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Highlights
Somatic mosaicism resulting from
post-zygotic mutations has been
shown to contribute to many diseases
including brain-related disorders, in
addition to cancer. Emerging data also
suggest that mosaicism is common in
healthy individuals.

Mutations occurring late in develop-
ment have very low allele fractions,
and their detection requires specia-
lized algorithms and filters that can
remove artifacts that arise in sample
handling, DNA sequencing, and
analysis.
Somatic mutations have been studied extensively in the context of cancer.
Recent studies have demonstrated that high-throughput sequencing data can
be used to detect somatic mutations in non-tumor cells. Analysis of such
mutations allows us to better understand the mutational processes in normal
cells, explore cell lineages in development, and examine potential associations
with age-related disease. We describe here approaches for characterizing
somatic mutations in normal and non-tumor disease tissues. We discuss
several experimental designs and common pitfalls in somatic mutation detec-
tion, as well as more recent developments such as phasing and linked-read
technology. With the dramatically increasing numbers of samples undergoing
genome sequencing, bioinformatic analysis will enable the characterization of
somatic mutations and their impact on non-cancer tissues.
Emerging technologies, such as sin-
gle-cell sequencing and linked-read
sequencing, allow improved phasing
of variants, thus increasing detection
accuracy.
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Somatic Mosaicism and Challenges in Detecting Mosaic Variants
Genomes from individuals of the same species differ from one another because of a constant
influx of genetic mutation and recombination. Single-nucleotide variants (SNVs; see Glos-
sary), copy-number variants (CNVs), transposable element (TE) insertions, and other
structural variants (SVs) are common types of genetic variation. Population-level heteroge-
neity generally arises due to germline mutations that occur before the formation of the zygote,
and are inherited by all cells in the offspring. However, heterogeneity within an individual may
also exist due to somatic mutations that occur post-zygotically and exist only in a subpopu-
lation of cells. The genetic heterogeneity resulting from somatic mutations is known as somatic
mosaicism. Recent papers have attempted to characterize somatic mosaicism [1], but the
extent to which it exists, whether specific regions of the genome and nucleotide contexts are
more susceptible to it, and how it impacts on normal cellular function remain open questions.

In bulk sequencing data, somatic mutations have variant allele fractions (VAFs) that deviate
from those typical of germline mutations (�0.5/1 for heterozygous/homozygous). The VAF of a
somatic mutation depends both on the prevalence of the mutation, which is largely driven by
how early the mutation occurs in development, and on the heterogeneity of the tissue selected
for sequencing. For example, if a mutation occurs during the first cell division, and every cell
produces the same number of descendants, the VAF would be �0.25 in an unbiased sample
(Figure 1, Key Figure). At the other extreme, if a mutation is uniquely acquired in a post-mitotic
cell, the VAF would be infinitesimal (if bulk sequencing with 1 million cells, the VAF would be
�0.5 � 10�6). In general, somatic mutations occurring earlier during development attain higher
VAFs than those occurring later. However, asymmetry in the developmental cell-lineage tree [2],
heterogeneity in selective pressure across tissues [3], and technical factors (such low read
depth, sequencing errors, and misalignment) can violate this principle.

