Publications by Year: 2009

2009
Gelbart ME, Larschan E, Peng S, Park PJ, Kuroda MI. Drosophila MSL complex globally acetylates H4K16 on the male X chromosome for dosage compensation. Nat Struct Mol Biol 2009;16(8):825-32.Abstract

The Drosophila melanogaster male-specific lethal (MSL) complex binds the single male X chromosome to upregulate gene expression to equal that from the two female X chromosomes. However, it has been puzzling that approximately 25% of transcribed genes on the X chromosome do not stably recruit MSL complex. Here we find that almost all active genes on the X chromosome are associated with robust H4 Lys16 acetylation (H4K16ac), the histone modification catalyzed by the MSL complex. The distribution of H4K16ac is much broader than that of the MSL complex, and our results favor the idea that chromosome-wide H4K16ac reflects transient association of the MSL complex, occurring through spreading or chromosomal looping. Our results parallel those of localized Polycomb repressive complex and its more broadly distributed chromatin mark, trimethylated histone H3 Lys27 (H3K27me3), suggesting a common principle for the establishment of active and silenced chromatin domains.

Hodge JC, Park PJ, Dreyfuss JM, Assil-Kishawi I, Somasundaram P, Semere LG, Quade BJ, Lynch AM, Stewart EA, Morton CC. Identifying the molecular signature of the interstitial deletion 7q subgroup of uterine leiomyomata using a paired analysis. Genes Chromosomes Cancer 2009;48(10):865-85.Abstract

Uterine leiomyomata (UL), the most common neoplasm in reproductive-age women, have recurrent cytogenetic abnormalities including interstitial deletion of 7q. To develop a molecular signature, matched del(7q) and non-del(7q) tumors identified by FISH or karyotyping from 11 women were profiled with expression arrays. Our analysis using paired t tests demonstrates this matched design is critical to eliminate the confounding effects of genotype and environment that underlie patient variation. A gene list ordered by genome-wide significance showed enrichment for the 7q22 target region. Modification of the gene list by weighting each sample for percent of del(7q) cells to account for the mosaic nature of these tumors further enhanced the frequency of 7q22 genes. Pathway analysis revealed two of the 19 significant functional networks were associated with development and the most represented pathway was protein ubiquitination, which can influence tumor development by stabilizing oncoproteins and destabilizing tumor suppressor proteins. Array CGH (aCGH) studies determined the only consistent genomic imbalance was deletion of 9.5 megabases from 7q22-7q31.1. Combining the aCGH data with the del(7q) UL mosaicism-weighted expression analysis resulted in a list of genes that are commonly deleted and whose copy number is correlated with significantly decreased expression. These genes include the proliferation inhibitor HPB1, the loss of expression of which has been associated with invasive breast cancer, as well as the mitosis integrity-maintenance tumor suppressor RINT1. This study provides a molecular signature of the del(7q) UL subgroup and will serve as a platform for future studies of tumor pathogenesis.

Gorchakov AA, Alekseyenko AA, Kharchenko P, Park PJ, Kuroda MI. Long-range spreading of dosage compensation in Drosophila captures transcribed autosomal genes inserted on X. Genes Dev 2009;23(19):2266-71.Abstract

Dosage compensation in Drosophila melanogaster males is achieved via targeting of male-specific lethal (MSL) complex to X-linked genes. This is proposed to involve sequence-specific recognition of the X at approximately 150-300 chromatin entry sites, and subsequent spreading to active genes. Here we ask whether the spreading step requires transcription and is sequence-independent. We find that MSL complex binds, acetylates, and up-regulates autosomal genes inserted on X, but only if transcriptionally active. We conclude that a long-sought specific DNA sequence within X-linked genes is not obligatory for MSL binding. Instead, linkage and transcription play the pivotal roles in MSL targeting irrespective of gene origin and DNA sequence.

Dreyfuss JM, Johnson MD, Park PJ. Meta-analysis of glioblastoma multiforme versus anaplastic astrocytoma identifies robust gene markers. Mol Cancer 2009;8:71.Abstract

BACKGROUND: Anaplastic astrocytoma (AA) and its more aggressive counterpart, glioblastoma multiforme (GBM), are the most common intrinsic brain tumors in adults and are almost universally fatal. A deeper understanding of the molecular relationship of these tumor types is necessary to derive insights into the diagnosis, prognosis, and treatment of gliomas. Although genomewide profiling of expression levels with microarrays can be used to identify differentially expressed genes between these tumor types, comparative studies so far have resulted in gene lists that show little overlap. RESULTS: To achieve a more accurate and stable list of the differentially expressed genes and pathways between primary GBM and AA, we performed a meta-analysis using publicly available genome-scale mRNA data sets. There were four data sets with sufficiently large sample sizes of both GBMs and AAs, all of which coincidentally used human U133 platforms from Affymetrix, allowing for easier and more precise integration of data. After scoring genes and pathways within each data set, we combined the statistics across studies using the nonparametric rank sum method to identify the features that differentiate GBMs and AAs. We found >900 statistically significant probe sets after correction for multiple testing from the >22,000 tested. We also used the rank sum approach to select >20 significant Biocarta pathways after correction for multiple testing out of >175 pathways examined. The most significant pathway was the hypoxia-inducible factor (HIF) pathway. Our analysis suggests that many of the most statistically significant genes work together in a HIF1A/VEGF-regulated network to increase angiogenesis and invasion in GBM when compared to AA. CONCLUSION: We have performed a meta-analysis of genome-scale mRNA expression data for 289 human malignant gliomas and have identified a list of >900 probe sets and >20 pathways that are significantly different between GBM and AA. These feature lists could be utilized to aid in diagnosis, prognosis, and grade reduction of high-grade gliomas and to identify genes that were not previously suspected of playing an important role in glioma biology. More generally, this approach suggests that combined analysis of existing data sets can reveal new insights and that the large amount of publicly available cancer data sets should be further utilized in a similar manner.

Park PJ, Manjourides J, Bonetti M, Pagano M. A permutation test for determining significance of clusters with applications to spatial and gene expression data. Comput Stat Data Anal 2009;53(12):4290-4300.Abstract

Hierarchical clustering is a common procedure for identifying structure in a data set, and this is frequently used for organizing genomic data. Although more advanced clustering algorithms are available, the simplicity and visual appeal of hierarchical clustering has made it ubiquitous in gene expression data analysis. Hence, even minor improvements in this framework would have significant impact. There is currently no simple and systematic way of assessing and displaying the significance of various clusters in a resulting dendrogram without making certain distributional assumptions or ignoring gene-specific variances. In this work, we introduce a permutation test based on comparing the within-cluster structure of the observed data with those of sample datasets obtained by permuting the cluster membership. We carry out this test at each node of the dendrogram using a statistic derived from the singular value decomposition of variance matrices. The p-values thus obtained provide insight into the significance of each cluster division. Given these values, one can also modify the dendrogram by combining non-significant branches. By adjusting the cut-off level of significance for branches, one can produce dendrograms with a desired level of detail for ease of interpretation. We demonstrate the usefulness of this approach by applying it to illustrative data sets.

McKinney-Freeman SL, Naveiras O, Yates F, Loewer S, Philitas M, Curran M, Park PJ, Daley GQ. Surface antigen phenotypes of hematopoietic stem cells from embryos and murine embryonic stem cells. Blood 2009;114(2):268-78.Abstract

Surface antigens on hematopoietic stem cells (HSCs) enable prospective isolation and characterization. Here, we compare the cell-surface phenotype of hematopoietic repopulating cells from murine yolk sac, aorta-gonad-mesonephros, placenta, fetal liver, and bone marrow with that of HSCs derived from the in vitro differentiation of murine embryonic stem cells (ESC-HSCs). Whereas c-Kit marks all HSC populations, CD41, CD45, CD34, and CD150 were developmentally regulated: the earliest embryonic HSCs express CD41 and CD34 and lack CD45 and CD150, whereas more mature HSCs lack CD41 and CD34 and express CD45 and CD150. ESC-HSCs express CD41 and CD150, lack CD34, and are heterogeneous for CD45. Finally, although CD48 was absent from all in vivo HSCs examined, ESC-HSCs were heterogeneous for the expression of this molecule. This unique phenotype signifies a developmentally immature population of cells with features of both primitive and mature HSC. The prospective fractionation of ESC-HSCs will facilitate studies of HSC maturation essential for normal functional engraftment in irradiated adults.

