Nucleosomes

2016
Day DS*, Zhang B*, Stevens SM, Ferrari F, Larschan EN, Park PJ**, Pu WT**. Comprehensive analysis of promoter-proximal RNA polymerase II pausing across mammalian cell types. Genome Biol 2016;17(1):120.Abstract

BACKGROUND: For many genes, RNA polymerase II stably pauses before transitioning to productive elongation. Although polymerase II pausing has been shown to be a mechanism for regulating transcriptional activation, the extent to which it is involved in control of mammalian gene expression and its relationship to chromatin structure remain poorly understood. RESULTS: Here, we analyze 85 RNA polymerase II chromatin immunoprecipitation (ChIP)-sequencing experiments from 35 different murine and human samples, as well as related genome-wide datasets, to gain new insights into the relationship between polymerase II pausing and gene regulation. Across cell and tissue types, paused genes (pausing index > 2) comprise approximately 60 % of expressed genes and are repeatedly associated with specific biological functions. Paused genes also have lower cell-to-cell expression variability. Increased pausing has a non-linear effect on gene expression levels, with moderately paused genes being expressed more highly than other paused genes. The highest gene expression levels are often achieved through a novel pause-release mechanism driven by high polymerase II initiation. In three datasets examining the impact of extracellular signals, genes responsive to stimulus have slightly lower pausing index on average than non-responsive genes, and rapid gene activation is linked to conditional pause-release. Both chromatin structure and local sequence composition near the transcription start site influence pausing, with divergent features between mammals and Drosophila. Most notably, in mammals pausing is positively correlated with histone H2A.Z occupancy at promoters. CONCLUSIONS: Our results provide new insights into the contribution of RNA polymerase II pausing in mammalian gene regulation and chromatin structure.

pdf
Mieczkowski J, Cook A, Bowman SK, Mueller B, Alver BH, Kundu S, Deaton AM, Urban JA, Larschan E, Park PJ, Kingston RE, Tolstorukov MY. MNase titration reveals differences between nucleosome occupancy and chromatin accessibility. Nat Commun 2016;7:11485.Abstract

Chromatin accessibility plays a fundamental role in gene regulation. Nucleosome placement, usually measured by quantifying protection of DNA from enzymatic digestion, can regulate accessibility. We introduce a metric that uses micrococcal nuclease (MNase) digestion in a novel manner to measure chromatin accessibility by combining information from several digests of increasing depths. This metric, MACC (MNase accessibility), quantifies the inherent heterogeneity of nucleosome accessibility in which some nucleosomes are seen preferentially at high MNase and some at low MNase. MACC interrogates each genomic locus, measuring both nucleosome location and accessibility in the same assay. MACC can be performed either with or without a histone immunoprecipitation step, and thereby compares histone and non-histone protection. We find that changes in accessibility at enhancers, promoters and other regulatory regions do not correlate with changes in nucleosome occupancy. Moreover, high nucleosome occupancy does not necessarily preclude high accessibility, which reveals novel principles of chromatin regulation.

pdf
2014
West JA*, Cook A*, Alver BH, Stadtfeld M, Deaton AM, Hochedlinger K, Park PJ**, Tolstorukov MY**, Kingston RE**. Nucleosomal occupancy changes locally over key regulatory regions during cell differentiation and reprogramming. Nat Commun 2014;5:4719.Abstract

Chromatin structure determines DNA accessibility. We compare nucleosome occupancy in mouse and human embryonic stem cells (ESCs), induced-pluripotent stem cells (iPSCs) and differentiated cell types using MNase-seq. To address variability inherent in this technique, we developed a bioinformatic approach to identify regions of difference (RoD) in nucleosome occupancy between pluripotent and somatic cells. Surprisingly, most chromatin remains unchanged; a majority of rearrangements appear to affect a single nucleosome. RoDs are enriched at genes and regulatory elements, including enhancers associated with pluripotency and differentiation. RoDs co-localize with binding sites of key developmental regulators, including the reprogramming factors Klf4, Oct4/Sox2 and c-Myc. Nucleosomal landscapes in ESC enhancers are extensively altered, exhibiting lower nucleosome occupancy in pluripotent cells than in somatic cells. Most changes are reset during reprogramming. We conclude that changes in nucleosome occupancy are a hallmark of cell differentiation and reprogramming and likely identify regulatory regions essential for these processes.