A great deal of work has been done to develop algorithms for detecting somatic mutations in
cancer. However, the VAFs of functionally relevant cancer mutations tend to be higher than
those in normal cells because of the selective advantage conferred by those mutations in
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Glossary
Allelic imbalance/allele dropout: a
difference in the sequencing of two
alleles caused by differential
amplification (allelic imbalance) or
amplification failure (allele dropout) of
one allele. This is a frequent source
of error in single-cell DNA
sequencing.
Amplification bias: the differential
amplification of a region of DNA
relative to another, resulting in
unequal coverage across the
genome.
Bulk sequencing: the sequencing
of DNA extracted from a large
number of cells from the same
individual.
Copy-number variant (CNV): a
section of the genome that has a
different number of repeats or copies
than the reference genome.
Coverage: the number of reads
overlapping a region in DNA
sequencing, also known as depth.
Sequence coverage can also refer to
the average number of reads
covering loci across the entire
genome.
Haplotype: a segment of DNA that
is inherited as a block from a single
parent.
Indel: the insertion or deletion of a
small sequence of DNA (1–50 bp) in
the genome; affects fewer bases
than a structural variant.
Phasing: the process of statistical
estimation of the haplotypes of an
individual by using the variants in
their genome, also called haplotype
estimation.
Single-nucleotide variant (SNV): a
single nucleotide in the genome of
an individual that differs from the
nucleotide in the reference
sequence.
Somatic mutation: a change to the
genome of an individual that arises
during its lifetime as opposed to
being inherited; also called a post-
zygotic mutation.
Somatic mosaicism: the presence
in an individual of at least two
genetically distinct populations of
cells that arise from somatic mutation
(s).
Structural variant (SV): a
rearrangement of the genome that
affects a region greater than 50 bp.
Structural variation comprises many
types of variants with varying length
scales, including deletions, insertions,
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Figure 1. Somatic mutations arise during development and propagate to a subpopulation of cells (blue, 50% of cells; red,
25%; yellow, 12.5%). With bulk sequencing these somatic mutations are expected to be approximately half of the
subpopulation frequency. Lower-frequency somatic mutations require higher sequencing depth to maintain detection
sensitivity. With single-cell sequencing, somatic mutations can be detected as heterozygous variants that occur in a subset
of cells. The ability to detect variants is dependent on uniformity of coverage and allelic balance in genome amplification, as
well as on picking cells that contain variants. Clonal expansion followed by bulk sequencing does not suffer from the
problems associated with single-cell sequencing, but artifactual mutations that occur early during expansion (green) can
be difficult to distinguish from mutations in the original cell.
proliferating cells. Thus, many popular algorithms for cancer are not focused on detecting very
low VAF events (e.g., <5% [4]), and comprehensive detection of somatic mutations at arbitrarily
small VAFs in normal cells requires alternative methods. In addition, somatic mutations in
cancer are typically identified by the tumor–normal design in which tumor tissue is compared to
non-cancerous (‘normal’) tissue from the same individual to determine the mutations unique to
the tumor. For non-cancer samples, mosaic variants arising early in embryogenesis are often
shared among many tissues. This makes it difficult to identify a clear normal cellular subpopu-
lation that can serve as a matched control. With careful selection of tissue specimens, however,
it is possible to derive an accurate list of mosaic mutations that allows lineage analysis of cells in
an individual. For example, Lodato et al. [5] analyzed heart and brain tissues, which develop
from the mesoderm and ectoderm, respectively, to find mosaic mutations informative of brain
cell lineage; Behjati et al. [6] compared endoderm-derived gastrointestinal tissues to mouse tail,
which consists of both mesodermal and ectodermal tissues, to find early embryonic mutations.
The locations of selected specimens within a larger tissue can also be relevant: Martincorena
et al. [7] utilized ultra-deep sequencing of multiple nearby fine biopsies to infer spatial patterns
and rates of mosaicism in human skin.

In this review we provide an overview of somatic mutation analysis in normal cells. We first cover
the various platforms and experimental designs including bulk sequencing and single-cell
546 Trends in Genetics, July 2018, Vol. 34, No. 7



translocations, and TE insertions.
SVs encompass events that result in
CNVs and copy-neutral events.
Transposable element (TE): a
sequence of DNA that, either via an
RNA intermediate (retrotransposons)
or a DNA intermediate (DNA
transposons), can relocate within a
genome. Active TEs include L1 and
Alu elements.
Variant allele fraction (VAF): the
fraction of sequencing reads in a
sample corresponding to the non-
reference allele. For bulk sequencing
data, this is an estimate of the
frequency of DNA molecules carrying
the variant.
Whole-genome amplification
(WGA): the amplification of a single
genome, or a similarly limited amount
of DNA, to generate sufficient DNA
for sequencing. WGA is necessary
for single-cell DNA sequencing.
sequencing. We then describe strategies for detecting variants such as phasing of haplo-
types, as well as common pitfalls encountered in these analyses.

