generalized linear

model) with pathway inhibitor sensitivity
(Figure 5D and Table S6). Across cell lines, this inhibitor sensi-

tivity signature correlated significantly with PI3K/AKT phospho-

protein levels (Figure 5E), but showed little overlap with the

above CMAP signature (from Figure 5A). Furthermore, when

scoring TCGA pan-cancer mRNA profiles for the above

signatures, tumors that scored high for the inhibitor signature

tended to score low for the CMAP signature and vice versa,

and PI3K/AKT proteomic score (but not mTOR score) was
ancer Cell 31, 820–832, June 12, 2017 825
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Figure 4. Functional Assessment of Specific PIK3CA and PIK3R1 Variants by Cell Line Viability Assays

(A and B) Ba/F3 or MCF-10A cells were transfected with wild-type (WT) or indicated mutant cDNA of PIK3CA (A) or PIK3R1 (B) then cultured for 4 weeks and

harvested for viability assay. The extent of functionality conferred by the variant is indicated by colorgram. NFE/NDFW, no functional effect/no difference from

wild-type. For the mutant variants assessed, corresponding human cancer data from TCGA are shown, including frequency of the variant (relative to other

variants found for the same gene) and average protein expression for AKT pS473 and TSC2 pT1462. Hotspot residue, from Chang et al. (2016).

(C) For PIK3CA (left) and PIK3R1 (right), boxplots of variant frequency in TCGA human tumors (relative to other variants found for the same gene) by functional

assays results. p Values by Mann-Whitney U test. Boxplots represent 5%, 25%, 50%, 75%, and 95%. See also Figure S4 and Table S5.
again highly correlated with the inhibitor signature score (Fig-

ures 5E, S5C, and S5D).

Molecular Correlates of Patient Survival Involving
PI3K/AKT/mTOR Pathway Components
Molecular correlates of cancer patient survival can offer insights

into the pathways and processes underlying more aggres-

sive disease (The_Cancer_Genome_Atlas_Research_Network,

2013). For specific cancer types (e.g., breast and lung adenocar-

cinoma), the PI3K/AKT/mTOR pathway has been associated

with aggressive disease (The_Cancer_Genome_Atlas_Network,

2012; The_Cancer_Genome_Atlas_Research_Network, 2013).

In this present study, we sought to define survival correlates in

pan-cancer analyses, leveraging the large numbers of patients

available (these numbers helping to balance the relatively short

patient follow-up times that characterize a number of individual

TCGA projects). As some cancer types are inherently more

aggressive than others (Hoadley et al., 2014), we carried two

separate tests for each molecular feature examined: an ‘‘uncor-

rected’’ test across all cancers regardless of type and a ‘‘cor-

rected’’ test incorporating cancer type (by TCGA project) as a

covariate. Features more strongly associated with an aggressive

cancer type but having a survival association that was not inde-

pendent of cancer type (PIK3CAmutation, for example, Hoadley

et al., 2014) may show significance for the uncorrected but not

the corrected survival test.
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Numerous protein expression or genomic alteration features

involving PI3K/AKT/mTOR pathway members were significantly

associated with patient outcome in pan-cancer analyses (Fig-

ure 6A), a number of these features remaining significant after

correcting for cancer type. Features significantly associated

with worse patient outcome, independent of cancer type,

included STK11 mutation, STK11 copy loss, PTEN copy loss,

PIK3CA amplification, and higher phospho-4EBP1 expression.

Focusing on PTEN and STK11 copy alterations, these features

were found significant within several individual cancer types,

with the aggregated patterns across cancer types denoting

pan-cancer significance (Figure 6B). Interestingly, for both

PTEN and STK11, low-level deletion (approximating partial

copy loss) but not high-level deletion (approximating total loss)

was associated with significantly worse outcome compared

with wild-type (Figures 6C and 6D); loss of one copy combined

with somatic mutation of the other copy was associated with

the poorest outcome. For both PTEN and STK11, neither high-

level deletion nor mutation without copy loss could be

associated with worse outcome, where in this instance, survival

differences by tumor type were a likely confounder (e.g., 65% of

the PTENmutation with no copy alteration group were UCEC, or

uterine corpus endometrial carcinoma, cases). As a group, gene

transcription targets of the PI3K/AKT/mTOR pathway (based on

the signature described in Figure 5A) were also associated with

worse patient outcome (Figure 6E).
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Figure 5. Survey of Two Distinct PI3K/AKT/mTOR-Associated Gene Transcription Signatures across Human Cancers

