Publications by Year: 2011

2011
Integrated genomic analyses of ovarian carcinoma. Nature 2011;474(7353):609-15.Abstract
A catalogue of molecular aberrations that cause ovarian cancer is critical for developing and deploying therapies that will improve patients' lives. The Cancer Genome Atlas project has analysed messenger RNA expression, microRNA expression, promoter methylation and DNA copy number in 489 high-grade serous ovarian adenocarcinomas and the DNA sequences of exons from coding genes in 316 of these tumours. Here we report that high-grade serous ovarian cancer is characterized by TP53 mutations in almost all tumours (96%); low prevalence but statistically recurrent somatic mutations in nine further genes including NF1, BRCA1, BRCA2, RB1 and CDK12; 113 significant focal DNA copy number aberrations; and promoter methylation events involving 168 genes. Analyses delineated four ovarian cancer transcriptional subtypes, three microRNA subtypes, four promoter methylation subtypes and a transcriptional signature associated with survival duration, and shed new light on the impact that tumours with BRCA1/2 (BRCA1 or BRCA2) and CCNE1 aberrations have on survival. Pathway analyses suggested that homologous recombination is defective in about half of the tumours analysed, and that NOTCH and FOXM1 signalling are involved in serous ovarian cancer pathophysiology.
Egelhofer TA*, Minoda A*, Klugman S*, Lee K, Kolasinska-Zwierz P, Alekseyenko AA, Cheung M-S, Day DS, Gadel S, Gorchakov AA, Gu T, Kharchenko PV, Kuan S, Latorre I, Linder-Basso D, Luu Y, Ngo Q, Perry M, Rechtsteiner A, Riddle NC, Schwartz YB, Shanower GA, Vielle A, Ahringer J, Elgin SCR, Kuroda MI, Pirrotta V, Ren B, Strome S, Park PJ**, Karpen GH**, Hawkins D**R, Lieb JD**. An assessment of histone-modification antibody quality. Nat Struct Mol Biol 2011;18(1):91-3.Abstract

We have tested the specificity and utility of more than 200 antibodies raised against 57 different histone modifications in Drosophila melanogaster, Caenorhabditis elegans and human cells. Although most antibodies performed well, more than 25% failed specificity tests by dot blot or western blot. Among specific antibodies, more than 20% failed in chromatin immunoprecipitation experiments. We advise rigorous testing of histone-modification antibodies before use, and we provide a website for posting new test results (http://compbio.med.harvard.edu/antibodies/).

Kharchenko PV, Xi R, Park PJ. Evidence for dosage compensation between the X chromosome and autosomes in mammals. Nat Genet 2011;43(12):1167-9; author reply 1171-2.
Zacharek SJ, Fillmore CM, Lau AN, Gludish DW, Chou A, Ho JWK, Zamponi R, Gazit R, Bock C, Jäger N, Smith ZD, Kim T-M, Saunders AH, Wong J, Lee J-H, Roach RR, Rossi DJ, Meissner A, Gimelbrant AA, Park PJ, Kim CF. Lung stem cell self-renewal relies on BMI1-dependent control of expression at imprinted loci. Cell Stem Cell 2011;9(3):272-81.Abstract

BMI1 is required for the self-renewal of stem cells in many tissues including the lung epithelial stem cells, Bronchioalveolar Stem Cells (BASCs). Imprinted genes, which exhibit expression from only the maternally or paternally inherited allele, are known to regulate developmental processes, but what their role is in adult cells remains a fundamental question. Many imprinted genes were derepressed in Bmi1 knockout mice, and knockdown of Cdkn1c (p57) and other imprinted genes partially rescued the self-renewal defect of Bmi1 mutant lung cells. Expression of p57 and other imprinted genes was required for lung cell self-renewal in culture and correlated with repair of lung epithelial cell injury in vivo. Our data suggest that BMI1-dependent regulation of expressed alleles at imprinted loci, distinct from imprinting per se, is required for control of lung stem cells. We anticipate that the regulation and function of imprinted genes is crucial for self-renewal in diverse adult tissue-specific stem cells.