pdf
2013
Tolstorukov MY*, Sansam CG*, Lu P*, Koellhoffer EC, Helming KC, Alver BH, Tillman EJ, Evans JA, Wilson BG, Park PJ**, Roberts CWM**. Swi/Snf chromatin remodeling/tumor suppressor complex establishes nucleosome occupancy at target promoters. Proc Natl Acad Sci U S A 2013;110(25):10165-70.Abstract

Precise nucleosome-positioning patterns at promoters are thought to be crucial for faithful transcriptional regulation. However, the mechanisms by which these patterns are established, are dynamically maintained, and subsequently contribute to transcriptional control are poorly understood. The switch/sucrose non-fermentable chromatin remodeling complex, also known as the Brg1 associated factors complex, is a master developmental regulator and tumor suppressor capable of mobilizing nucleosomes in biochemical assays. However, its role in establishing the nucleosome landscape in vivo is unclear. Here we have inactivated Snf5 and Brg1, core subunits of the mammalian Swi/Snf complex, to evaluate their effects on chromatin structure and transcription levels genomewide. We find that inactivation of either subunit leads to disruptions of specific nucleosome patterning combined with a loss of overall nucleosome occupancy at a large number of promoters, regardless of their association with CpG islands. These rearrangements are accompanied by gene expression changes that promote cell proliferation. Collectively, these findings define a direct relationship between chromatin-remodeling complexes, chromatin structure, and transcriptional regulation.

pdf
2012
Histone variant H2A.Bbd is associated with active transcription and mRNA processing in human cells.
Tolstorukov MY*, Goldman JA*, Gilbert C, Ogryzko V, Kingston RE**, Park PJ**. Histone variant H2A.Bbd is associated with active transcription and mRNA processing in human cells. Mol Cell 2012;47(4):596-607.Abstract

Variation in chromatin composition and organization often reflects differences in genome function. Histone variants, for example, replace canonical histones to contribute to regulation of numerous nuclear processes including transcription, DNA repair, and chromosome segregation. Here we focus on H2A.Bbd, a rapidly evolving variant found in mammals but not in invertebrates. We report that in human cells, nucleosomes bearing H2A.Bbd form unconventional chromatin structures enriched within actively transcribed genes and characterized by shorter DNA protection and nucleosome spacing. Analysis of transcriptional profiles from cells depleted for H2A.Bbd demonstrated widespread changes in gene expression with a net downregulation of transcription and disruption of normal mRNA splicing patterns. In particular, we observed changes in exon inclusion rates and increased presence of intronic sequences in mRNA products upon H2A.Bbd depletion. Taken together, our results indicate that H2A.Bbd is involved in formation of a specific chromatin structure that facilitates both transcription and initial mRNA processing.

pdf
2011
Tolstorukov MY, Volfovsky N, Stephens RM, Park PJ. Impact of chromatin structure on sequence variability in the human genome. Nat Struct Mol Biol 2011;18(4):510-5.Abstract

DNA sequence variations in individual genomes give rise to different phenotypes within the same species. One mechanism in this process is the alteration of chromatin structure due to sequence variation that influences gene regulation. We composed a high-confidence collection of human single-nucleotide polymorphisms and indels based on analysis of publicly available sequencing data and investigated whether the DNA loci associated with stable nucleosome positions are protected against mutations. We addressed how the sequence variation reflects the occupancy profiles of nucleosomes bearing different epigenetic modifications on genome scale. We found that indels are depleted around nucleosome positions of all considered types, whereas single-nucleotide polymorphisms are enriched around the positions of bulk nucleosomes but depleted around the positions of epigenetically modified nucleosomes. These findings indicate an increased level of conservation for the sequences associated with epigenetically modified nucleosomes, highlighting complex organization of the human chromatin.