(A) A previously defined gene transcription signature of PI3K/AKT/mTOR (Creighton et al., 2010) (originally derived using the ConnectivityMap, or CMAP, dataset)

was re-examined in the LINCS database of perturbational expression profiles, with the PI3K/AKT/mTOR inhibitor treatment group compared with control group.

(B) The PI3K/AKT/mTOR ‘‘CMAP’’ signature was evaluated against the LINCS expression profiles of cells treated with shRNAs for �6,000 different genes. In the

plot shown, shRNAs are ranked according to the overall similarities in their induced expression patterns with those of the PI3K/AKT/mTOR signature; for example,

for shRNAs represented on the left of x axis, knock down of the gene results in a pattern inverse of that of the PI3K/AKT/mTOR signature. Red, canonical promoter

of PI3K/AKT/mTOR pathway; blue, canonical suppressor.

(C) TCGA pan-cancer mRNA profiles (n = 10,224 cases) were each scored for various transcriptional signatures associated with PI3K/AKT/mTOR, MYC, or k-ras

pathways (defined previously using experimental models). Pearson’s correlations between indicated transcriptional and proteomic signature scores across the

pan-cancer profiles are indicated, along with correlations of the signatures with specific genomic alterations.

(D) A gene expression signature of sensitivity to PI3K/AKT/mTOR inhibition in cancer cell lines, consisting of 146 genes (p < 0.01 by t test and p < 0.01 in regression

model incorporating tumor type as a confounder), was derived using the dataset of Garnett et al. (2012).

(E) Top: for cell lines with both RPPA and mRNA data (n = 231), Pearson’s correlations between key PI3K/AKT/mTOR proteins and PI3K/AKT/mTOR inhibition

sensitivity, as defined by either drug treatment or gene signature from (D). Bottom: TCGA pan-cancer mRNA profiles were each scored for the drug sensitivity

signature from (D); Pearson’s correlations across the pan-cancer profiles, involving transcriptional and proteomic signature scores and selected genomic

features, are indicated. See also Figure S5 and Table S6.
Genetic/Genomic Alteration Classes in Relation to
PI3K/AKT/mTOR Pathway Activation
We then sought to examine the effects on pathway activation of

some key genomic events in the tumors in which they occurred

(including mutations represented in Figure 2A and copy alter-

ations involving PIK3CA, PTEN, and STK11). Of the 7,099 tumor

cases examined (with both mutation and protein data), 4,468

(63%) harbored at least one nonsilent somatic mutation or

copy alteration involving PI3K/AKT/mTOR pathway (Figures 7A
and S6A). Another set of 764 tumors showed high levels of

phospho-AKT (>0.5 SD of pS473 from the median across

samples) but without any of the genetic or genomic alterations

associated with the above 4,468 tumors, and another set of

394 tumors showed low levels of phospho-AMPK (<�0.5 SD)

without an associated genetic or genomic alteration. In compar-

ison with a set of tumors that did not show pathway alteration

at the DNA or protein level (an ‘‘unaligned’’ set, n = 1,058), muta-

tion or copy alteration of individual PI3K/AKT/mTOR pathway
Cancer Cell 31, 820–832, June 12, 2017 827
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Figure 6. Pan-Cancer Molecular Correlates of Patient Survival Involving PI3K/AKT/mTOR Pathway Components

(A) Pathway diagram representing molecular features at the levels of mRNA (using n = 10,152 cancer cases in total with both mRNA and survival data), protein

(n = 7,532), copy number (n = 10,685), and somaticmutation (n = 10,054). Red, significant correlation withworse patient outcome; blue, significant correlation with

better outcome. ‘‘Tumor type corrected’’ survival p values denote significant correlation in model incorporating both the molecular feature and cancer type.

p Values <0.05 correspond to an estimated false discovery rate (Storey and Tibshirani, 2003) of <10%.