Plasticity in patterns of histone modifications and chromosomal proteins in Drosophila heterochromatin.
Riddle NC*, Minoda A*, Kharchenko PV*, Alekseyenko AA, Schwartz YB, Tolstorukov MY, Gorchakov AA, Jaffe JD, Kennedy C, Linder-Basso D, Peach SE, Shanower G, Zheng H, Kuroda MI, Pirrotta V, Park PJ, Elgin SCR**, Karpen GH**. Plasticity in patterns of histone modifications and chromosomal proteins in Drosophila heterochromatin. Genome Res 2011;21(2):147-63.Abstract

Eukaryotic genomes are packaged in two basic forms, euchromatin and heterochromatin. We have examined the composition and organization of Drosophila melanogaster heterochromatin in different cell types using ChIP-array analysis of histone modifications and chromosomal proteins. As anticipated, the pericentric heterochromatin and chromosome 4 are on average enriched for the "silencing" marks H3K9me2, H3K9me3, HP1a, and SU(VAR)3-9, and are generally depleted for marks associated with active transcription. The locations of the euchromatin-heterochromatin borders identified by these marks are similar in animal tissues and most cell lines, although the amount of heterochromatin is variable in some cell lines. Combinatorial analysis of chromatin patterns reveals distinct profiles for euchromatin, pericentric heterochromatin, and the 4th chromosome. Both silent and active protein-coding genes in heterochromatin display complex patterns of chromosomal proteins and histone modifications; a majority of the active genes exhibit both "activation" marks (e.g., H3K4me3 and H3K36me3) and "silencing" marks (e.g., H3K9me2 and HP1a). The hallmark of active genes in heterochromatic domains appears to be a loss of H3K9 methylation at the transcription start site. We also observe complex epigenomic profiles of intergenic regions, repeated transposable element (TE) sequences, and genes in the heterochromatic extensions. An unexpectedly large fraction of sequences in the euchromatic chromosome arms exhibits a heterochromatic chromatin signature, which differs in size, position, and impact on gene expression among cell types. We conclude that patterns of heterochromatin/euchromatin packaging show greater complexity and plasticity than anticipated. This comprehensive analysis provides a foundation for future studies of gene activity and chromosomal functions that are influenced by or dependent upon heterochromatin.

Larschan E*, Bishop EP*, Kharchenko PV, Core LJ, Lis JT, Park PJ**, Kuroda MI**. X chromosome dosage compensation via enhanced transcriptional elongation in Drosophila. Nature 2011;471(7336):115-8.Abstract

The evolution of sex chromosomes has resulted in numerous species in which females inherit two X chromosomes but males have a single X, thus requiring dosage compensation. MSL (Male-specific lethal) complex increases transcription on the single X chromosome of Drosophila males to equalize expression of X-linked genes between the sexes. The biochemical mechanisms used for dosage compensation must function over a wide dynamic range of transcription levels and differential expression patterns. It has been proposed that the MSL complex regulates transcriptional elongation to control dosage compensation, a model subsequently supported by mapping of the MSL complex and MSL-dependent histone 4 lysine 16 acetylation to the bodies of X-linked genes in males, with a bias towards 3' ends. However, experimental analysis of MSL function at the mechanistic level has been challenging owing to the small magnitude of the chromosome-wide effect and the lack of an in vitro system for biochemical analysis. Here we use global run-on sequencing (GRO-seq) to examine the specific effect of the MSL complex on RNA Polymerase II (RNAP II) on a genome-wide level. Results indicate that the MSL complex enhances transcription by facilitating the progression of RNAP II across the bodies of active X-linked genes. Improving transcriptional output downstream of typical gene-specific controls may explain how dosage compensation can be imposed on the diverse set of genes along an entire chromosome.

