Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Transcriptional control of a whole chromosome: emerging models for dosage compensation

Abstract

Males and females of many animal species differ in their sex-chromosome karyotype, and this creates imbalances between X-chromosome and autosomal gene products that require compensation. Although distinct molecular mechanisms have evolved in three highly studied systems, they all achieve coordinate regulation of an entire chromosome by differential RNA-polymerase occupancy at X-linked genes. High-throughput genome-wide methods have been pivotal in driving the latest progress in the field. Here we review the emerging models for dosage compensation in mammals, flies and nematodes, with a focus on mechanisms affecting RNA polymerase II activity on the X chromosome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of three modes of dosage compensation.
Figure 2: Metagene visualization of dosage compensation.
Figure 3: Modulation of Pol II transcription within the context of distinct dosage-compensation models.

Similar content being viewed by others

References

  1. Charlesworth, D., Charlesworth, B. & Marais, G. Steps in the evolution of sex chromosomes. Heredity (Edinb) 95, 118–128 (2005).

    Article  CAS  Google Scholar 

  2. Lucchesi, J.C., Kelly, W.G. & Panning, B. Chromatin remodeling in dosage compensation. Annu. Rev. Genet. 39, 615–651 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, Y. et al. Expression in aneuploid Drosophila S2 cells. PLoS Biol. 8, e1000320 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Zhang, Y. & Oliver, B. An evolutionary consequence of dosage compensation on Drosophila melanogaster female X-chromatin structure? BMC Genomics 11, 6 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Kruesi, W.S., Core, L.J., Waters, C.T., Lis, J.T. & Meyer, B.J. Condensin controls recruitment of RNA polymerase II to achieve nematode X-chromosome dosage compensation. Elife 2, e00808 (2013).Reports genome-wide analyses demonstrating repression of RNA-polymerase recruitment to X-linked genes as the molecular mechanism for C. elegans dosage compensation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Gupta, V. et al. Global analysis of X-chromosome dosage compensation. J. Biol. 5, 3 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Nguyen, D.K. & Disteche, C.M. Dosage compensation of the active X chromosome in mammals. Nat. Genet. 38, 47–53 (2006).Refs. 6 and 7 present initial genomic analyses supporting a generalized increase in X-linked gene expression as an evolutionary precursor to repressive mechanisms in C. elegans and to mammalian dosage compensation.

    Article  CAS  PubMed  Google Scholar 

  8. Xiong, Y. et al. RNA sequencing shows no dosage compensation of the active X-chromosome. Nat. Genet. 42, 1043–1047 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Lin, F., Xing, K., Zhang, J. & He, X. Expression reduction in mammalian X chromosome evolution refutes Ohno's hypothesis of dosage compensation. Proc. Natl. Acad. Sci. USA 109, 11752–11757 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Birchler, J.A. Claims and counterclaims of X-chromosome compensation. Nat. Struct. Mol. Biol. 19, 3–5 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Deng, X. et al. Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster. Nat. Genet. 43, 1179–1185 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Deng, X. et al. Mammalian X upregulation is associated with enhanced transcription initiation, RNA half-life, and MOF-mediated H4K16 acetylation. Dev. Cell 25, 55–68 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kharchenko, P.V., Xi, R. & Park, P.J. Evidence for dosage compensation between the X chromosome and autosomes in mammals. Nat. Genet. 43, 1167–1169 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Yildirim, E., Sadreyev, R.I., Pinter, S.F. & Lee, J.T. X-chromosome hyperactivation in mammals via nonlinear relationships between chromatin states and transcription. Nat. Struct. Mol. Biol. 19, 56–61 (2012).