(B) Forest plots of hazard ratios by tumor type (with 95% confidence intervals) for patient death forPTEN copy alteration (left) and for STK11 copy alteration (right).

Hazard ratios based on log (tumor/normal) copy values; hazard ratio less than 1 (blue) denotes trend of copy loss with worse outcome. p Value for overall survival

correlation by meta-analysis fixed effects model. Asterisks denote cancer types that were individually significant (p < 0.05).

(C and D) Kaplan-Meier plot of overall survival of patients stratified by PTEN (C) or STK11 (D) alteration. Low del., low-level deletion (partial loss, no detected

mutation); high del., high-level deletion (approximating total loss); mut., somatic nonsilent mutation (no copy loss); mut. + del., copy loss combined with mutation.

Corrected p values by stratified log rank test incorporate cancer type as a confounder. Asterisks denote groups significantly different from wild-type (WT) group

by stratified log rank test.

(E) Kaplan-Meier plot of overall survival of patients stratified by PI3K/AKT/mTOR transcriptional signature (CMAP signature). Corrected p values by stratified log

rank test incorporate cancer type as a confounder.
members in general could be associated with higher PI3K/AKT

or mTOR signaling as measured by protein arrays (Figures 7B

and S6B). Notably, STK11 alteration or low phospho-AMPK

was strongly associated with high mTOR signaling, but not

with high PI3K/AKT signaling, consistent with the LKB1/AMPK

pathway acting onmTOR independently of PI3K/AKT (Figure 2A).

Mutations associated with RTK signaling were not strongly asso-

ciated with PI3K/AKT/mTOR activation (Figures 7A and 7B),

indicative of decoupling between PI3K/AKT/mTOR and RTK.

Low-level as well as high-level copy losses of PTEN and

STK11 could be associated with greater mTOR signaling.

PI3K/AKT/mTOR pathway activity, whenmeasured at the pro-

tein level, was explained by known mutations or copy alteration

in most but not all of the cases examined, suggesting additional,

unexplained, or underappreciated mechanisms of pathway acti-

vation. Focusing on the ‘‘High P-AKT’’ tumor group (n = 764),

with high phospho-AKT but lacking a DNA alteration classically
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associated with PI3K/AKT activation, these tumors were highly

enriched for specific cancer types including LGG, PRAD, KIRC,

and PCPG (Figure 7C), as well as for IDH1mutations (associated

primarily with LGG, i.e., gliomas) and VHLmutations (associated

with renal cancers). A set of microRNAs could also help distin-

guish the ‘‘High P-AKT’’ group (Figure S6C). Proteins that were

highly expressed specifically within the High P-AKT group (Fig-

ure 7D) included phospho-ERK, phospho-SRC, and phospho-

NDRG1. These mutations and proteins would suggest a model

(Figure 7E) whereby mutant IDH1 may lead to high phospho-

ERK (Chaturvedi et al., 2013) and SRC can activate PI3K (Chen

et al., 2015; Su et al., 2016), andwhere activatedmTOR signaling

may activate transcription targets of hypoxia via HIF-1a (partic-

ularly in the absence of VHL), including NDRG1 and growth fac-

tors that may lead to a further increase ERK and PI3K signaling

(Clark, 2009). Notably, VHL was recently found to directly

suppress AKT activity (Guo et al., 2016), and generation of
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Figure 7. Tumor Classes as Defined by PI3K/AKT/mTOR-Related Alterations

(A) Tumor cases were separated into distinct groups on the basis of genetic or genomic alteration and of protein expression: (1) cases with nonsilent somatic

mutation or copy alteration involving selected PI3K/AKT/mTOR pathway members as shown (left side, n = 4,468 cases), (2) additional cases with nonsilent

mutation involving selected receptor tyrosine kinase (RTK)-associated genes (n = 415 cases), (3) cases with high phospho-AKT (HIGHP-AKT) but with none of the

above somatic alterations (n = 764 cases), (4) cases with LOW phospho-AMPK (LOW P-AMPK) but with none of the above somatic alterations (n = 394 cases),

(5) cases not alignedwith any of the above (unaligned, n = 1,058 cases). AKT/MTOR/PIK3CA/PIK3R1/PTENmutations represent ‘‘predicted functional’’ mutations

from Figure 3D. Other mut. track involves nonsilent mutations for other genes represented in Figure 2A (STAR Methods and Figure S6). Protein values and

proteomic scores normalized to SDs from the median.