pdf
2010
Tolstorukov MY, Kharchenko PV, Park PJ. Analysis of primary structure of chromatin with next-generation sequencing. Epigenomics 2010;2(2):187-197.Abstract

The recent development of next-generation sequencing technology has enabled significant progress in chromatin structure analysis. Here, we review the experimental and bioinformatic approaches to studying nucleosome positioning and histone modification profiles on a genome scale using this technology. These studies advanced our knowledge of the nucleosome positioning patterns of both epigenetically modified and bulk nucleosomes and elucidated the role of such patterns in regulation of gene expression. The identification and analysis of large sets of nucleosome-bound DNA sequences allowed better understanding of the rules that govern nucleosome positioning in organisms of various complexity. We also discuss the existing challenges and prospects of using next-generation sequencing for nucleosome positioning analysis and outline the importance of such studies for the entire chromatin structure field.

pdf
2009
Comparative analysis of H2A.Z nucleosome organization in the human and yeast genomes.
Tolstorukov MY*, Kharchenko PV*, Goldman JA, Kingston RE, Park PJ. Comparative analysis of H2A.Z nucleosome organization in the human and yeast genomes. Genome Res 2009;19(6):967-77.Abstract

Eukaryotic DNA is wrapped around a histone protein core to constitute the fundamental repeating units of chromatin, the nucleosomes. The affinity of the histone core for DNA depends on the nucleotide sequence; however, it is unclear to what extent DNA sequence determines nucleosome positioning in vivo, and if the same rules of sequence-directed positioning apply to genomes of varying complexity. Using the data generated by high-throughput DNA sequencing combined with chromatin immunoprecipitation, we have identified positions of nucleosomes containing the H2A.Z histone variant and histone H3 trimethylated at lysine 4 in human CD4(+) T-cells. We find that the 10-bp periodicity observed in nucleosomal sequences in yeast and other organisms is not pronounced in human nucleosomal sequences. This result was confirmed for a broader set of mononucleosomal fragments that were not selected for any specific histone variant or modification. We also find that human H2A.Z nucleosomes protect only approximately 120 bp of DNA from MNase digestion and exhibit specific sequence preferences, suggesting a novel mechanism of nucleosome organization for the H2A.Z variant.

pdf
2008
Kharchenko PV*, Woo CJ*, Tolstorukov MY, Kingston RE**, Park PJ**. Nucleosome positioning in human HOX gene clusters. Genome Res 2008;18(10):1554-61.Abstract

The distribution of nucleosomes along the genome is a significant aspect of chromatin structure and is thought to influence gene regulation through modulation of DNA accessibility. However, properties of nucleosome organization remain poorly understood, particularly in mammalian genomes. Toward this goal we used tiled microarrays to identify stable nucleosome positions along the HOX gene clusters in human cell lines. We show that nucleosome positions exhibit sequence properties and long-range organization that are different from those characterized in other organisms. Despite overall variability of internucleosome distances, specific loci contain regular nucleosomal arrays with 195-bp periodicity. Moreover, such arrays tend to occur preferentially toward the 3' ends of genes. Through comparison of different cell lines, we find that active transcription is correlated with increased positioning of nucleosomes, suggesting an unexpected role for transcription in the establishment of well-positioned nucleosomes.

pdf
Tolstorukov MY**, Choudhary V, Olson WK, Zhurkin VB, Park PJ**. nuScore: a web-interface for nucleosome positioning predictions. Bioinformatics 2008;24(12):1456-8.Abstract

SUMMARY: Sequence-directed mapping of nucleosome positions is of major biological interest. Here, we present a web-interface for estimation of the affinity of the histone core to DNA and prediction of nucleosome arrangement on a given sequence. Our approach is based on assessment of the energy cost of imposing the deformations required to wrap DNA around the histone surface. The interface allows the user to specify a number of options such as selecting from several structural templates for threading calculations and adding random sequences to the analysis. AVAILABILITY: The nuScore interface is freely available for use at http://compbio.med.harvard.edu/nuScore. CONTACT: peter_park@harvard.edu; tolstorukov@gmail.com SUPPLEMENTARY INFORMATION: The site contains user manual, description of the methodology and examples.

pdf