Strategies for Profiling Mosaic Variants
Whole-genome sequencing (WGS), whole-exome sequencing (WES), and targeted panels
offer tradeoffs between the types of detectable variants and the range of detectable VAFs.
WGS produces the most uniform read depth across the genome and enables the detection of
most types of somatic mutations, including structural variants. However, detection is limited to
relatively high VAF mutations because the high sequencing depth required to detect low VAF
mutations remains prohibitively expensive [8]. If attention can be restricted to specific loci, a
customized panel can be constructed (e.g., amplicon-seq or targeted hybridization methods)
and sequenced at very high depth (e.g., >100 000�). WES offers a compromise between
WGS and small panels by targeting the �1–2% of the genome that codes for proteins and does
not need to be custom-designed.

Characterizing Variants at the Single-Cell Level
Unlike bulk sequencing strategies that pool DNA from thousands or millions of cells, single-cell
sequencing attempts to sequence the DNA of only one cell. The advantage is that rare mosaic
mutations can bemoreeasily detected: if present ina diploid region of thechosencell, themutation
will be present on one of two alleles, regardless of its frequency in the surrounding tissue (Figure 1).
This shifts the technical difficulties associated with low frequency away from variant detection and
onto the cell selection process. To estimate the overall frequency of each mutation in the tissue,
multiple single cells must be sequenced, which can be expensive, laborious, and confounded by
sampling bias. Hybrid experimental designs integrating bulk (either WGS or targeted) and single-
cell approaches can address many of these issues. For example, somatic mutations discovered in
bulk can be confirmed by single-cell data, and frequencies for somatic mutations discovered in
single cells can be estimated from bulk sequencing.

A common strategy to produce sufficient input DNA for next-generation sequencing from a single
cell is clonal expansion, in which a cell is expanded in culture until there are sufficient cells to
perform standard bulk sequencing [6,9–13]. However, additional mutations – especially SNVs –

are continuously acquired during expansion, and these must be differentiated from mutations that
existed in the founding cell. This is often addressed by discarding low VAF candidate mutations
because in vitro mutations acquired after the first mitosis should be present at <25% VAF if cell
division in culture is approximately symmetric. However, this symmetry assumption could be
violated by variability in cell cycle length and the potential for selectively advantageous mutations in
vitro, and careful analysis is therefore warranted. It has also been shown that in vitro mutations can
be characterized by mutational signatures that correlate with increasing culture time [6,10]. An
additional concern is that only a subset of the isolated single cells may successfully expand into
colonies, possibly reflecting differences in cell fitness, tolerance to handling and cell culture, or
stochastic effects. Thus, studies relying exclusively on clonal expansion might not provide an
accurate picture of tissue heterogeneity owing to biased loss of specific cell types. Forpost-mitotic
cell types (e.g., neurons), clonal expansion is not directly applicable. Encouragingly, a recent study
demonstrated that adult neurons in mice could be clonally expanded and sequenced after
inducing totipotency via single-cell nuclear transfer (SCNT) [14]. However, SCNT is labor-inten-
sive, notoriously inefficient, and may be even further affected by selection biases.

Another widely used approach to produce enough DNA from a single cell is to apply whole-
genome amplification (WGA) [15–17] followed directly by sequencing. This approach has
been used both in cancer [18–20] and in development [5,21–24]. Several methods for WGA are
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available, and represent different tradeoffs between genomic coverage, amplification unifor-
mity, and artifact load, and are reviewed elsewhere [15]. Because cell culture is unnecessary,
WGA-based methodologies enjoy significant cost savings in both labor and reagents, and can
be directly applied to post-mitotic cells (such as neurons) and cells that are difficult to culture.
The technical simplicity of WGA has also made it an attractive technology for scaling to handle
hundreds or thousands of cells simultaneously [25,26]. However, the disadvantage of WGA is
the introduction of considerable amplification bias and allelic imbalance/allele dropout,
which can produce artifacts that can be difficult to distinguish from true mutations. Research to
improve variant calling despite these amplification artifacts is ongoing. It was recently demon-
strated [27] that good specificity can be achieved for SNV detection for candidate somatic
mutations that can be linked to nearby germline heterozygous variants (�20% of the candi-
dates, if using standard Illumina sequencing; discussed further below).