(B) Boxplots of PI3K/AKT (top) and mTOR (bottom) pathway activity scores by alteration class. p Values by t test on log-transformed values. n.s., not significant

(p > 0.01). Boxplots represent 5%, 25%, 50%, 75%, and 95%.

(C) Enriched tumor types and mutations within the HIGH P-AKT group. p Values by one-sided Fisher’s exact test. IDH1 and VHLmutation events were significant

(p < 1E–10 and p < 0.01, respectively) when limiting the analysis to LGG and to KIRC/KIRP (renal) cases, respectively.

(D) Top differentially expressed proteins in HIGH P-AKT group compared to unaligned and PI3K-altered groups (see STAR Methods), not including core PI3K/

AKT/mTOR members.

(E) Diagram of interactions involving PI3K/AKT/MTORpathway represented by selected features from (C) and (D) (Carbonneau et al., 2016; Dodd et al., 2015; Guo

et al., 2016; Weiler et al., 2014), with differential protein expression patterns represented, comparing tumors in HIGH P-AKT group with tumors harboring PI3K/

RTK genomic alteration or with unaligned tumors. p Values by t test on log-transformed data. See also Figure S6.
2-hydroxyglutarate by mutated IDH1/2 was also recently found

to lead to the activation of mTOR (Carbonneau et al., 2016);

our data here would highlight the importance of both of the

above relationships in the setting of human cancer.
DISCUSSION

TCGA pan-cancer datasets have enabled us to examine human

tumor correlations in the context of PI3K/AKT/mTOR to an extent
Cancer Cell 31, 820–832, June 12, 2017 829



not previously possible. Our current model of the PI3K/AKT/

mTOR pathway has developed over the course of numerous in-

dependent molecular biology studies, spanning decades of

research. In large part, our understanding of the pathway mem-

bers and interactions involved has been derived from experi-

mental systems, including cell lines. While cell lines may uncover

cause-and-effect relationships in vitro, the relevance of such re-

lationships in the setting of human diseases such as cancer may

not always be clear from these data alone. On the other hand,

molecular data from human tumors provide correlative (although

not necessarily causal) relationships that would have relevance

to disease in the human setting. Most of the correlations

observed in our study fit well with our understanding of PI3K/

AKT/mTOR signaling, in particular the genetic or genomic alter-

ation of specific genes having an impact on phospho-protein

expression of key downstream intermediates. Genes or alter-

ation classes that were previously underappreciated would

also be found relevant in our study, including partial loss of

PTEN or STK11 (associated with both worse survival and

increased mTOR signaling). Where gene mutation often inacti-

vates one allele, loss of one allele by copy alteration, which is

common across multiple cancer types for both PTEN and

STK11, would presumably have the same impact on loss of

gene function. IDH1 and VHL mutations would also be impli-

cated here with PI3K/AKT/mTOR, where such alterations were

associated with particularly high AKT/mTOR signaling, and

which genes might be put forth for consideration as part of the

‘‘canon’’ of what would be recognized to constitute the core

standard model of the PI3K/AKT/mTOR pathway.