Kim T-M, Park PJ. Advances in analysis of transcriptional regulatory networks. Wiley Interdiscip Rev Syst Biol Med 2011;3(1):21-35.Abstract

A transcriptional regulatory network represents a molecular framework in which developmental or environmental cues are transformed into differential expression of genes. Transcriptional regulation is mediated by the combinatorial interplay between cis-regulatory DNA elements and trans-acting transcription factors, and is perhaps the most important mechanism for controlling gene expression. Recent innovations, most notably the method for detecting protein-DNA interactions genome-wide, can help provide a comprehensive catalog of cis-regulatory elements and their interaction with given trans-acting factors in a given condition. A transcriptional regulatory network that integrates such information can lead to a systems-level understanding of regulatory mechanisms. In this review, we will highlight the key aspects of current knowledge on eukaryotic transcriptional regulation, especially on known transcription factors and their interacting regulatory elements. Then we will review some recent technical advances for genome-wide mapping of DNA-protein interactions based on high-throughput sequencing. Finally, we will discuss the types of biological insights that can be obtained from a network-level understanding of transcription regulation as well as future challenges in the field.

Anchan RM, Quaas P, Gerami-Naini B, Bartake H, Griffin A, Zhou Y, Day DS, Eaton JL, George LL, Naber C, Turbe-Doan A, Park PJ, Hornstein MD, Maas RL. Amniocytes can serve a dual function as a source of iPS cells and feeder layers. Hum Mol Genet 2011;20(5):962-74.Abstract

Clinical barriers to stem-cell therapy include the need for efficient derivation of histocompatible stem cells and the zoonotic risk inherent to human stem-cell xenoculture on mouse feeder cells. We describe a system for efficiently deriving induced pluripotent stem (iPS) cells from human and mouse amniocytes, and for maintaining the pluripotency of these iPS cells on mitotically inactivated feeder layers prepared from the same amniocytes. Both cellular components of this system are thus autologous to a single donor. Moreover, the use of human feeder cells reduces the risk of zoonosis. Generation of iPS cells using retroviral vectors from short- or long-term cultured human and mouse amniocytes using four factors, or two factors in mouse, occurs in 5-7 days with 0.5% efficiency. This efficiency is greater than that reported for mouse and human fibroblasts using similar viral infection approaches, and does not appear to result from selective reprogramming of Oct4(+) or c-Kit(+) amniocyte subpopulations. Derivation of amniocyte-derived iPS (AdiPS) cell colonies, which express pluripotency markers and exhibit appropriate microarray expression and DNA methylation properties, was facilitated by live immunostaining. AdiPS cells also generate embryoid bodies in vitro and teratomas in vivo. Furthermore, mouse and human amniocytes can serve as feeder layers for iPS cells and for mouse and human embryonic stem (ES) cells. Thus, human amniocytes provide an efficient source of autologous iPS cells and, as feeder cells, can also maintain iPS and ES cell pluripotency without the safety concerns associated with xenoculture.

Ho JWK, Bishop EP, Karchenko PV, Nègre N, White KP, Park PJ. ChIP-chip versus ChIP-seq: lessons for experimental design and data analysis. BMC Genomics 2011;12:134.Abstract

BACKGROUND: Chromatin immunoprecipitation (ChIP) followed by microarray hybridization (ChIP-chip) or high-throughput sequencing (ChIP-seq) allows genome-wide discovery of protein-DNA interactions such as transcription factor bindings and histone modifications. Previous reports only compared a small number of profiles, and little has been done to compare histone modification profiles generated by the two technologies or to assess the impact of input DNA libraries in ChIP-seq analysis. Here, we performed a systematic analysis of a modENCODE dataset consisting of 31 pairs of ChIP-chip/ChIP-seq profiles of the coactivator CBP, RNA polymerase II (RNA PolII), and six histone modifications across four developmental stages of Drosophila melanogaster. RESULTS: Both technologies produce highly reproducible profiles within each platform, ChIP-seq generally produces profiles with a better signal-to-noise ratio, and allows detection of more peaks and narrower peaks. The set of peaks identified by the two technologies can be significantly different, but the extent to which they differ varies depending on the factor and the analysis algorithm. Importantly, we found that there is a significant variation among multiple sequencing profiles of input DNA libraries and that this variation most likely arises from both differences in experimental condition and sequencing depth. We further show that using an inappropriate input DNA profile can impact the average signal profiles around genomic features and peak calling results, highlighting the importance of having high quality input DNA data for normalization in ChIP-seq analysis. CONCLUSIONS: Our findings highlight the biases present in each of the platforms, show the variability that can arise from both technology and analysis methods, and emphasize the importance of obtaining high quality and deeply sequenced input DNA libraries for ChIP-seq analysis.