    Article  CAS  Google Scholar 

  15. Lin, H. et al. Relative overexpression of X-linked genes in mouse embryonic stem cells is consistent with Ohno's hypothesis. Nat. Genet. 43, 1169–1170, author reply 1171–1172 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Meyer, B.J. Targeting X chromosomes for repression. Curr. Opin. Genet. Dev. 20, 179–189 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schulz, E.G. & Heard, E. Role and control of X chromosome dosage in mammalian development. Curr. Opin. Genet. Dev. 23, 109–115 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Csankovszki, G., McDonel, P. & Meyer, B.J. Recruitment and spreading of the C. elegans dosage compensation complex along X chromosomes. Science 303, 1182–1185 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Kelley, R.L. et al. Epigenetic spreading of the Drosophila dosage compensation complex from roX RNA genes into flanking chromatin. Cell 98, 513–522 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Pinter, S.F. et al. Spreading of X chromosome inactivation via a hierarchy of defined Polycomb stations. Genome Res. 22, 1864–1876 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Landt, S.G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Park, P.J. ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet. 10, 669–680 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vielle, A. et al. H4K20me1 contributes to downregulation of X-linked genes for C. elegans dosage compensation. PLoS Genet. 8, e1002933 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marks, H. et al. High-resolution analysis of epigenetic changes associated with X inactivation. Genome Res. 19, 1361–1373 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Calabrese, J.M. et al. Site-specific silencing of regulatory elements as a mechanism of X inactivation. Cell 151, 951–963 (2012).Describes chromosome-wide differences in RNA Pol II and H3K27me3 occupancy on Xa and Xi genes during imprinted X inactivation in mammalian trophoblastic cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wells, M.B., Snyder, M.J., Custer, L.M. & Csankovszki, G. Caenorhabditis elegans dosage compensation regulates histone H4 chromatin state on X chromosomes. Mol. Cell. Biol. 32, 1710–1719 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, T. et al. Broad chromosomal domains of histone modification patterns in C. elegans. Genome Res. 21, 227–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kind, J. et al. Genome-wide analysis reveals MOF as a key regulator of dosage compensation and gene expression in Drosophila. Cell 133, 813–828 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Gelbart, M.E., Larschan, E., Peng, S., Park, P.J. & Kuroda, M.I. Drosophila MSL complex globally acetylates H4K16 on the male X chromosome for dosage compensation. Nat. Struct. Mol. Biol. 16, 825–832 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Larschan, E. et al. MSL complex is attracted to genes marked by H3K36 trimethylation using a sequence-independent mechanism. Mol. Cell 28, 121–133 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Conrad, T., Cavalli, F.M., Vaquerizas, J.M., Luscombe, N.M. & Akhtar, A. Drosophila dosage compensation involves enhanced Pol II recruitment to male X-linked promoters. Science 337, 742–746 (2012).Provides evidence in favor of improved RNA-polymerase promoter recruitment as the molecular mechanism underlying dosage compensation in male D. melanogaster with references 44–46 as follow-up commentaries (alternative model presented in ref. 64).