The multiplatform molecular datasets offered by TCGA allow

for a more comprehensive view of the PI3K/AKT/mTOR

pathway. Pathway alterations in cancer may be manifested at

different levels of molecular complexity, from DNA to protein to

transcriptional consequences. Integration with RPPA proteomic

data allows us to assess the impact on pathway activation ofmu-

tations or copy alterations observed at the DNA level. As

observed in this study, multiple oncogenic pathways in addition

to PI3K/AKT/mTOR may regulate similar sets of transcriptional

targets, where transcriptional patterns would represent a degree

of separation from the pathway as manifested at the protein

level. Phospho-protein levels may only be assessed by protein

data and not mRNA data, which also represents an advantage

of RPPA compared with other proteomic approaches (Creighton

and Huang, 2015). Clear overall trends may be observed when

integrating proteomic data with data from other platforms,

although statistical trends (e.g., visualized as boxplots) would

apply to groups of patients and not always to the individual pa-

tient, which has implications regarding personalized therapy.

Various sources of biological noise, in addition to technical

noise, may be present within human tumors, which give rise to

variation inmolecular signals.Widespreadmolecular aberrations

involving numerous genes and pathways within a given tumor,

clonal heterogeneity, microenvironmental influences, variable

sample purity, and tissue-specific effects can all add noise to

our ability to match protein signals with specific DNA alterations.

The RPPA methodology may have limitations as well (e.g., anti-

body robustness, unknown history of sample material used to

measure potentially labile phosphorylations, linearity of signal

readout, etc.), and instances where proteomic signals would
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seem disconnected from other molecular profile features of a

particular tumor may be difficult to interpret. The power of large

sample numbers and the opportunities for data integration

offered by TCGA pan-cancer cohort can aid greatly in detecting

robust patterns relevant to our understanding aspects of

pathway deregulation.

Results of this study include a comprehensive and annotated

catalog of PI3K/AKT/mTOR-associated variants across over

10,000 tumors, which may serve as an additional resource for

assessing variants in the clinical setting. One of the challenges

of applying personalized and precision medicine approaches

to cancer therapy is the large number of gene alterations that

may be found within a given patient’s tumor. Stratifying patients

by mutation status, e.g., PIK3CA mutation, has been shown to

increase response rates in clinical trials testing inhibitors to

PI3K/AKT/mTOR pathway, although non-responders are still

common (Ilagan andManning, 2016). Not all genetic variants im-

pacting a given gene would necessarily have a similar impact on

its function, including a large fraction of observed PIK3CA vari-

ants. Oncogenic variants that are found to occur frequently or

are associated with a significant pattern would seem likely to

be functionally relevant. Other measures of predicting variant

functionality include in silico structural predictions, in vitro func-

tional assays, domain-specific expertise, and protein expres-

sion, all of which were explored to varying extents in the present

study. In practice, multiple measures may be needed, as no

single measure may capture all of the variants likely to be func-

tional. In addition, the RPPA proteomic platform would have

potential for clinical applications to personalized therapy

(Creighton and Huang, 2015), and transcriptional signatures

associated with inhibitor sensitivity in cell lines may be defined

(Singh et al., 2009). The focused, comprehensive analysis on

the PI3K/AKT/mTOR pathway here will serve as a valuable

resource for understanding its deregulation in cancers and

how to maximize its clinical utility.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects
Cancer molecular profiling data were generated through informed consent as part of previously published studies and analyzed in

accordance with each original study’s data use guidelines and restrictions.

Cell Lines
Assay medium for survival assay were Advanced RPMI 1640 medium (Life Technologies) with 5% FBS (Life Technologies) and

1x GlutaMAX (Life Technologies) for Ba/F3 cells and MEBM Basal medium (Lonza) with 100 ng/ml Cholera toxin (Lonza) and

52 ng/ml Bovine Pituitary Extract (BPE) (Lonza) for MCF10A cells.

METHOD DETAILS

TCGA Patient Cohort
The results here are based upon data generated by TCGA Research Network (http://cancergenome.nih.gov/). Molecular data from

11219 human cancers were aggregated from public repositories (Table S1). Tumors spanned 32 different TCGA projects, each

project representing a specific cancer type, listed as follows: LAML, Acute Myeloid Leukemia; ACC, Adrenocortical carcinoma;

BLCA, Bladder Urothelial Carcinoma; LGG, Brain Lower Grade Glioma; BRCA, Breast invasive carcinoma; CESC, Cervical

squamous cell carcinoma and endocervical adenocarcinoma; CHOL, Cholangiocarcinoma; CRC, Colorectal adenocarcinoma