Kharchenko PV, Alekseyenko AA, Schwartz YB, Minoda A, Riddle NC, Ernst J, Sabo PJ, Larschan E, Gorchakov AA, Gu T, Linder-Basso D, Plachetka A, Shanower G, Tolstorukov MY, Luquette LJ, Xi R, Jung YL, Park RW, Bishop EP, Canfield TK, Sandstrom R, Thurman RE, MacAlpine DM, Stamatoyannopoulos JA, Kellis M, Elgin SCR, Kuroda MI, Pirrotta V, Karpen GH**, Park PJ**. Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 2011;471(7339):480-5.Abstract

Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, which have an impact on cell differentiation, gene regulation and other key cellular processes. Here we present a genome-wide chromatin landscape for Drosophila melanogaster based on eighteen histone modifications, summarized by nine prevalent combinatorial patterns. Integrative analysis with other data (non-histone chromatin proteins, DNase I hypersensitivity, GRO-Seq reads produced by engaged polymerase, short/long RNA products) reveals discrete characteristics of chromosomes, genes, regulatory elements and other functional domains. We find that active genes display distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, regulatory functions and genomic contexts. We also demonstrate a diversity of signatures among Polycomb targets that include a subset with paused polymerase. This systematic profiling and integrative analysis of chromatin signatures provides insights into how genomic elements are regulated, and will serve as a resource for future experimental investigations of genome structure and function.

Xi R, Hadjipanayis AG, Luquette LJ, Kim T-M, Lee E, Zhang J, Johnson MD, Muzny DM, Wheeler DA, Gibbs RA, Kucherlapati R, Park PJ. Copy number variation detection in whole-genome sequencing data using the Bayesian information criterion. Proc Natl Acad Sci U S A 2011;108(46):E1128-36.Abstract

DNA copy number variations (CNVs) play an important role in the pathogenesis and progression of cancer and confer susceptibility to a variety of human disorders. Array comparative genomic hybridization has been used widely to identify CNVs genome wide, but the next-generation sequencing technology provides an opportunity to characterize CNVs genome wide with unprecedented resolution. In this study, we developed an algorithm to detect CNVs from whole-genome sequencing data and applied it to a newly sequenced glioblastoma genome with a matched control. This read-depth algorithm, called BIC-seq, can accurately and efficiently identify CNVs via minimizing the Bayesian information criterion. Using BIC-seq, we identified hundreds of CNVs as small as 40 bp in the cancer genome sequenced at 10× coverage, whereas we could only detect large CNVs (> 15 kb) in the array comparative genomic hybridization profiles for the same genome. Eighty percent (14/16) of the small variants tested (110 bp to 14 kb) were experimentally validated by quantitative PCR, demonstrating high sensitivity and true positive rate of the algorithm. We also extended the algorithm to detect recurrent CNVs in multiple samples as well as deriving error bars for breakpoints using a Gibbs sampling approach. We propose this statistical approach as a principled yet practical and efficient method to estimate CNVs in whole-genome sequencing data.