Mosaic Mutation Calling
Approaches for Filtering Germline Variants
In cancer applications, mutation callers are often designed to simultaneously evaluate data
from tumor and matched normal tissue from the same individual to discard mutations with any
support in the normal tissue [4,28–31]. Germline variants can also be filtered out by querying
public variation databases or by using a ‘panel of normals’ (PON) consisting of unrelated
individuals (Figure 2). A recent study estimated that common variants in the public dbSNP
database account for �95% of germline SNVs in a typical human genome [32–34]; however,
there is also evidence that aggressive exclusion of all polymorphic sites in dbSNP could lead to
considerable false negative rates [35]. If the PON samples are processed and analyzed in the
same way as the tumor, the PON approach can better control for systematic artifacts, such as
those due to misalignment. For removing germline variants, it has been estimated that a PON
consisting of at least 400 individuals would be necessary to reach the accuracy of having a
matched normal sample [36]. Matched normal tissue sequencing, PON approaches, and
population databases are often combined to achieve high specificity.

Applying these same strategies to detecting somatic mutations in non-tumor samples is prob-
lematic because there is no clear ‘normal’ tissue to use as a reference. When another tissue from
the same individual is used as a reference, a true somatic mutation can be present in the reference
sample if the mutation occurred in a common ancestor to both selected tissues. A large panel of
other individuals may be used, with all samples being processed in the same way as the sample of
interest. However, because the somatic mutation rate in non-cancer samples is much lower than
in cancer [37–39], studies of somatic mosaicism are substantially less tolerant of false positives.
More sophisticated algorithms and a series of stringent filters are necessary for detecting somatic
mutations with higher accuracy. One example is MosaicHunter [40], which aims to detect mosaic
SNVs without a matched normal by using a Bayesian approach.

Some have applied germline variant callers, such as the Genome Analysis Toolkit (GATK)
HaplotypeCaller, to detect mosaic SNVs [41]. One approach is to search for ‘heterozygous’
mutations and then to distinguish somatic mutations from germline mutations using a VAF
threshold or other ad hoc heuristics. To increase sensitivity for low VAF variants, one could set
the ‘ploidy’ in GATK HaplotypeCaller to be high, which lowers the expected VAF for a
heterozygous variant [42]. However, a straightforward application of a germline caller is unlikely
to yield sufficient sensitivity.

A parent–offspring trio analysis greatly increases the accuracy of variant detection because
mosaic mutations arising post-zygotically in a child are unlikely to be shared by the parents.
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Figure 2. Different Strategies for Detecting and Filtering Somatic Mutations. Somatic variant callers for a tumor
tissue often require a matched normal tissue from the same individual. However, this strategy is not possible when
matched normal tissue is unavailable. For somatic mosaicism in a non-tumor tissue, a matched ‘normal’ may not exist
because mutations of interest can be shared across tissues. Whenever matched normal tissue is unavailable, germline
variants as well as some artifacts can be removed by querying public variation databases or by constructing a ‘panel of
normals’ from sequencing data of unrelated individuals. Additional filters can be applied to further remove artifacts, and
both PON and variant databases are frequently applied when matched normal tissue is available to improve specificity.
Recently, four groups [41–44] studying autism spectrum disorders successfully detected
mosaic SNVs by WES of parent–offspring trios using various approaches. However, even
after removing variants present in either parent, mosaic SNV validation rates remained modest
(�10–40%; validation is discussed further below). Each study found it necessary to apply
additional filters to reduce false positives, and in some cases it was necessary to exclude
families with excess candidate mutations altogether. It was also apparent that the detection
sensitivity and accuracy of many tools were diminished for mosaic SNVs with VAF <0.10.