(combining COAD andREAD projects); ESCA, Esophageal carcinoma; GBM,Glioblastomamultiforme; HNSC, Head and Neck squa-

mous cell carcinoma; KICH, Kidney Chromophobe; KIRC, Kidney renal clear cell carcinoma; KIRP, Kidney renal papillary cell carci-

noma; LIHC, Liver hepatocellular carcinoma; LUAD, Lung adenocarcinoma; LUSC, Lung squamous cell carcinoma; DLBC,

Lymphoid Neoplasm Diffuse Large B-cell Lymphoma; MESO, Mesothelioma; OV, Ovarian serous cystadenocarcinoma; PAAD,
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Pancreatic adenocarcinoma; PCPG, Pheochromocytoma and Paraganglioma; PRAD, Prostate adenocarcinoma; SARC, Sarcoma;

SKCM, Skin Cutaneous Melanoma; STAD, Stomach adenocarcinoma; TGCT, Testicular Germ Cell Tumors; THYM, Thymoma;

THCA, Thyroid carcinoma; UCS, Uterine Carcinosarcoma; UCEC, Uterine Corpus Endometrial Carcinoma.

Datasets
Proteomic data were generated by RPPA across 7663 patient tumors obtained from TCGA. RPPA methodology and quality control

procedures have been described previously (Akbani et al., 2014; Li et al., 2017). In total, 225 high-quality antibodies targeting total

(n=166), cleaved (n=2), acetylated (n=1) and phosphoproteins (n=56) were used. The entire set of RPPA Pan-Cancer samples was run

in several different batches, resulting in potential batch effects on merging the sets; replicates-based normalization (RBN) (Akbani

et al., 2014), was therefore applied, using replicate samples run across multiple batches to adjust the data for batch effects. Data

(‘‘Level 4’’) are available from The Cancer Proteome Atlas (http://tcpaportal.org/tcpa/).

RNA-seq andmiRNA-seq data were obtained from The Broad Institute Firehose pipeline (http://gdac.broadinstitute.org/). All RNA-

seq samples were aligned using the by UNC RNA-seq V2 pipeline (The_Cancer_Genome_Atlas_Research_Network, 2013). For

miRNA-seq data, only sample profiles from the Hiseq platform were used (representing n=8690 cases).

DNA from each tumor or germline-derived sample was hybridized to Affymetrix SNP 6.0 arrays as previously described (The_

Cancer_Genome_Atlas_Research_Network, 2013)(n=10845 tumor profiles in all). GISTIC 2.0 was applied to the transformed copy

number data, with a noise threshold used to determine copy gain or loss. Low-level gene gain, high-level gene amplification, low-level

copy loss, or high-level copy loss were inferred using the ‘‘thresholded’’ calls as made by Broad Firehose pipeline (using +1, +2, -1,

or -2, respectively). High-level amplifications denotes amplifications above the threshold and larger than the arm level amplifications

observed for the given sample. Low-level copy deletions represent deletion above the threshold (approximating heterozygous de-

letions in the absence of whole genome doubling); high-level copy deletions denote copy losses above the threshold and greater

than theminimumarm-level deletion observed for the sample (approximating homozygous deletions in the absence of whole genome

doubling). Log (tumor/normal) copy values were used to evaluate correlations with survival in Figure 6A.

Somatic mutation calls were obtained from the publicly-available ‘‘MC3’’ TCGAMAF file (covering n=10224 patients, https://www.

synapse.org/#!Synapse:syn7214402). This MC3 set is a re-calling of uniform files from all TCGA projects, with variant calling using a

standardized set of mutation callers. The BAM files used underwent a standardized local re-alignment to hg19 (Genome Reference

Consortium GRCh37), six calling algorithms were applied, and a number of automated filters were applied. Variants called by two or

more algorithms were used in the study. Whole genome sequence analysis was carried out for 1363 cases (with paired normal sam-

ples, high pass coverage for BRCA and OV cases, low pass for BLCA, CESC, CRC, ESCA, HNSC, LGG, LUAD, PRAD, SKCM, STAD,

THCA, UCEC, and UVM). Genomic rearrangements were detected in all tumor and normal genomes by Meerkat (Yang et al., 2013).