Kim T-M, Huang W, Park R, Park PJ**, Johnson MD**. A developmental taxonomy of glioblastoma defined and maintained by MicroRNAs. Cancer Res 2011;71(9):3387-99.Abstract

mRNA expression profiling has suggested the existence of multiple glioblastoma subclasses, but their number and characteristics vary among studies and the etiology underlying their development is unclear. In this study, we analyzed 261 microRNA expression profiles from The Cancer Genome Atlas (TCGA), identifying five clinically and genetically distinct subclasses of glioblastoma that each related to a different neural precursor cell type. These microRNA-based glioblastoma subclasses displayed microRNA and mRNA expression signatures resembling those of radial glia, oligoneuronal precursors, neuronal precursors, neuroepithelial/neural crest precursors, or astrocyte precursors. Each subclass was determined to be genetically distinct, based on the significant differences they displayed in terms of patient race, age, treatment response, and survival. We also identified several microRNAs as potent regulators of subclass-specific gene expression networks in glioblastoma. Foremost among these is miR-9, which suppresses mesenchymal differentiation in glioblastoma by downregulating expression of JAK kinases and inhibiting activation of STAT3. Our findings suggest that microRNAs are important determinants of glioblastoma subclasses through their ability to regulate developmental growth and differentiation programs in several transformed neural precursor cell types. Taken together, our results define developmental microRNA expression signatures that both characterize and contribute to the phenotypic diversity of glioblastoma subclasses, thereby providing an expanded framework for understanding the pathogenesis of glioblastoma in a human neurodevelopmental context.

Pihlajamäki J, Lerin C, Itkonen P, Boes T, Floss T, Schroeder J, Dearie F, Crunkhorn S, Burak F, Jimenez-Chillaron JC, Kuulasmaa T, Miettinen P, Park PJ, Nasser I, Zhao Z, Zhang Z, Xu Y, Wurst W, Ren H, Morris AJ, Stamm S, Goldfine AB, Laakso M, Patti ME. Expression of the splicing factor gene SFRS10 is reduced in human obesity and contributes to enhanced lipogenesis. Cell Metab 2011;14(2):208-18.Abstract

Alternative mRNA splicing provides transcript diversity and may contribute to human disease. We demonstrate that expression of several genes regulating RNA processing is decreased in both liver and skeletal muscle of obese humans. We evaluated a representative splicing factor, SFRS10, downregulated in both obese human liver and muscle and in high-fat-fed mice, and determined metabolic impact of reduced expression. SFRS10-specific siRNA induces lipogenesis and lipid accumulation in hepatocytes. Moreover, Sfrs10 heterozygous mice have increased hepatic lipogenic gene expression, VLDL secretion, and plasma triglycerides. We demonstrate that LPIN1, a key regulator of lipid metabolism, is a splicing target of SFRS10; reduced SFRS10 favors the lipogenic β isoform of LPIN1. Importantly, LPIN1β-specific siRNA abolished lipogenic effects of decreased SFRS10 expression. Together, our results indicate that reduced expression of SFRS10, as observed in tissues from obese humans, alters LPIN1 splicing, induces lipogenesis, and therefore contributes to metabolic phenotypes associated with obesity.

Kim T-M, Ramírez V, Barrera-Chimal J, Bobadilla NA, Park PJ, Vaidya VS. Gene expression analysis reveals the cell cycle and kinetochore genes participating in ischemia reperfusion injury and early development in kidney. PLoS One 2011;6(9):e25679.Abstract

BACKGROUND: The molecular mechanisms that mediate the ischemia-reperfusion (I/R) injury in kidney are not completely understood. It is also largely unknown whether such mechanisms overlap with those governing the early development of kidney. METHODOLOGY/PRINCIPAL FINDINGS: We performed gene expression analysis to investigate the transcriptome changes during regeneration after I/R injury in the rat (0 hr, 6 hr, 24 hr, and 120 hr after reperfusion) and early development of mouse kidney (embryonic day 16 p.c. and postnatal 1 and 7 day). Pathway analysis revealed a wide spectrum of molecular functions that may participate in the regeneration and developmental processes of kidney as well as the functional association between them. While the genes associated with cell cycle, immunity, inflammation, and apoptosis were globally activated during the regeneration after I/R injury, the genes encoding various transporters and metabolic enzymes were down-regulated. We also observed that these injury-associated molecular functions largely overlap with those of early kidney development. In particular, the up-regulation of kinases and kinesins with roles in cell division was common during regeneration and early developmental kidney as validated by real-time PCR and immunohistochemistry. CONCLUSIONS: In addition to the candidate genes whose up-regulation constitutes an overlapping expression signature between kidney regeneration and development, this study lays a foundation for studying the functional relationship between two biological processes.