Pihlajamäki J, Boes T, Kim E-Y, Dearie F, Kim BW, Schroeder J, Mun E, Nasser I, Park PJ, Bianco AC, Goldfine AB, Patti ME. Thyroid hormone-related regulation of gene expression in human fatty liver. J Clin Endocrinol Metab 2009;94(9):3521-9.Abstract

CONTEXT: Fatty liver is an important complication of obesity; however, regulatory mechanisms mediating altered gene expression patterns have not been identified. OBJECTIVE: The aim of the study was to identify novel transcriptional changes in human liver that could contribute to hepatic lipid accumulation and associated insulin resistance, type 2 diabetes, and nonalcoholic steatohepatitis. DESIGN: We evaluated gene expression in surgical liver biopsies from 13 obese (nine with type 2 diabetes) and five control subjects using Affymetrix U133A microarrays. PCR validation was performed in liver biopsies using an additional 16 subjects. We also tested thyroid hormone responses in mice fed chow or high-fat diet. SETTING: Recruitment was performed in an academic medical center. PARTICIPANTS: Individuals undergoing elective surgery for obesity or gallstones participated in the study. RESULTS: The top-ranking gene set, down-regulated in obese subjects, was comprised of genes previously demonstrated to be positively regulated by T(3) in human skeletal muscle (n = 399; P < 0.001; false discovery rate = 0.07). This gene set included genes related to RNA metabolism (SNRPE, HNRPH3, TIA1, and SFRS2), protein catabolism (PSMA1, PSMD12, USP9X, IBE2B, USP16, and PCMT1), and energy metabolism (ATP5C1, COX7C, UQCRB). We verified thyroid hormone regulation of these genes in the liver after injection of C57BL/6J mice with T(3) (100 microg/100 g body weight); furthermore, T(3)-induced increases in expression of these genes were abolished by high-fat diet. In agreement, expression of these genes inversely correlated with liver fat content in humans. CONCLUSIONS: These data suggest that impaired thyroid hormone action may contribute to altered patterns of gene expression in fatty liver.

Wang X-P, O'Connell DJ, Lund JJ, Saadi I, Kuraguchi M, Turbe-Doan A, Cavallesco R, Kim H, Park PJ, Harada H, Kucherlapati R, Maas RL. Apc inhibition of Wnt signaling regulates supernumerary tooth formation during embryogenesis and throughout adulthood. Development 2009;136(11):1939-49.Abstract

The ablation of Apc function or the constitutive activation of beta-catenin in embryonic mouse oral epithelium results in supernumerary tooth formation, but the underlying mechanisms and whether adult tissues retain this potential are unknown. Here we show that supernumerary teeth can form from multiple regions of the jaw and that they are properly mineralized, vascularized, innervated and can start to form roots. Even adult dental tissues can form new teeth in response to either epithelial Apc loss-of-function or beta-catenin activation, and the effect of Apc deficiency is mediated by beta-catenin. The formation of supernumerary teeth via Apc loss-of-function is non-cell-autonomous. A small number of Apc-deficient cells is sufficient to induce surrounding wild-type epithelial and mesenchymal cells to participate in the formation of new teeth. Strikingly, Msx1, which is necessary for endogenous tooth development, is dispensable for supernumerary tooth formation. In addition, we identify Fgf8, a known tooth initiation marker, as a direct target of Wnt/beta-catenin signaling. These studies identify key mechanistic features responsible for supernumerary tooth formation.

Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 2009;10(10):669-80.Abstract

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is a technique for genome-wide profiling of DNA-binding proteins, histone modifications or nucleosomes. Owing to the tremendous progress in next-generation sequencing technology, ChIP-seq offers higher resolution, less noise and greater coverage than its array-based predecessor ChIP-chip. With the decreasing cost of sequencing, ChIP-seq has become an indispensable tool for studying gene regulation and epigenetic mechanisms. In this Review, I describe the benefits and challenges in harnessing this technique with an emphasis on issues related to experimental design and data analysis. ChIP-seq experiments generate large quantities of data, and effective computational analysis will be crucial for uncovering biological mechanisms.

Comparative analysis of H2A.Z nucleosome organization in the human and yeast genomes.
Tolstorukov MY*, Kharchenko PV*, Goldman JA, Kingston RE, Park PJ. Comparative analysis of H2A.Z nucleosome organization in the human and yeast genomes. Genome Res 2009;19(6):967-77.Abstract

Eukaryotic DNA is wrapped around a histone protein core to constitute the fundamental repeating units of chromatin, the nucleosomes. The affinity of the histone core for DNA depends on the nucleotide sequence; however, it is unclear to what extent DNA sequence determines nucleosome positioning in vivo, and if the same rules of sequence-directed positioning apply to genomes of varying complexity. Using the data generated by high-throughput DNA sequencing combined with chromatin immunoprecipitation, we have identified positions of nucleosomes containing the H2A.Z histone variant and histone H3 trimethylated at lysine 4 in human CD4(+) T-cells. We find that the 10-bp periodicity observed in nucleosomal sequences in yeast and other organisms is not pronounced in human nucleosomal sequences. This result was confirmed for a broader set of mononucleosomal fragments that were not selected for any specific histone variant or modification. We also find that human H2A.Z nucleosomes protect only approximately 120 bp of DNA from MNase digestion and exhibit specific sequence preferences, suggesting a novel mechanism of nucleosome organization for the H2A.Z variant.

Yoon SS, Stangenberg L, Lee Y-J, Rothrock C, Dreyfuss JM, Baek K-H, Waterman PR, Nielsen PG, Weissleder R, Mahmood U, Park PJ, Jacks T, Dodd RD, Fisher CJ, Ryeom S, Kirsch DG. Efficacy of sunitinib and radiotherapy in genetically engineered mouse model of soft-tissue sarcoma. Int J Radiat Oncol Biol Phys 2009;74(4):1207-16.Abstract

PURPOSE: Sunitinib (SU) is a multitargeted receptor tyrosine kinase inhibitor of the vascular endothelial growth factor and platelet-derived growth factor receptors. The present study examined SU and radiotherapy (RT) in a genetically engineered mouse model of soft tissue sarcoma (STS). METHODS AND MATERIALS: Primary extremity STSs were generated in genetically engineered mice. The mice were randomized to treatment with SU, RT (10 Gy x 2), or both (SU+RT). Changes in the tumor vasculature before and after treatment were assessed in vivo using fluorescence-mediated tomography. The control and treated tumors were harvested and extensively analyzed. RESULTS: The mean fluorescence in the tumors was not decreased by RT but decreased 38-44% in tumors treated with SU or SU+RT. The control tumors grew to a mean of 1378 mm(3) after 12 days. SU alone or RT alone delayed tumor growth by 56% and 41%, respectively, but maximal growth inhibition (71%) was observed with the combination therapy. SU target effects were confirmed by loss of target receptor phosphorylation and alterations in SU-related gene expression. Cancer cell proliferation was decreased and apoptosis increased in the SU and RT groups, with a synergistic effect on apoptosis observed in the SU+RT group. RT had a minimal effect on the tumor microvessel density and endothelial cell-specific apoptosis, but SU alone or SU+RT decreased the microvessel density by >66% and induced significant endothelial cell apoptosis. CONCLUSION: SU inhibited STS growth by effects on both cancer cells and tumor vasculature. SU also augmented the efficacy of RT, suggesting that this combination strategy could improve local control of STS.

Park PJ, Kong SW, Tebaldi T, Lai WR, Kasif S, Kohane IS. Integration of heterogeneous expression data sets extends the role of the retinol pathway in diabetes and insulin resistance. Bioinformatics 2009;25(23):3121-7.Abstract

MOTIVATION: Type 2 diabetes is a chronic metabolic disease that involves both environmental and genetic factors. To understand the genetics of type 2 diabetes and insulin resistance, the DIabetes Genome Anatomy Project (DGAP) was launched to profile gene expression in a variety of related animal models and human subjects. We asked whether these heterogeneous models can be integrated to provide consistent and robust biological insights into the biology of insulin resistance. RESULTS: We perform integrative analysis of the 16 DGAP data sets that span multiple tissues, conditions, array types, laboratories, species, genetic backgrounds and study designs. For each data set, we identify differentially expressed genes compared with control. Then, for the combined data, we rank genes according to the frequency with which they were found to be statistically significant across data sets. This analysis reveals RetSat as a widely shared component of mechanisms involved in insulin resistance and sensitivity and adds to the growing importance of the retinol pathway in diabetes, adipogenesis and insulin resistance. Top candidates obtained from our analysis have been confirmed in recent laboratory studies.