Five discordant read pairs support are required for each event. Each event was detected in tumor genome was filtered by all normal

genomes to ensure it represented a somatic event.

Gene and Protein Signatures
Pan-cancer RPPA profiles were scored for a PI3K/AKT pathway signature, defined as the sumof normalized phosphoprotein levels of

AKT (both S473 and T308 RPPA features), GSK3 (S9 and S21/S9 features), PRAS40, and phospho-TSC2. RPPA profiles were also

scored for anmTOR pathway signature, defined as the sum of phosphoprotein levels of mTOR, 4EBP1 (S65, T37/T46, and T70 RPPA

features), P70S6K, and S6 (S235/S236 and S240/S244 features).

Gene transcriptional signatures of PI3K/AKT/mTOR pathway were defined as described previously (Creighton et al., 2010): ‘‘Saal’’

PTEN loss signature, genes correlated with Pten protein levels in breast cancer; ‘‘CMap’’ PI3K/AKT/mTOR signature, genes modu-

lated in vitro by inhibitors to PI3K or mTOR, according to CMap dataset (p<0.01, comparing PI3K/mTOR-inhibited cells with the rest

of the Cmap profiles); ‘‘Majumder’’ Akt signature, genes modulated in a mouse model of inducible AKT (p<0.01). MYC signatures

(Coller and Bild) and the Bild Ras signature were from ref (Creighton, 2008), and the Settleman k-ras sensitivity signature were

from ref (Singh et al., 2009). For a given gene transcription signature, we extracted the expression values from the TCGA gene expres-

sion array dataset. For each gene, we normalized expression values to standard deviations from the median across tumors. For

signatures with ‘‘up’’ versus ‘‘down’’ genes, we computed our previously described ‘‘t-score’’ (Creighton et al., 2010) to score

each tumor profile for relative manifestation of the signature.

For deriving a PI3K/AKT/mTOR drug sensitivity signature in cell lines (Figure 5D), we utilized the dataset fromGarnett et al. (Garnett

et al., 2012). For the 11 inhibitors to PI3K/AKT/mTOR represented in Garnett (including Rapamycin:MTOR, JW-7-52-1:MTOR,

A-443654:AKT1/2/3, CHIR-99021:GSK3B, AZD6482:PI3Kb (P3C2B), AKT inhibitor VIII:AKT1/2, Temsirolimus:MTOR, MK-2206:

AKT1/2, NVP-BEZ235:PI3K (class 1) and mTORC1/2, GDC0941:PI3K (class 1), and AZD8055:mTORC1/2), we normalized IC50

values to standard deviations frommedian, then average to get single drug sensitivity score. Each gene was correlated in expression

with the drug sensitivity score, first selecting for genes significant with p<0.01 by t-test on log-transformed data (1099 significant

genes), then further selecting for genes remaining significant after correcting for tissue type differences using a regression model

that incorporates tumor type as a confounder (146 genes with corrected p<0.01).

In Silico Mutation Evaluation
In assessing whether mutations may be more or less likely to have a functional effect on the resulting protein, a number of factors

were considered. Somatic substitution hotspots (470 in total involving 275 genes), based on a previous pan-cancer analysis of
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11119 human tumors (Chang et al., 2016), were incorporated into the present study where noted. Mutation Assessor calls predicting

the functional impact (medium to high) of somatic mutation (Reva et al., 2011) were obtained from cBioPortal (Cerami et al., 2012).

Manual review of variants involving AKT1/2/3,MTOR, PIK3CA, PTEN, RHEB, TSC1/2 was also carried out by domain experts in the

analysis group.Mutations that were predicted as potentially functional by any of the above—aswell asmutations in tumor suppressor

genes (e.g. PTEN, PIK3R1) classified as nonsense, frameshift, or indel—were evaluated separately with respect to comparing with

AKT pS473 phospho-protein expression (Figure 3D).