Detection of Mosaic Structural Variations
Somatic CNV detection in cancer is complicated by clonal heterogeneity as well as by
experimental and technical noise, thus requiring sophisticated computational approaches
[45]. Detecting mosaic CNVs in non-tumor samples is challenging because the amplitude
of the copy-number change may be small, and matched normal samples are frequently
unavailable. Some success in identifying mosaic CNVs has been achieved in single-cell
sequencing data [21,22] or WES data [46], but they are limited to large, Mb-scale CNVs.
Combined haplotyping (described later) of CNVs and SNVs or pedigree-based analyses appear
to be the most promising strategies for detecting mosaic CNVs [47,48].
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Structural variation consists of many types of variants with varying length-scales, including
deletions, insertions, translocations, and TE insertions (SVs encompass events that result in
CNVs and copy-neutral events). A survey of existing SV callers can be found elsewhere [49].

Less progress has been made in detecting mosaic SVs because most somatic SV methods in
cancer require matched normal data [50–54]. A recent method called MrMosaic can detect
mosaic SVs without any matched normal by using deviations in coverage and allele fraction at
polymorphic SNV sites [46]. However, MrMosaic can only detect insertions, deletions, and
loss-of-heterozygosity events, and does not identify specific breakpoints.

TEs are DNA sequences that can be copied and reinserted into the genome. Although most
TE activity in somatic tissue is repressed, some TEs are active during early embryogenesis
and in germline cells. TEs have been shown to play important roles in many cancers [55–57],
and there is some evidence that TEs may contribute to neuronal diversity, although the rate of
such insertions has been shown to be much lower than was initially proposed [58]. Detection
of mosaic TEs from bulk data is difficult unless the insertion occurred early in development
and has a high VAF. Alternative approaches include L1-insertion profiling [59] or WGS [23] for
single cells.

Alternative Technologies
Although short-read sequencing has matured considerably, it still suffers from alignment issues
(especially in repetitive regions) and has limited power to detect complex structural variants. In
particular, detecting very low VAF variants requires relying on as few supporting reads as
possible, and even the smallest error rate in sequencing introduces potential artifacts. Read
misalignments, which can create artifacts with many supporting reads, are often very difficult to
differentiate from true somatic mutations. One recent technology with potential to alleviate
issues related to short-read alignment is linked-read sequencing, in which fragments derived
from the same long DNA molecule share a unique barcode [60]. These short fragments are then
sequenced using standard short-read platforms, and the barcodes are used to stitch the reads
into long sequences representing the original DNA molecule. Linked-read sequencing incurs
additional cost for library construction but provides new opportunities for haplotype construc-
tion, detecting complex structural variants and extending mutation detection into repetitive
regions of the genome. Single-molecule sequencing chemistries from PacBio and Oxford
Nanopore also offer similar advantages, but their relatively high per-base error rate and cost do
not make them competitive for large-scale profiling at this point.

Methods have also been designed to reduce the rate of sequencing artifacts to an order of
magnitude below the expected range of somatic mutation rates by sequencing both the
forward and reverse DNA strands [61,62]. The mutations identified represent a random
sampling of mosaics from the cell population and can provide estimates for somatic mutation
rates and spectra. In theory, these methods can detect mutations present on only a single DNA
molecule with reasonable specificity. In practice, a small fraction of the genome can be assayed
and higher VAF mutations are more likely to be sampled.

Increasing Accuracy by Haplotype Phasing
A haplotype is the sequence of alleles on one chromosome that are inherited from a single
parent and haplotype phasing – sometimes simply referred to as haplotyping or phasing – is the
process of identifying alleles that are colocated on the same chromosome. Haplotype phasing
is informative in several applications, including correlating genetic variation with disease,
detecting genotyping error, inferring evolutionary history, and examining the effect of
550 Trends in Genetics, July 2018, Vol. 34, No. 7



cis-regulatory elements on gene expression [63]. Phasing is beneficial for somatic mutation
detection because true mosaic events create a new haplotype with a consistent allele
sequence, whereas artifacts often associate with haplotypes non-specifically.