    Article  CAS  PubMed  Google Scholar 

  32. Pferdehirt, R.R., Kruesi, W.S. & Meyer, B.J. An MLL/COMPASS subunit functions in the C. elegans dosage compensation complex to target X chromosomes for transcriptional regulation of gene expression. Genes Dev. 25, 499–515 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Regnard, C. et al. Global analysis of the relationship between JIL-1 kinase and transcription. PLoS Genet. 7, e1001327 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Core, L.J., Waterfall, J.J. & Lis, J.T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Larschan, E. et al. X chromosome dosage compensation via enhanced transcriptional elongation in Drosophila. Nature 471, 115–118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Khodor, Y.L. et al. Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila. Genes Dev. 25, 2502–2512 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nechaev, S. et al. Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila. Science 327, 335–338 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Dekker, J., Marti-Renom, M.A. & Mirny, L.A. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet. 14, 390–403 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nora, E.P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Splinter, E. et al. The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev. 25, 1371–1383 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Simon, M.D. et al. High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature 504, 465–469 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Engreitz, J.M. et al. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341, 1237973 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vaquerizas, J.M., Cavalli, F.M., Conrad, T., Akhtar, A. & Luscombe, N.M. Response to Comments on “Drosophila dosage compensation involves enhanced Pol II recruitment to male X-linked promoters”. Science 340, 273 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Straub, T. & Becker, P.B. Comment on “Drosophila dosage compensation involves enhanced Pol II recruitment to male X-linked promoters”. Science 340, 273 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Ferrari, F. et al. Comment on “Drosophila dosage compensation involves enhanced Pol II recruitment to male X-linked promoters”. Science 340, 273 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ehrensberger, A.H., Kelly, G.P. & Svejstrup, J.Q. Mechanistic interpretation of promoter-proximal peaks and RNAPII density maps. Cell 154, 713–715 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Bhadra, M.P., Bhadra, U., Kundu, J. & Birchler, J.A. Gene expression analysis of the function of the male-specific lethal complex in Drosophila. Genetics 169, 2061–2074 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Birchler, J.A., Pal-Bhadra, M. & Bhadra, U. Dosage dependent gene regulation and the compensation of the X chromosome in Drosophila males. Genetica 117, 179–190 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Hamada, F.N., Park, P.J., Gordadze, P.R. & Kuroda, M.I. Global regulation of X chromosomal genes by the MSL complex in Drosophila melanogaster. Genes Dev. 19, 2289–2294 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Straub, T., Gilfillan, G.D., Maier, V.K. & Becker, P.B. The Drosophila MSL complex activates the transcription of target genes. Genes Dev. 19, 2284–2288 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Park, S.W., Oh, H., Lin, Y.R. & Park, Y. MSL cis-spreading from roX gene up-regulates the neighboring genes. Biochem. Biophys. Res. Commun. 399, 227–231 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Alekseyenko, A.A. et al. A sequence motif within chromatin entry sites directs MSL establishment on the Drosophila X chromosome. Cell 134, 599–609 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Straub, T., Grimaud, C., Gilfillan, G.D., Mitterweger, A. & Becker, P.B. The chromosomal high-affinity binding sites for the Drosophila dosage compensation complex. PLoS Genet. 4, e1000302 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Smith, E.R., Allis, C.D. & Lucchesi, J.C. Linking global histone acetylation to the transcription enhancement of X-chromosomal genes in Drosophila males. J. Biol. Chem. 276, 31483–31486 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Alekseyenko, A.A., Larschan, E., Lai, W.R., Park, P.J. & Kuroda, M.I. High-resolution ChIP-chip analysis reveals that the Drosophila MSL complex selectively identifies active genes on the male X chromosome. Genes Dev. 20, 848–857 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gilfillan, G.D. et al. Chromosome-wide gene-specific targeting of the Drosophila dosage compensation complex. Genes Dev. 20, 858–870 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Allahverdi, A. et al. The effects of histone H4 tail acetylations on cation-induced chromatin folding and self-association. Nucleic Acids Res. 39, 1680–1691 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Liu, Y. et al. Influence of histone tails and H4 tail acetylations on nucleosome-nucleosome interactions. J. Mol. Biol. 414, 749–764 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Dunlap, D. et al. Distinct contributions of MSL complex subunits to the transcriptional enhancement responsible for dosage compensation in Drosophila. Nucleic Acids Res. 40, 11281–11291 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cugusi, S. et al. Topoisomerase II plays a role in dosage compensation in Drosophila. Transcription 4, 32–44 (2013).

    Article  Google Scholar 

  62. Johansson, A.M., Stenberg, P., Allgardsson, A. & Larsson, J. POF regulates the expression of genes on the fourth chromosome in Drosophila melanogaster by binding to nascent RNA. Mol. Cell. Biol. 32, 2121–2134 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Core, L.J. et al. Defining the status of RNA polymerase at promoters. Cell Rep. 2, 1025–1035 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ferrari, F. et al. “Jump start and gain” model for dosage compensation in Drosophila based on direct sequencing of nascent transcripts. Cell Rep. 5, 629–636 (2013).Provides evidence in favor of improved pausing release and transcriptional elongation as the molecular mechanisms underlying dosage compensation in male D. melanogaster (alternative model in ref. 31).