Tolstorukov MY, Volfovsky N, Stephens RM, Park PJ. Impact of chromatin structure on sequence variability in the human genome. Nat Struct Mol Biol 2011;18(4):510-5.Abstract

DNA sequence variations in individual genomes give rise to different phenotypes within the same species. One mechanism in this process is the alteration of chromatin structure due to sequence variation that influences gene regulation. We composed a high-confidence collection of human single-nucleotide polymorphisms and indels based on analysis of publicly available sequencing data and investigated whether the DNA loci associated with stable nucleosome positions are protected against mutations. We addressed how the sequence variation reflects the occupancy profiles of nucleosomes bearing different epigenetic modifications on genome scale. We found that indels are depleted around nucleosome positions of all considered types, whereas single-nucleotide polymorphisms are enriched around the positions of bulk nucleosomes but depleted around the positions of epigenetically modified nucleosomes. These findings indicate an increased level of conservation for the sequences associated with epigenetically modified nucleosomes, highlighting complex organization of the human chromatin.

Yoon SS, Duda DG, Karl DL, Kim T-M, Kambadakone AR, Chen Y-L, Rothrock C, Rosenberg AE, Nielsen PG, Kirsch DG, Choy E, Harmon DC, Hornicek FJ, Dreyfuss JM, Ancukiewicz M, Sahani DV, Park PJ, Jain RK, Delaney TF. Phase II study of neoadjuvant bevacizumab and radiotherapy for resectable soft tissue sarcomas. Int J Radiat Oncol Biol Phys 2011;81(4):1081-90.Abstract

PURPOSE: Numerous preclinical studies have demonstrated that angiogenesis inhibitors can increase the efficacy of radiotherapy (RT). We sought to examine the safety and efficacy of bevacizumab (BV) and RT in soft tissue sarcomas and explore biomarkers to help determine the treatment response. METHODS AND MATERIALS: Patients with ≥5 cm, intermediate- or high-grade soft tissue sarcomas at significant risk of local recurrence received neoadjuvant BV alone followed by BV plus RT before surgical resection. Correlative science studies included analysis of the serial blood and tumor samples and serial perfusion computed tomography scans. RESULTS: The 20 patients had a median tumor size of 8.25 cm, with 13 extremity, 1 trunk, and 6 retroperitoneal/pelvis tumors. The neoadjuvant treatment was well tolerated, with only 4 patients having Grade 3 toxicities (hypertension, liver function test elevation). BV plus RT resulted in ≥80% pathologic necrosis in 9 (45%) of 20 tumors, more than double the historical rate seen with RT alone. Three patients had a complete pathologic response. The median microvessel density decreased 53% after BV alone (p <.05). After combination therapy, the median tumor cell proliferation decreased by 73%, apoptosis increased 10.4-fold, and the blood flow, blood volume, and permeability surface area decreased by 62-72% (p <.05). Analysis of gene expression microarrays of untreated tumors identified a 24-gene signature for treatment response. The microvessel density and circulating progenitor cells at baseline and the reduction in microvessel density and plasma soluble c-KIT with BV therapy also correlated with a good pathologic response (p <.05). After a median follow-up of 20 months, only 1 patient had developed local recurrence. CONCLUSIONS: The results from the present exploratory study indicated that BV increases the efficacy of RT against soft tissue sarcomas and might reduce the incidence of local recurrence. Thus, this regimen warrants additional investigation. Gene expression profiles and other tissue and circulating biomarkers showed promising correlations with treatment response.