Cell Line Viability Assays
The effects of mutations on the function of PIK3CA and PIK3R1 were assessed in Ba/F3 andMCF10A by survival assay as previously

described (Dogruluk et al., 2015) with lentiviral vector pHAGE used in the cloning. In Ba/F3, the PIK3CA mutations were assigned as

‘‘Strong activating (SA)’’ if the mutations have an activity higher thanM1043I (knownmoderate driver); as ‘‘Moderate activating (MA)’’

if the mutations have a similar or lower activity than M1043I; as ‘‘No difference from WT (NDFW)’’ if the mutations have a similar

activity with WT; or as ‘‘Inactivating (INA)’’ if the mutations have an activity similar to negative controls (GFP/mCherry/Luciferase).

The PIK3R1 mutations were assigned as ‘‘SA’’ if the mutations have a relative level of activation higher than that of PIK3CA

M1043I comparing to negative controls; as ‘‘MA’’ if the mutations have a relative level of activation between PIK3CA M1043I and

WT; as ‘‘Weak activating (WA)’’ if the mutations have a relative level of activation between PIK3CA WT and negative controls; or

as ‘‘NDFW’’ if the mutations have a similar activity with WT. In MCF10A, the PIK3CA mutations were assigned as ‘‘SA’’ and

‘‘NDFW’’ by the same mean as in Ba/F3 model. The mutations were assigned as ‘‘MA’’ and ‘‘WA’’ if the mutations have an activity

above and lower than 50% of that of M1043I, respectively.

Tumor Classes by Gene Alteration
Genetic/genomic alteration classes in relation to PI3K/AKT/mTOR pathway alteration were defined (Figure 7A), in order to relate

these to PI3K/AKT and mTOR activation, as defined by protein signature score. For AKT/MTOR/PIK3CA/PIK3R1/PTEN mutations,

‘‘predicted functional’’ mutations from Figure 3D were used. An ‘‘other gene mutation’’ class of Figures 7A and 7B involved nonsilent

mutations for other genes represented in Figure 2A (AKTS1, DEPDC5, DEPTOR,MAPKAP1,MLST8, NPRL2, NPRL3, PDK1, PRR5,

RHEB, RICTOR, RPTOR, PIK3C2B). The RTK group represented cases with hotspot mutations in KRAS, BRAF, EGFR, or ERBB2,

that were not also included in the other PI3K/AKT/mTOR-related groups. The set of genes previously found significantly mutated

in pan-cancer analysis (Lawrence et al., 2014), were searched for enrichment of mutation events within the High P-AKT group (Fig-

ure 7C). When defining proteins that were highly expressed specifically within the High P-AKT group (Figure 7D), RPPA features were

selected that were over- or under-expressed in the High P-AKT compared to unaligned cases (p<0.05, t-test on log-transformed

data) for at least four of the seven cancer types, and differentially expressed in High P-AKT compared to unaligned and to PI3K/

AKT/mTOR or RTK-altered cases across all cancer cases (p<0.01 for each).

QUANTIFICATION AND STATISTICAL ANALYSIS

All p values were two-sided unless otherwise specified. Statistical significance was defined at the 0.05 threshold. All available TCGA

data in the public domain at the time of this study was utilized, and no patients were deliberately excluded. Differential expression

between comparison groups was assessed using t-test on log-transformed values. For visualization using heat maps and box plots,

mRNA and protein expression values were z-normalized to standard deviations from the median across all tumor sample profiles.

Individual gene and protein features were evaluated for correlation with patient survival by univariate Cox analysis; in addition, a

stratified Cox model was used to evaluate survival association when correcting for tumor type. For PTEN and STK11 copy alteration

features (Log [tumor/normal] ratios), Cox regression analysis within each individual cancer type was carried out; then, in order to

aggregate the results across cancer types, we used ‘‘metafor’’ R package to conduct meta-analyses, with a random-effects model

used to estimate the overall effectiveness of the molecular feature. For Kapan-Meier plots, a stratified Log-rank test evaluated dif-

ferences between tumor groups after correction for tumor type. Patient survival data from TCGA were current as of March 31, 2016.
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