    Article  CAS  PubMed  Google Scholar 

  65. Prabhakaran, M. & Kelley, R.L. Mutations in the transcription elongation factor SPT5 disrupt a reporter for dosage compensation in Drosophila. PLoS Genet. 8, e1003073 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mets, D.G. & Meyer, B.J. Condensins regulate meiotic DNA break distribution, thus crossover frequency, by controlling chromosome structure. Cell 139, 73–86 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Csankovszki, G. et al. Three distinct condensin complexes control C. elegans chromosome dynamics. Curr. Biol. 19, 9–19 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ercan, S. et al. X chromosome repression by localization of the C. elegans dosage compensation machinery to sites of transcription initiation. Nat. Genet. 39, 403–408 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ercan, S., Dick, L.L. & Lieb, J.D. The C. elegans dosage compensation complex propagates dynamically and independently of X chromosome sequence. Curr. Biol. 19, 1777–1787 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jans, J. et al. A condensin-like dosage compensation complex acts at a distance to control expression throughout the genome. Genes Dev. 23, 602–618 (2009).Provides evidence that C. elegans dosage compensation occurs through global rather than local control of gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. McDonel, P., Jans, J., Peterson, B.K. & Meyer, B.J. Clustered DNA motifs mark X chromosomes for repression by a dosage compensation complex. Nature 444, 614–618 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gerstein, M.B. et al. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330, 1775–1787 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Petty, E.L., Collette, K.S., Cohen, A.J., Snyder, M.J. & Csankovszki, G. Restricting dosage compensation complex binding to the X chromosomes by H2A.Z/HTZ-1. PLoS Genet. 5, e1000699 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Whittle, C.M. et al. The genomic distribution and function of histone variant HTZ-1 during C. elegans embryogenesis. PLoS Genet. 4, e1000187 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Simon, M.D. et al. The genomic binding sites of a noncoding RNA. Proc. Natl. Acad. Sci. USA 108, 20497–20502 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chu, C., Qu, K., Zhong, F.L., Artandi, S.E. & Chang, H.Y. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol. Cell 44, 667–678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Plath, K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131–135 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Zhao, J., Sun, B.K., Erwin, J.A., Song, J.J. & Lee, J.T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Maenner, S. et al. 2-D structure of the A region of Xist RNA and its implication for PRC2 association. PLoS Biol. 8, e1000276 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Jeon, Y. & Lee, J.T. YY1 tethers Xist RNA to the inactive X nucleation center. Cell 146, 119–133 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nozawa, R.S. et al. Human inactive X chromosome is compacted through a PRC2-independent SMCHD1-HBiX1 pathway. Nat. Struct. Mol. Biol. 20, 566–573 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. O'Sullivan, J.M. et al. Gene loops juxtapose promoters and terminators in yeast. Nat. Genet. 36, 1014–1018 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Tan-Wong, S.M., French, J.D., Proudfoot, N.J. & Brown, M.A. Dynamic interactions between the promoter and terminator regions of the mammalian BRCA1 gene. Proc. Natl. Acad. Sci. USA 105, 5160–5165 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tan-Wong, S.M. et al. Gene loops enhance transcriptional directionality. Science 338, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Grimaud, C. & Becker, P.B. The dosage compensation complex shapes the conformation of the X chromosome in Drosophila. Genes Dev. 23, 2490–2495 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ferrari, F. et al. Jumpstart and gain model for dosage compensation in Drosophila based on direct sequencing of nascent transcripts. Cell Rep. 5, 629–636 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Churchman, L.S. & Weissman, J.S. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469, 368–373 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38, 1348–1354 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Sexton, T. et al. Sensitive detection of chromatin coassociations using enhanced chromosome conformation capture on chip. Nat. Protoc. 7, 1335–1350 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Dostie, J. et al. Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 16, 1299–1309 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sanyal, A., Lajoie, B.R., Jain, G. & Dekker, J. The long-range interaction landscape of gene promoters. Nature 489, 109–113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to G. Csankovszki, J.T. Lee, T.R. Magnuson, B.J. Meyer, B. Alver and D. Day for critical reading of the manuscript. Our research on dosage compensation is supported by the US National Institutes of Health (GM45744 to M.I.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitzi I Kuroda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, F., Alekseyenko, A., Park, P. et al. Transcriptional control of a whole chromosome: emerging models for dosage compensation. Nat Struct Mol Biol 21, 118–125 (2014). https://doi.org/10.1038/nsmb.2763

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2763

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing