Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A small subunit processome protein promotes cancer by altering translation

Subjects

Abstract

Dysregulation of ribosome biogenesis or translation can promote cancer, but the underlying mechanisms remain unclear. UTP18 is a component of the small subunit processome, a nucleolar multi-protein complex whose only known function is to cleave pre-ribosomal RNA to yield the 18S ribosomal RNA component of 40S ribosomal subunits. Here, we show that UTP18 also alters translation to promote stress resistance and growth, and that UTP18 is frequently gained and overexpressed in cancer. We observed that UTP18 localizes to the cytoplasm in a subset of cells, and that serum withdrawal increases cytoplasmic UTP18 localization. Cytoplasmic UTP18 associates with the translation complex and Hsp90 to upregulate the translation of IRES-containing transcripts such as HIF1a, Myc and VEGF, thereby inducing stress resistance. Hsp90 inhibition decreases cytoplasmic UTP18 and UTP18-induced increases in translation. Importantly, elevated UTP18 expression correlates with increased aggressiveness and decreased survival in numerous cancers. Enforced UTP18 overexpression promotes transformation and tumorigenesis, whereas UTP18 knockdown inhibits these processes. This stress adaptation mechanism is thus co-opted for growth by cancers, and its inhibition may represent a promising new therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Belin S, Beghin A, Solano-Gonzalez E, Bezin L, Brunet-Manquat S, Textoris J et al. Dysregulation of ribosome biogenesis and translational capacity is associated with tumor progression of human breast cancer cells. PLoS One 2009; 4: e7147.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Narla A, Ebert BL . Ribosomopathies: human disorders of ribosome dysfunction. Blood 2010; 115: 3196–3205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Silvera D, Formenti SC, Schneider RJ . Translational control in cancer. Nat Rev Cancer 2010; 10: 254–266.

    Article  CAS  PubMed  Google Scholar 

  4. Bernstein KA, Gallagher JE, Mitchell BM, Granneman S, Baserga SJ . The small-subunit processome is a ribosome assembly intermediate. Eukaryot Cell 2004; 3: 1619–1626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fichelson P, Moch C, Ivanovitch K, Martin C, Sidor CM, Lepesant JA et al. Live-imaging of single stem cells within their niche reveals that a U3snoRNP component segregates asymmetrically and is required for self-renewal in Drosophila. Nat Cell Biol 2009; 11: 685–693.

    Article  CAS  PubMed  Google Scholar 

  6. De Preter K, Vandesompele J, Heimann P, Yigit N, Beckman S, Schramm A et al. Human fetal neuroblast and neuroblastoma transcriptome analysis confirms neuroblast origin and highlights neuroblastoma candidate genes. Genome Biol 2006; 7: R84.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Reardon DA, Michalkiewicz E, Boyett JM, Sublett JE, Entrekin RE, Ragsdale ST et al. Extensive genomic abnormalities in childhood medulloblastoma by comparative genomic hybridization. Cancer Res 1997; 57: 4042–4047.

    CAS  PubMed  Google Scholar 

  8. Schleiermacher G, Michon J, Huon I, d'Enghien CD, Klijanienko J, Brisse H et al. Chromosomal CGH identifies patients with a higher risk of relapse in neuroblastoma without MYCN amplification. Br J Cancer 2007; 97: 238–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Holzel M, Orban M, Hochstatter J, Rohrmoser M, Harasim T, Malamoussi A et al. Defects in 18 S or 28 S rRNA processing activate the p53 pathway. J Biol Chem 2010; 285: 6364–6370.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Moerke NJ, Aktas H, Chen H, Cantel S, Reibarkh MY, Fahmy A et al. Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell 2007; 128: 257–267.

    Article  CAS  PubMed  Google Scholar 

  11. Bert AG, Grepin R, Vadas MA, Goodall GJ . Assessing IRES activity in the HIF-1alpha and other cellular 5′ UTRs. RNA 2006; 12: 1074–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Willimott S, Wagner SD . Post-transcriptional and post-translational regulation of Bcl2. Biochem Soc Trans 2010; 38: 1571–1575.

    Article  CAS  PubMed  Google Scholar 

  13. Spriggs KA, Stoneley M, Bushell M, Willis AE . Re-programming of translation following cell stress allows IRES-mediated translation to predominate. Biol Cell 2008; 100: 27–38.

    Article  CAS  PubMed  Google Scholar 

  14. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 2007; 104: 19345–19350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jackson SE . Hsp90: structure and function. Top Curr Chem 2013; 328: 155–240.

    Article  CAS  PubMed  Google Scholar 

  16. Shi Y, Sharma A, Wu H, Lichtenstein A, Gera J . Cyclin D1 and c-myc internal ribosome entry site (IRES)-dependent translation is regulated by AKT activity and enhanced by rapamycin through a p38 MAPK- and ERK-dependent pathway. J Biol Chem 2005; 280: 10964–10973.

    Article  CAS  PubMed  Google Scholar 

  17. Chen QR, Bilke S, Wei JS, Whiteford CC, Cenacchi N, Krasnoselsky AL et al. cDNA array-CGH profiling identifies genomic alterations specific to stage and MYCN-amplification in neuroblastoma. BMC Genomics 2004; 5: 70.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Molenaar JJ, Koster J, Zwijnenburg DA, van Sluis P, Valentijn LJ, van der Ploeg I et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 2012; 483: 589–593.

    Article  CAS  PubMed  Google Scholar 

  19. R2: Microarray analysis and visualization platform (http://r2.amc.nl).

  20. Goda N, Kanai M . Hypoxia-inducible factors and their roles in energy metabolism. Int J Hematol 2012; 95: 457–463.

    Article  CAS  PubMed  Google Scholar 

  21. van Riggelen J, Yetil A, Felsher DW . MYC as a regulator of ribosome biogenesis and protein synthesis. Nat Rev Cancer 2010; 10: 301–309.

    Article  CAS  PubMed  Google Scholar 

  22. Pisa V, Cozzolino M, Gargiulo S, Ottone C, Piccioni F, Monti M et al. The molecular chaperone Hsp90 is a component of the cap-binding complex and interacts with the translational repressor Cup during Drosophila oogenesis. Gene 2009; 432: 67–74.

    Article  CAS  PubMed  Google Scholar 

  23. Suzuki Y, Minami M, Suzuki M, Abe K, Zenno S, Tsujimoto M et al. The Hsp90 inhibitor geldanamycin abrogates colocalization of eIF4E and eIF4E-transporter into stress granules and association of eIF4E with eIF4G. J Biol Chem 2009; 284: 35597–35604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ujino S, Nishitsuji H, Sugiyama R, Suzuki H, Hishiki T, Sugiyama K et al. The interaction between human initiation factor eIF3 subunit c and heat-shock protein 90: a necessary factor for translation mediated by the hepatitis C virus internal ribosome entry site. Virus Res 2012; 163: 390–395.

    Article  CAS  PubMed  Google Scholar 

  25. Pan E, Pellarin M, Holmes E, Smirnov I, Misra A, Eberhart CG et al. Isochromosome 17q is a negative prognostic factor in poor-risk childhood medulloblastoma patients. Clin Cancer Res 2005; 11: 4733–4740.

    Article  CAS  PubMed  Google Scholar 

  26. Calabrese C, Frank A, Maclean K, Gilbertson R . Medulloblastoma sensitivity to 17-allylamino-17-demethoxygeldanamycin requires MEK/ERKM. J Biol Chem 2003; 278: 24951–24959.

    Article  CAS  PubMed  Google Scholar 

  27. Kang J, Kamal A, Burrows FJ, Evers BM, Chung DH . Inhibition of neuroblastoma xenograft growth by Hsp90 inhibitors. Anticancer Res 2006; 26: 1903–1908.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sasaki T, Okuda K, Zheng W, Butrynski J, Capelletti M, Wang L et al. The neuroblastoma-associated F1174L ALK mutation causes resistance to an ALK kinase inhibitor in ALK-translocated cancers. Cancer Res 2010; 70: 10038–10043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Goutagny S, Yang HW, Zucman-Rossi J, Chan J, Dreyfuss JM, Park PJ et al. Genomic profiling reveals alternative genetic pathways of meningioma malignant progression dependent on the underlying NF2 status. Clin Cancer Res 2010; 16: 4155–4164.

    Article  CAS  PubMed  Google Scholar 

  30. Kim H, Huang W, Jiang X, Pennicooke B, Park PJ, Johnson MD . Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. Proc Natl Acad Sci U S A 2010; 107: 2183–2188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim TM, Xi R, Luquette LJ, Park RW, Johnson MD, Park PJ . Functional genomic analysis of chromosomal aberrations in a compendium of 8000 cancer genomes. Genome Res 2012; 23: 217–227.

    Article  CAS  PubMed  Google Scholar 

  32. Kim TM, Huang W, Park R, Park PJ, Johnson MD . A developmental taxonomy of glioblastoma defined and maintained by MicroRNAs. Cancer Res 2011; 71: 3387–3399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lang KJ, Kappel A, Goodall GJ . Hypoxia-inducible factor-1alpha mRNA contains an internal ribosome entry site that allows efficient translation during normoxia and hypoxia. Mol Biol Cell 2002; 13: 1792–1801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stein I, Itin A, Einat P, Skaliter R, Grossman Z, Keshet E . Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol Cell Biol 1998; 18: 3112–3119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nanbru C, Lafon I, Audigier S, Gensac MC, Vagner S, Huez G et al. Alternative translation of the proto-oncogene c-myc by an internal ribosome entry site. J Biol Chem 1997; 272: 32061–32066.

    Article  CAS  PubMed  Google Scholar 

  36. del Prete MJ, Vernal R, Dolznig H, Mullner EW, Garcia-Sanz JA . Isolation of polysome-bound mRNA from solid tissues amenable for RT-PCR and profiling experiments. RNA 2007; 13: 414–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a Brain Science Foundation Research Award, the Santos Family Foundation, a Hagerty Fund Research Award, R01 NS062219 from the National Institute of Neurological Disorders and Stroke and an NIH Director’s New Innovator Award (DP2 OD002319) to MDJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M D Johnson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Kim, TM., Song, S. et al. A small subunit processome protein promotes cancer by altering translation. Oncogene 34, 4471–4481 (2015). https://doi.org/10.1038/onc.2014.376

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.376

This article is cited by

Search

Quick links