Publications by Year: 2012

Alekseyenko AA*, Ho JWK*, Peng S*, Gelbart M, Tolstorukov MY, Plachetka A, Kharchenko PV, Jung YL, Gorchakov AA, Larschan E, Gu T, Minoda A, Riddle NC, Schwartz YB, Elgin SCR, Karpen GH, Pirrotta V, Kuroda MI**, Park PJ**. Sequence-specific targeting of dosage compensation in Drosophila favors an active chromatin context. PLoS Genet 2012;8(4):e1002646.Abstract

The Drosophila MSL complex mediates dosage compensation by increasing transcription of the single X chromosome in males approximately two-fold. This is accomplished through recognition of the X chromosome and subsequent acetylation of histone H4K16 on X-linked genes. Initial binding to the X is thought to occur at "entry sites" that contain a consensus sequence motif ("MSL recognition element" or MRE). However, this motif is only ∼2 fold enriched on X, and only a fraction of the motifs on X are initially targeted. Here we ask whether chromatin context could distinguish between utilized and non-utilized copies of the motif, by comparing their relative enrichment for histone modifications and chromosomal proteins mapped in the modENCODE project. Through a comparative analysis of the chromatin features in male S2 cells (which contain MSL complex) and female Kc cells (which lack the complex), we find that the presence of active chromatin modifications, together with an elevated local GC content in the surrounding sequences, has strong predictive value for functional MSL entry sites, independent of MSL binding. We tested these sites for function in Kc cells by RNAi knockdown of Sxl, resulting in induction of MSL complex. We show that ectopic MSL expression in Kc cells leads to H4K16 acetylation around these sites and a relative increase in X chromosome transcription. Collectively, our results support a model in which a pre-existing active chromatin environment, coincident with H3K36me3, contributes to MSL entry site selection. The consequences of MSL targeting of the male X chromosome include increase in nucleosome lability, enrichment for H4K16 acetylation and JIL-1 kinase, and depletion of linker histone H1 on active X-linked genes. Our analysis can serve as a model for identifying chromatin and local sequence features that may contribute to selection of functional protein binding sites in the genome.

Evrony GD*, Cai X*, Lee E, Hills BL, Elhosary PC, Lehmann HS, Parker JJ, Atabay KD, Gilmore EC, Poduri A, Park PJ, Walsh CA. Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 2012;151(3):483-96.Abstract

A major unanswered question in neuroscience is whether there exists genomic variability between individual neurons of the brain, contributing to functional diversity or to an unexplained burden of neurological disease. To address this question, we developed a method to amplify genomes of single neurons from human brains. Because recent reports suggest frequent LINE-1 (L1) retrotransposition in human brains, we performed genome-wide L1 insertion profiling of 300 single neurons from cerebral cortex and caudate nucleus of three normal individuals, recovering >80% of germline insertions from single neurons. While we find somatic L1 insertions, we estimate <0.6 unique somatic insertions per neuron, and most neurons lack detectable somatic insertions, suggesting that L1 is not a major generator of neuronal diversity in cortex and caudate. We then genotyped single cortical cells to characterize the mosaicism of a somatic AKT3 mutation identified in a child with hemimegalencephaly. Single-neuron sequencing allows systematic assessment of genomic diversity in the human brain.

Xi R, Lee S, Park PJ. A survey of copy-number variation detection tools based on high-throughput sequencing data. Curr Protoc Hum Genet 2012;Chapter 7:Unit7.19.Abstract

Copy-number variation (CNV) is a major class of genomic variation with potentially important functional consequences in both normal and diseased populations. Remarkable advances in development of next-generation sequencing (NGS) platforms provide an unprecedented opportunity for accurate, high-resolution characterization of CNVs. In this unit, we give an overview of available computational tools for detection of CNVs and discuss comparative advantages and disadvantages of different approaches.

Tan X, Hu L, Luquette LJ, Gao G, Liu Y, Qu H, Xi R, Lu ZJ, Park PJ, Elledge SJ. Systematic identification of synergistic drug pairs targeting HIV. Nat Biotechnol 2012;30(11):1125-30.Abstract

The systematic identification of effective drug combinations has been hindered by the unavailability of methods that can explore the large combinatorial search space of drug interactions. Here we present multiplex screening for interacting compounds (MuSIC), which expedites the comprehensive assessment of pairwise compound interactions. We examined ∼500,000 drug pairs from 1,000 US Food and Drug Administration (FDA)-approved or clinically tested drugs and identified drugs that synergize to inhibit HIV replication. Our analysis reveals an enrichment of anti-inflammatory drugs in drug combinations that synergize against HIV. As inflammation accompanies HIV infection, these findings indicate that inhibiting inflammation could curb HIV propagation. Multiple drug pairs identified in this study, including various glucocorticoids and nitazoxanide (NTZ), synergize by targeting different steps in the HIV life cycle. MuSIC can be applied to a wide variety of disease-relevant screens to facilitate efficient identification of compound combinations.

O'Connell DJ*, Ho JWK*, Mammoto T, Turbe-Doan A, O'Connell JT, Haseley PS, Koo S, Kamiya N, Ingber DE, Park PJ, Maas RL. A Wnt-bmp feedback circuit controls intertissue signaling dynamics in tooth organogenesis. Science Signaling 2012;5(206):ra4.Abstract

Many vertebrate organs form through the sequential and reciprocal exchange of signaling molecules between juxtaposed epithelial and mesenchymal tissues. We undertook a systems biology approach that combined the generation and analysis of large-scale spatiotemporal gene expression data with mouse genetic experiments to gain insight into the mechanisms that control epithelial-mesenchymal signaling interactions in the developing mouse molar tooth. We showed that the shift in instructive signaling potential from dental epithelium to dental mesenchyme was accompanied by temporally coordinated genome-wide changes in gene expression in both compartments. To identify the mechanism responsible, we developed a probabilistic technique that integrates regulatory evidence from gene expression data and from the literature to reconstruct a gene regulatory network for the epithelial and mesenchymal compartments in early tooth development. By integrating these epithelial and mesenchymal gene regulatory networks through the action of diffusible extracellular signaling molecules, we identified a key epithelial-mesenchymal intertissue Wnt-Bmp (bone morphogenetic protein) feedback circuit. We then validated this circuit in vivo with compound genetic mutations in mice that disrupted this circuit. Moreover, mathematical modeling demonstrated that the structure of the circuit accounted for the observed reciprocal signaling dynamics. Thus, we have identified a critical signaling circuit that controls the coordinated genome-wide expression changes and reciprocal signaling molecule dynamics that occur in interacting epithelial and mesenchymal compartments during organogenesis.