Read-Based Phasing for Mosaic SNVs
Traditional germline phasing methods infer haplotypes by taking advantage of segregation
patterns in related individuals [63] or models of genetic recombination and mutation in a large
population [63,64]. However, these methods require genotype data from several individuals
and depend on genetic inheritance, and they are therefore of little use when phasing de novo
somatic mutations. Sequencing data enable a different approach to phasing by exploiting the
direct physical evidence of linkage provided by reads (or read pairs) that span multiple variants.
This ‘read-based’ phasing approach does not rely on inheritance and can be easily applied to
data from a single individual; however, it is only effective when consecutive variant loci are close
enough to be covered by a single sequencing read (or read pair). Because the read (or library
fragment) length determines the maximum linkable inter-variant distance, the effectiveness of
this approach depends considerably on the choice of sequencing platform [65,66].

Spontaneously arising mosaic mutations are extremely unlikely to affect more than one haplotype,
and true mosaics that can be linked to a nearby germline heterozygous variant should therefore be
associated with only one of the two germline alleles. In bulk sequencing data of diploid organisms,
a pair of SNVs consisting of a mosaic mutation and a germline heterozygote should therefore
produce three haplotypes (Figure 3A,B), whereas some types of artifacts (e.g., misalignment,
sequencing errors at homopolymers, sample contamination) would associate with both alleles,
generating additional haplotypes. Most candidate mosaic mutations with two or four apparent
haplotypes can be safely rejected. This approach has been successfully applied in various studies
[2,42,43], andspecialized mutation-and-linkagecallershavebeen developed [67]. Althoughonly a
small set (�10–30%) of candidate mosaic events are sufficiently close to be linked to germline
SNPs, the retained mutations are typically of higher quality. However, it is important to note that a
significant fraction of variants with three haplotypes may still be false positives [42], most likely due
to misalignment (Figure 3C). This is most prominent in repetitive regions, but must also be guarded
against in nonrepetitive regions.

The linkage principle can beextendedto two or more nearby germline heterozygotes to reduce the
probability that an artifact associates only with a single germline allele by chance. However, the
number of potential haplotypes increases exponentially with the number of heterozygotes con-
sidered, which quickly leads to computational issues. An algorithm called LocHap [68] models the
number of haplotypes at several SNVs in small genomic regions, and defines regions with three or
more haplotypes to contain mosaic events. However, because consideration of all possible
haplotypes is computationally expensive, it disregards regions with more than three SNVs.

Phasing for Single Cells, Structural Variants, and the Use of Linked Reads
For single-cell data, read-based phasing is particularly attractive because standard variant
callers have difficulty distinguishing true mutations from the relatively large number of artifactual
mutations that arise in genome amplification. Although only �20% of the total candidate
mutations in single-cell WGS data can be phased, that subset can be used to infer the
genome-wide mutation rate and to characterize the sequence features of the mutational
processes. Recently, a method called LiRA was developed based on this idea [27] and
was applied to neuron WGS data to demonstrate that aging and neurodegeneration are
associated with an increased rate of mutation in the brain and to infer the source of those
mutations [24].
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Figure 3. Overview of Read-Based Mosaic Phasing Scenarios. Read-based phasing can help to identify true somatic mosaic mutations by examining the
relationship between germline heterozygous (het) variants and putative somatic mutations. However, some patterns of false positives can confound this method. (A) If a
real mosaic single-nucleotide variant (SNV, red star) arises near a heterozygous single-nucleotide polymorphism (SNP) it will always be found in conjunction with one of
the two SNP alleles (green) and will never appear on reads with the other allele (blue). This generates three haplotypes in bulk sequencing (HM for mosaic haplotype, in
addition to HA and HB). (B) Similarly, a true mosaic CNV will phase with one allele of a nearby heterozygous SNP, resulting in three haplotypes. (C) A segmental
duplication (dup) can cause a germline variant (orange) occurring on one duplicated segment to phase to a nearby heterozygous SNP occurring on both segments as if it
were somatic, resulting in a false positive identification.
The prevalence of SVs in healthy individuals is still under active investigation [69]. Current SV
phasing methods are limited to germline events and often rely on data from multiple sequencing
strategies [70]. Mosaic SVs can, in principle, be phased to a germline SNV in a manner
analogous to mosaic SNVs by regarding the inferred SV breakpoint as a point event. As in
SNV detection, artifactual mosaic SVs are likely to link to both of the germline alleles (Figure 3B).

Longer sequencing reads increase the power of read-based haplotyping by increasing the
fraction of the genome that can be physically linked to germline heterozygous sites [65,71], and
by improving alignment to repetitive regions. Currently, the applicability of long-read platforms
to mosaic mutation detection is limited owing to high cost and low per-basepair accuracy.
However, an effective compromise may be provided by recent linked-read sequencing plat-
forms that retain much of the long-range linkage information while achieving error rates similar
to standard short-read sequencing. Several programs specializing in the phasing of linked
reads are now available [60,72,73], and additional developments are likely to play an important
role in future investigations of mosaic mutations.

Pitfalls in the Detection of Mosaic Variants
The search for mosaic mutations can be confounded by many factors, and claims of mosaic
mutation discovery should be made cautiously. Several artifact sources that may lead to false
positive mosaic calls are discussed below and summarized in Figure 4.
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DNA Contamination
DNA contamination – whether by other samples or artificial constructs – can occur at several
steps during sample handling and sequencing. DNA contamination by other human subjects
is perhaps the most dangerous: it was recently estimated that 1.5% contamination by
another human source is a common occurrence, and this produces roughly 0.2 erroneous
somatic mutation calls per Mb in tumor–normal experiments [74], a considerable burden
given that somatic mutation rate estimates in various cancers roughly range from 0.1 to 100
SNVs per Mb [1]. In principle, if genotypes for the contaminating individual are known, then
putative somatic mutations coinciding with known genotypes in the contaminant should be
treated with suspicion; if the contaminant is unknown, common variants from population
databases can serve as an approximate substitute. Several algorithms can quantify con-
tamination from sequencing data when the source is unknown [74–76] or known [77–80].
Some somatic mutation callers can be adjusted to compensate for contamination
[4,29,75,81], but it is also reasonable to remove candidate mutations at known polymorphic
sites (with the associated loss of sensitivity in mind) or to exclude highly contaminated
samples altogether.
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DNA Damage
Low levels of DNA damage frequently occur during routine sample handling and storage. Many
sources of DNA damage have been identified: for example, UV radiation can create pyrimidine
dimers [82], high temperature increases the rate of spontaneous cytosine deamination resulting
in C > T transitions [83], reactive oxygen species can induce 7,8-dihydro-8-oxo-20-deoxy-
guanosine (8-oxoG) which can mis-pair with A [84], and ionizing radiation can cause double-
stranded DNA breaks [85]. These types of infrequent damage often go unnoticed in germline
variant analyses, but they become much more prominent when low VAF somatic mutations are
of interest. It was recently found that the majority of low VAF G > T/C > A somatic mutations in
an exome dataset were likely caused by oxidative damage during library construction
[43,61,86], and that similar damage is widespread in WGS samples [87]. Single-cell sequenc-
ing experiments are especially vulnerable to DNA damage before amplification because a
single-base lesion affects a quarter of the original DNA strands. Indeed, pronounced effects
have been observed when single cells are lysed by heat treatment [88]. Added care in sample
handling and during routine benchwork may help to prevent damage to some extent, but
investigators should remain wary because the full spectrum of damage-inducing processes is
unknown.

Read-Mapping Problems
Improperly aligned reads are responsible for a large fraction of false positive variant calls,
especially for the low VAF cases. Misalignment or non-unique alignment often occurs near an
indel or in repetitive regions of the genome, such as centromeres or telomeres. Although
repetitive regions are estimated to account for nearly half of the human genome [89], they
pose such a great a challenge for mutation detection that they are often excluded from
analysis [2,43,90]. Reads can also be misplaced due to limitations of the reference genome,
which lacks any representation of genetic variation. Emerging long- and linked-read tech-
nologies will be needed to mitigate alignment issues. Ultimately, de novo assembly that does
not rely on a reference genome will be needed; however, it is not yet feasible for routine
analysis [72,73,91–93].

Sequencing Artifacts
While tolerable for germline variant calling, the per-base error rates intrinsic to sequencing
platforms (�0.3% are miscalls according to one estimate [94]) are high relative to the rate of
somatic mutation. If miscalls were produced independently, they would essentially be sup-
ported by only a single sequencing read, and thus be removed. However, artifacts are
frequently reproduced by factors that increase local error density, such as homopolymer runs
and high GC content [94–98], early amplification errors [99–101], uneven capture efficiency
[102], and incorrect sample assignment in multiplexed sequencing runs [103]. Technical
replicates can provide a modicum of internal control [104], but true low VAF mutations may
also be less reproducible because of sampling bias.

Validation Methods for Mosaic Mutations
Because false positive mosaic mutations can arise from very many sources, confirmation using
an orthogonal technology is essential. Available methodologies offer tradeoffs in cost, effort,
and scalability [105,106]. A popular method is droplet digital PCR (ddPCR), which can achieve
sensitivity as low as 0.001% VAF by performing millions of fluorescently labeled PCR reactions
in nanoliter-sized droplets and measuring the fraction of fluorescent droplets [107]. A disad-
vantage of ddPCR, however, is that it is less scalable because PCR probes must be designed
for every candidate mutation, and options for target multiplexing are currently limited [108].
Another approach is multiplexed confirmation of many candidates using deep sequencing,
554 Trends in Genetics, July 2018, Vol. 34, No. 7



Outstanding Questions
What is the role of somatic mosaicism
in human evolution and human
diseases?

What are the best bioinformatic
approaches for identifying somatic
mutations, especially when matched
controls are not available? Could we
use haplotype phasing to improve var-
iant identification?

What are the common artifacts that
confound detection of mosaic variants,
and how do we mitigate their effect?
Which methods should be used to val-
idate mosaic mutations?
either through unique molecular barcodes that aid in artifact removal [109] or by sheer
sequencing depth [110–113]. Mutations with VAF as low as 0.1% have been confirmed using
these techniques [109,110]; similarly, mutations with relatively high VAFs can be distinguished
from heterozygous germline mutations when high sequencing depth allows a more precise
estimate of their VAFs. Ideally, multiple tissues from the same individual should be examined to
confirm the somatic nature of a mutation. Single-cell sequencing may also provide confirmation
for candidates identified in bulk sequencing; however, given sampling noise a large number of
cells may be necessary to capture the cells carrying the mutation of interest for low-VAF
mutations.

Concluding Remarks and Future Perspectives
Somatic mutations are being implicated in a growing number of diseases. As our understanding
of mutagenic processes in normal cells increases, we will be able to better delineate the extent
of somatic mosaicism in healthy individuals and their potential contribution to a wide range of
diseases (see Outstanding Questions).

Although methods for the detection and validation of somatic mutation have long been studied
in cancer research, characterization of mutation in non-tumor cells presents new challenges
due to (i) the orders-of-magnitude lower mutation rates, and (ii) the extremely low frequency of
the majority of variants in the absence of selection. Many of the artifacts we have described –

sample contamination, damage to DNA in vitro, read misalignment, sequencing instrument
errors, and platform biases – tend to occur at low allele frequencies and vastly outnumber
mosaic mutations. Whereas germline sequencing is typically done at �30� (thus an average of
�15 reads supporting a heterozygous variant), the same level evidence for a low-frequency
somatic variant would require an amount of sequencing that is currently impractical unless
confined to a small region.

Thus, bioinformatics algorithms that incorporate refined filtering criteria will be key for improved
sensitivity and specificity in mutation detection. Recent advances in machine-learning algo-
rithms, for instance, offer the possibility that various features related to the supporting reads
and their configurations could be combined more efficiently for higher prediction accuracy.
Experimental and computational methods are still being developed for single-cell approaches,
but they will be essential for detailed analysis of how mutations arise de novo.
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